Training a neural network with two completely different datasets. - deep-learning

I am working with Neural network for object classification right now. I am working on creating datasets for training and validation. I want to know if it is possible to create two datasets for training comprising of two completely different objects and labels. (EG dataset 1 has cars and dataset 2 has cats) Does it still work or should I create datasets where each file has mixed up both the different object types and labels in all the training files? Does such mixture/separation matter if I am training the network in one cycle with different datasets?

Depending on what you are using to train, many APIs (such as TensorFlow object detection) read the TF Record files (datasets) in order as they are scrambled to make the files beforehand. Scrambling is quite important with training as you will get the model starting training with one class, and then train for a bit with another individual class. It should get to the same standard eventually, but it is a lot better for the model to train with an equal distribution of classes of the training steps.

Related

How to do Transfer Learning with LSTM for time series forecasting?

I am working on a project about time-series forecasting using LSTMs layers. The dataset used for training and testing the model was collected among 443 persons which worn a sensor that samples a physical variable ( 1 variable/measure) every 5 minutes, for each patient there are around 5000 records/readings.
Although, I can train and test my model under different scenarios, I am troubled finding information about how to apply transfer learning in such an architecture. I mean, I understand I can use inductive transfer-learning by copying the matrix-weights from the general model onto a secondary model (unknown person), then after I can re-train this model with specific data and evaluate the result.
But I would like to know if somebody knows other ways to apply transfer-learning on this type of architecture or where to find information about it since there aren't many scientific papers talking about it, mostly they talk about NLP and other type of application but time series?
Cheers X )

What are backend weights in deep learning models (yolo)?

pretty new to deep learning, but couldn't seem to find/figure out what are backend weights such as
full_yolo_backend.h5
squeezenet_backend.h5
From what I have found and experimented, these backend weights have fundamentally different model architectures such as
yolov2 model has 40+ layers but the backend only 20+ layers (?)
you can build on top of the backend model with your own networks (?)
using backend models tend to yield poorer results (?)
I was hoping to seek some explanation on backend weights vs actual models for learning purposes. Thank you so much!
I'm note sure which implementation you are using but in many applications, you can consider a deep model as a feature extractor whose output is more or less task-agnostic, followed by a number of task-specific heads.
The choice of backend depends on your specific constraints in terms of tradeoff between accuracy and computational complexity. Examples of classical but time-consuming choices for backends are resnet-101, resnet-50 or VGG that can be coupled with FPN (feature pyramid networks) to yield multiscale features. However, if speed is your main concern then you can use smaller backends such as different MobileNet architectures or even the vanilla networks such as the ones used in the original Yolov1/v2 papers (tinyYolo is an extreme case).
Once you have chosen your backend (you can use a pretrained one), you can load its weights (that is what your *h5 files are). On top of that, you will add a small head that will carry the tasks that you need: this can be classification, bbox regression, or like in MaskRCNN forground/background segmentation. For Yolov2, you can just add very few, for example 3 convolutional layers (with non-linearities of course) that will output a tensor of size
BxC1xC2xAxP
#B==batch size
#C1==number vertical of cells
#C2==number of horizontal cells
#C3==number of anchors
#C4==number of parameters (i.e. bbx parameters, class prediction, confidence)
Then, you can just save/load the weights of this head separately. When you are happy with your results though, training jointly (end-to-end) will usually give you a small boost in accuracy.
Finally, to come back to your last questions, I assume that you are getting poor results with the backends because you are only loading backend weights but not the weights of the heads. Another possibility is that you are using a head trained with a backends X but that you are switching the backend to Y. In that case since the head expects different features, it's natural to see a drop in performance.

How to choose which pre-trained weights to use for my model?

I am a beginner, and I am very confused about how we can choose a pre-trained model that will improve my model.
I am trying to create a cat breed classifier using pre-trained weights of a model, lets say VGG16 trained on digits dataset, will that improve the performance of the model? or if I train my model just on the database without using any other weights will be better, or will both be the same as those pre-trained weights will be just a starting point.
Also if I use weights of the VGG16 trained for cat vs dog data as a starting point of my cat breed classification model will that help me in improving the model?
Since you've mentioned that you are a beginner I'll try to be a bit more verbose than normal so please bear with me.
How neural models recognise images
The layers in a pre-trained model store multiple aspects of the images they were trained on like patterns(lines, curves), colours within the image which it uses to decide if an image is of a specific class or not
With each layer the complexity of what it can store increases initially it captures lines or dots or simple curves but with each layer, the representation power increases and it starts capturing features like cat ears, dog face, curves in a number etc.
The image below from Keras blog shows how initial layers learn to represent simple things like dots and lines and as we go deeper they start to learn to represent more complex patterns.
Read more about Conv net Filters at keras's blog here
How does using a pretrained model give better results ?
When we train a model we waste a lot of compute and time initially creating these representations and in order to get to those representations we need quite a lot of data too else we might not be able to capture all relevant features and our model might not be as accurate.
So when we say we want to use a pre-trained model we want to use these representations so if we use a model trained on imagenet which has lots of cat pics we can be sure that the model already has representations to identify important features required to identify a cat and will converge to a better point than if we used random weights.
How to use pre-trained weights
So when we say to use pre-trained weights we mean use the layers which hold the representations to identify cats but discard the last layer (dense and output) and instead add fresh dense and output layers with random weights. So our predictions can make use of the representations already learned.
In real life we freeze our pretrained weights during the initial training as we do not want our random weights at the bottom to ruin the learned representations. we only unfreeze the representations in the end after we have a good classification accuracy to fine-tune them, and that too with a very small learning rate.
Which kind of pre-trained model to use
Always choose those pretrained weights that you know has the most amount of representations which can help you in identifying the class you are interested in.
So will using a mnist digits trained weights give relatively bad results when compared with one trained on image net?
Yes, but given that the initial layers have already learned simple patterns like lines and curves for digits using these weights will still put you at an advantage when compared to starting from scratch in most of the cases.
Sane weight initialization
The pre-trained weights to choose depends upon the type of classes you wish to classify. Since, you wish to classify Cat Breeds, use pre-trained weights from a classifier that is trained on similar task. As mentioned by the above answers the initial layers learn things like edges, horizontal or vertical lines, blobs, etc. As you go deeper, the model starts learning problem specific features. So for generic tasks you can use say imagenet & then fine-tune it for the problem at hand.
However, having a pre-trained model which closely resembles your training data helps immensely. A while ago, I had participated in Scene Classification Challenge where we initialized our model with the ResNet50 weights trained on Places365 dataset. Since, the classes in the above challenge were all present in the Places365 dataset, we used the weights available here and fine-tuned our model. This gave us a great boost in our accuracy & we ended up at top positions on the leaderboard.
You can find some more details about it in this blog
Also, understand that the one of the advantages of transfer learning is saving computations. Using a model with randomly initialized weights is like training a neural net from scratch. If you use VGG16 weights trained on digits dataset, then it might have already learned something, so it will definitely save some training time. If you train a model from scratch then it will eventually learn all the patterns which using a pre-trained digits classifier weights would have learnt.
On the other hand using weights from a Dog-vs-Cat classifier should give you better performance as it already has learned features to detect say paws, ears, nose or whiskers.
Could you provide more information, what do you want to classify exactly? I see you wish to classify images, which type of images (containing what?) and in which classes?
As a general remark : If you use a trained model, it must fit your need, of course. Keep in mind that a model which was trained on a given dataset, learned only the information contained in that dataset and can classify / indentify information analogous to the one in the training dataset.
If you want to classify an image containing an animal with a Y/N (binary) classifier, (cat or not cat) you should use a model trained on different animals, cats among them.
If you want to classify an image of a cat into classes corresponding to cat races, let's say, you should use a model trained only on cats images.
I should say you should use a pipeline, containing steps 1. followed by 2.
it really depends on the size of the dataset you have at hand and how related the task and data that the model was pretrained on to your task and data. Read more about Transfer Learning http://cs231n.github.io/transfer-learning/ or Domain Adaptation if your task is the same.
I am trying to create a cat breed classifier using pre-trained weights of a model, lets say VGG16 trained on digits dataset, will that improve the performance of the model?
There are general characteristics that are still learned from digits like edge detection that could be useful for your target task, so the answer here is maybe. You can here try just training the top layers which is common in computer vision applications.
Also if I use weights of the VGG16 trained for cat vs dog data as a starting point of my cat breed classification model will that help me in improving the model?
Your chances should be better if the task and data are more related and similar

How to combine the probability (soft) output of different networks and get the hard output?

I have trained three different models separately in caffe, and I can get the probability of belonging to each class for semantic segmentation. I want to get an output based on the 3 probabilities that I am getting (for example, the argmax of three probabilities). This can be done by inferring through net model and deploy.prototxt files. And then based on the final soft output, the hard output shows the final segmentation.
My questions are:
How to get ensemble output of these networks?
How to do end-to-end training of ensemble of three networks? Is there any resources to get help?
How to get final segmentation based on the final probability (e.g., argmax of three probabilities), which is soft output?
My question may sound very basic question, and my apologies for that. I am still trying to learn step by step. I really appreciate your help.
There are two ways (at least that I know of) that you could do to solve (1):
One is to use pycaffe interface, instantiate the three networks, forward an input image through each of them, fetch the output and perform any operation you desire to combine all three probabilites. This is specially useful if you intend to combine them using a more complex logic.
The alternative (way less elegant) is to use caffe test and process all your inputs separately through each network saving the probabilities into files. Then combine the probabilities from the files later.
Regarding your second question, I have never trained more than two weight-sharing CNNs (siamese networks). From what I understood, your networks don't share weights, only the architecture. If you want to train all three end-to-end please take a look at this tutorial made for siamese networks. The authors define in their prototxt both paths/branches, connect each branch's layers to the input Data layer and, at the end, with a loss layer.
In your case you would define the three branches (one for each of your networks), connect with input data layers (check if each branch processes the same input or different inputs, for example, the same image pre-processed differently) and unite them with a loss, similarly to the tutorial.
Now, for the last question, it seems Caffe has a ArgMax layer that may be what you are looking for. If you are familiar with python, you could also use a python layer that allows you to define with great flexibility how to combine the output probabilities.

Training model to recognize one specific object (or scene)

I am trying to train a learning model to recognize one specific scene. For example, say I would like to train it to recognize pictures taken at an amusement park and I already have 10 thousand pictures taken at an amusement park. I would like to train this model with those pictures so that it would be able to give a score for other pictures of the probability that they were taken at an amusement park. How do I do that?
Considering this is an image recognition problem, I would probably use a convolutional neural network, but I am not quite sure how to train it in this case.
Thanks!
There are several possible ways. The most trivial one is to collect a large number of negative examples (images from other places) and train a two-class model.
The second approach would be to train a network to extract meaningful low-dimensional representations from an input image (embeddings). Here you can use siamese training to explicitly train the network to learn similarities between images. Such an approach is employed for face recognition, for instance (see FaceNet). Having such embeddings, you can use some well-established methods for outlier detections, for instance, 1-class SVM, or any other classifier. In this case you also need negative examples.
I would heavily augment your data using image cropping - it is the most obvious way to increase the amount of training data in your case.
In general, your success in this task strongly depends on the task statement (are restricted to parks only, or any kind of place) and the proper data.