Given two vectors of candidates:
x = [1 3 5];
y = [1 2 3 4];
I want to find which candidates satisfy an equation or formula. This is what I want to do:
f = x + y - 6;
solve f;
And then, it spits out the solutions:
5 1
3 3
If it matters, I am actually using Octave, not MatLab because I don't have a Windows machine. I know that I can do this with a for loop:
for i=x
for j=y
if i+j-6==0
disp([i j]);
end
end
This is a trivial example. I am looking for a solution that will handle much larger examples.
Solving such equations per "brute force" is generally a bad idea but here you go:
x = [1 3 5];
y = [1 2 3 4];
## build grid (also works for n vars)
[xx, yy] = ndgrid (x, y);
## anonymous function
f = #(x,y) abs(x + y - 6) < 16*eps
## true?
t = f (xx, yy);
## build result
[xx(t) yy(t)]
Related
Using Octave's symbolic package, I define a symbolic function of t like this:
>> syms a b c d t real;
>> f = poly2sym([a b c], t) + d * exp(t)
f = (sym)
2 t
a⋅t + b⋅t + c + d⋅ℯ
I also have another function with known coefficients:
>> g = poly2sym([2 3 5], t) + 7 * exp(t)
g = (sym)
2 t
2⋅t + 3⋅t + 7⋅ℯ + 5
I would like to solve f == g for the coefficients a, b, c, d such that the equation holds for all values of t. That is, I simply want to equate the coefficients of t^2 in both equations, and the coefficients of exp(t), etc. I am looking for this solution:
a = 2
b = 3
c = 5
d = 7
When I try to solve the equation using solve, this is what I get:
>> solve(f == g, a, b, c, d)
ans = (sym)
t 2 t
-b⋅t - c - d⋅ℯ + 2⋅t + 3⋅t + 7⋅ℯ + 5
───────────────────────────────────────
2
t
It solves for a in terms of b, c, d, t. This is understandable since in essence there is no difference between the variables b, c and t. But I was wondering if there was a method to somehow separate the terms (using their symbolic form w. r. t. the variable t) and solve the resulting system of linear equations on a, b, c, d.
Note: The function I wrote here is a minimal example. What I am really trying to do is to solve a linear ordinary differential equation using the method of undetermined coefficients. For example, I define something like y = a*exp(-t) + b*t*exp(-t), and solve for diff(y, t, t) + diff(y,t) + y == t*exp(-t). But I believe solving the problem with simpler functions will lead me to the right direction.
I have found a terribly slow and dirty method to get the job done. The coefficients have to be linear in a, b, ... though.
The idea is to follow these steps:
Write the equation in f - g form (which equals zero)
Use expand() to separate the terms
Use children() to get the terms in the equation as a symbolic vector
Now that we have the terms in a vector, we can find those that are the same function of t and add their coefficients together. The way I checked this was by checking if the division of two terms had t as a symbolic variable
For each term, find other terms with the same function of t, add all these coefficients together, save the obtained equation in a vector
Pass the vector of created equations to solve()
This code solves the equation I wrote in the note at the end of my question:
pkg load symbolic
syms t a b real;
y = a * exp(-t) + b * t * exp(-t);
lhs = diff(y, t, t) + diff(y, t) + y;
rhs = t * exp(-t);
expr = expand(lhs - rhs);
chd = children(expr);
used = false(size(chd));
equations = [];
for z = 1:length(chd)
if used(z)
continue
endif
coefficients = 0;
for zz = z + 1:length(chd)
if used(zz)
continue
endif
division = chd(zz) / chd(z);
vars = findsymbols(division);
if sum(has(vars, t)) == 0 # division result has no t
used(zz) = true;
coefficients += division;
endif
endfor
coefficients += 1; # for chd(z)
vars = findsymbols(chd(z));
nott = vars(!has(vars, t));
if length(nott)
coefficients *= nott;
endif
equations = [equations, expand(coefficients)];
endfor
solution = solve(equations == 0);
Suppose I have the following script, which constructs a symbolic array, A_known, and a symbolic vector x, and performs a matrix multiplication.
clc; clearvars
try
pkg load symbolic
catch
error('Symbolic package not available!');
end
syms V_l k s0 s_mean
N = 3;
% Generate left-hand-side square matrix
A_known = sym(zeros(N));
for hI = 1:N
A_known(hI, 1:hI) = exp(-(hI:-1:1)*k);
end
A_known = A_known./V_l;
% Generate x vector
x = sym('x', [N 1]);
x(1) = x(1) + s0*V_l;
% Matrix multiplication to give b vector
b = A_known*x
Suppose A_known was actually unknown. Is there a way to deduce it from b and x? If so, how?
Til now, I only had the case where x was unknown, which normally can be solved via x = b \ A.
Mathematically, it is possible to get a solution, but it actually has infinite solutions.
Example
A = magic(5);
x = (1:5)';
b = A*x;
A_sol = b*pinv(x);
which has
>> A
A =
17 24 1 8 15
23 5 7 14 16
4 6 13 20 22
10 12 19 21 3
11 18 25 2 9
but solves A as A_sol like
>> A_sol
A_sol =
3.1818 6.3636 9.5455 12.7273 15.9091
3.4545 6.9091 10.3636 13.8182 17.2727
4.4545 8.9091 13.3636 17.8182 22.2727
3.4545 6.9091 10.3636 13.8182 17.2727
3.1818 6.3636 9.5455 12.7273 15.9091
I am trying to understand if it's possible to use Octave more efficiently by removing the for loop I'm using to calculate a formula on each row of a matrix X:
myscalar = 0
for i = 1:size(X, 1),
myscalar += X(i, :) * y(i) % y is a vector of dimension size(X, 1)
...
The formula is more complicate than adding to a scalar. The question here is really how to iterate through X rows without an index, so that I can eliminate the for loop.
Yes, you can use broadcasting for this (you will need 3.6.0 or later). If you know python, this is the same (an explanation from python). Simply multiply the matrix by the column. Finnaly, cumsum does the addition but we only want the last row.
newx = X .* y;
myscalars = cumsum (newx, 1) (end,:);
or in one line without temp variables
myscalars = cumsum (X .* y, 1) (end,:);
If the sizes are right, broadcasting is automatically performed. For example:
octave> a = [ 1 2 3
1 2 3
1 2 3];
octave> b = [ 1 0 2];
octave> a .* b'
warning: product: automatic broadcasting operation applied
ans =
1 0 6
1 0 6
1 0 6
octave> a .* b
warning: product: automatic broadcasting operation applied
ans =
1 2 3
0 0 0
2 4 6
The reason for the warning is that it's a new feature that may confuse users and is not existent in Matlab. You can turn it off permanentely by adding warning ("off", "Octave:broadcast") to your .octaverc file
For anyone using an older version of Octave, the same can be accomplished by calling bsxfun directly.
myscalars = cumsum (bsxfun (#times, X, y), 1) (end,:);
I've been tasked with writing MIPS instruction code for the following formula:
f(n) = 3 f(n-1) + 2 f(n-2)
f(0) = 1
f(1) = 1
I'm having issues understanding what the formula actually means.
From what I understand we are passing an int n to the doubly recursive program.
So for f(0) the for would the equation be:
f(n)=3*1(n-1) + 2*(n-2)
If n=10 the equation would be:
f(10)=3*1(10-1) + 2*(10-2)
I know I'm not getting this right at all because it wouldn't be recursive. Any light you could shed on what the equation actually means would be great. I should be able to write the MIPS code once I understand the equation.
I think it's a difference equation.
You're given two starting values:
f(0) = 1
f(1) = 1
f(n) = 3*f(n-1) + 2*f(n-2)
So now you can keep going like this:
f(2) = 3*f(1) + 2*f(0) = 3 + 2 = 5
f(3) = 3*f(2) + 2*f(1) = 15 + 2 = 17
So your recursive method would look like this (I'll write Java-like notation):
public int f(n) {
if (n == 0) {
return 1;
} else if (n == 1) {
return 1;
} else {
return 3*f(n-1) + 2*f(n-2); // see? the recursion happens here.
}
}
You have two base cases:
f(0) = 1
f(1) = 1
Anything else uses the recursive formula. For example, let's calculate f(4). It's not one of the base cases, so we must use the full equation. Plugging in n=4 we get:
f(4) = 3 f(4-1) + 2 f(4-2) = 3 f(3) + 2 f(2)
Hm, not done yet. To calculate f(4) we need to know what f(3) and f(2) are. Neither of those are base cases, so we've got to do some recursive calculations. All right...
f(3) = 3 f(3-1) + 2 f(3-2) = 3 f(2) + 2 f(1)
f(2) = 3 f(2-1) + 2 f(2-2) = 3 f(1) + 2 f(0)
There we go! We've reached bottom. f(2) is defined in terms of f(1) and f(0), and we know what those two values are. We were given those, so we don't need to do any more recursive calculations.
f(2) = 3 f(1) + 2 f(0) = 3×1 + 2×1 = 5
Now that we know what f(2) is, we can unwind our recursive chain and solve f(3).
f(3) = 3 f(2) + 2 f(1) = 3×5 + 2×1 = 17
And finally, we unwind one more time and solve f(4).
f(4) = 3 f(3) + 2 f(2) = 3×17 + 2×5 = 61
No, I think you're right and it is recursive. It seems to be a variation of the Fibonacci Sequence, a classic recursive problem
Remember, a recursive algorithm has 2 parts:
The base case
The recursive call
The base case specifies the point at which you cannot recurse anymore. For example, if you are sorting recursively, the base case is a list of length 1 (since a single item is trivially sorted).
So (assuming n is not negative), you have 2 base cases: n = 0 and n = 1. If your function receives an n value equal to 0 or 1, then it doesn't make sense to recurse anymore
With that in mind, your code should look something like this:
function f(int n):
#check for base case
#if not the base case, perform recursion
So let's use Fibonacci as an example.
In a Fibonacci sequence, each number is the sum of the 2 numbers before it. So, given the sequence 1, 2 the next number is obviously 1 + 2 = 3 and the number after that is 2 + 3 = 5, 3 + 5 = 8 and so on. Put generically, the nth Fibonacci number is the (n - 1)th Fibonacci Number plus the (n - 2)th Fibonacci Number, or f(n) = f(n - 1) + f(n - 2)
But where does the sequence start? This is were the base case comes in. Fibonacci defined his sequence as starting from 1, 1. This means that for our pruposes, f(0) = f(1) = 1. So...
function fibonacci(int n):
if n == 0 or n == 1:
#for any n less than 2
return 1
elif n >= 2:
#for any n 2 or greater
return fibonacci(n-1) + fibonacci(n-2)
else:
#this must n < 0
#throw some error
Note that one of the reasons Fibonacci is taught along with recursion is because it shows that sometimes recursion is a bad idea. I won't get into it here but for large n this recursive approach is very inefficient. The alternative is to have 2 global variables, n1 and n2 such that...
n1 = 1
n2 = 1
print n1
print n2
loop:
n = n1 + n2
n2 = n1
n1 = n
print n
will print the sequence.
I'm trying to get x and y coordinates for points along a line (segment) at even intervals. In my test case, it's every 16 pixels, but the idea is to do it programmatically in ActionScript-3.
I know how to get slope between two points, the y intercept of a line, and a2 + b2 = c2, I just can't recall / figure out how to use slope or angle to get a and b (x and y) given c.
Does anyone know a mathematical formula to figure out a and b given c, y-intercept and slope (or angle)? (AS3 is also fine.)
You have a triangle:
|\ a^2 + b^2 = c^2 = 16^2 = 256
| \
| \ c a = sqrt(256 - b^2)
a | \ b = sqrt(256 - a^2)
| \
|__________\
b
You also know (m is slope):
a/b = m
a = m*b
From your original triangle:
m*b = a = sqrt(256 - b^2)
m^2 * b^2 = 256 - b^2
Also, since m = c, you can say:
m^2 * b^2 = m^2 - b^2
(m^2 + 1) * b^2 = m^2
Therefore:
b = m / sqrt(m^2 + 1)
I'm lazy so you can find a yourself: a = sqrt(m^2 - b^2)
Let s be the slop.
we have: 1) s^2 = a^2/b^2 ==> a^2 = s^2 * b^2
and: 2) a^2 + b^2 = c^2 = 16*16
substitute a^2 in 2) with 1):
b = 16/sqrt(s^2+1)
and
a = sqrt((s^2 * 256)/(s^2 + 1)) = 16*abs(s)/sqrt(s^2+1)
In above, I assume you want to get the length of a and b. In reality, your s is a signed value, so a could be negative. Therefore, the incremental value of a will really be:
a = 16s/sqrt(s^2+1)
The Point class built in to Flash has a wonderful set of methods for doing exactly what you want. Define the line using two points and you can use the "interpolate" method to get points further down the line automatically, without any of the trigonometry.
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/geom/Point.html#interpolate()
The Slope is dy/dx. Or in your terms A/B.
Therefore you can step along the line by adding A to the Y coordinate, and B to the X coordinate. You can Scale A and B to make the steps bigger or smaller.
To Calculate the slope and get A and B.
Take two points on the line (X1,Y1) , (X2,Y2)
A= (Y2-Y1)
B= (X2-X1)
If you calculate this with the two points you want to iterate between simply divide A and B by the number of steps you want to take
STEPS=10
yStep= A/STEPS
xStep= B/STEPS
for (i=0;i<STEPS;i++)
{
xCur=x1+xStep*i;
yCur=y1+yStep*i;
}
Given the equation for a line as y=slope*x+intercept, you can simply plug in the x-values and read back the y's.
Your problem is computing the step-size along the x-axis (how big a change in x results from a 16-pixel move along the line, which is b in your included plot). Given that you know a^2 + b^2 = 16 (by definition) and slope = a/b, you can compute this:
slope = a/b => a = b * slope [multiply both sides by b]
a^2 + b^2 = 16 => (b * slope)^2 + b^2 = 16 [by substitution from the previous step]
I'll leave it to you to solve for b. After you have b you can compute (x,y) values by:
for x = 0; x += b
y = slope * x + intercept
echo (x,y)
loop