Locate/Extract Patches from an Image - deep-learning

I have an image(e.g. 60x60) with multiple items inside it. Items are in the shape of square boxes, with say 4x4 dimensions, and are randomly placed within the image. The boxes(items) themselves are created with random patterns, some random pixels switched on and others switched off. So, it could be the same box repeated twice(or more in case of more than 2 items) in the image or could be entirely different.
I'm looking to create a deep learning model that could take in the original image(60x60) and output all the patches in the image.
This is all I have for now, but I can definitely share more details as the discussion starts. I'd be interested to weigh in different options that can help me achieve this objective. Thanks.

I would solve this using object detection. First I would train a network to detect those box like objects by cutting out patches of those objects. Then I would run a Faster R-CNN or something like this on it.
You might want to take a look at the stanford lecture on detection (slides here: http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture11.pdf).

Related

Does the number of Instances of an Object in a picture affect the training of a deep-learning object detector

I want to retrain the object detector Yolov4 to recognize figures of the board game Ticket to Ride.
While gathering pictures i was searching for an idea to reduce the amount of needed pictures.
I was wondering if more instances of an object/class in a picture means more "training per picture" which leads to "i need less pictures"
Is this correct? If not could you try to explain in simple terms?
On the roboflow page, they say that the YOLOv4 breaks detecting objects into two pieces:
regression to identify object positioning via bounding boxes;
classification to classify the objects into classes.
Regression (analysis) is - in short - a method of analysis that tries to find the data (images in your case) that is relevant. Classification - on the other hand - transforms the ‘interesting’ images from the previous step into a class (which is ’train piece’, ’tracks’, ’station’ or something else that is worth separating from the rest).
Now, to answer your question: “no, you need more pictures.” When taking more pictures, YOLOv4 is using more samples make / test a more accurate classification. Yet, you have to be careful what you want to classify. You do want the algorithm to extract a ’train’ class from an image, but not an ‘ocean’ class for example. To prevent this, make more (different) pictures of the classes you want to have!

Drawing shapes versus rendering images?

I am using Pygame 1.9.2a with Python 2.7 for designing an experiment and have been so far using Pygame only on a need basis and am not familiar with all Pygame classes or concepts (Sprites, for instance, I have no idea about).
I am required to draw many (45 - 50 at one time) shapes on the screen at different locations to create a crowded display. The shapes vary from displaced Ts , displaced Ls to line intersections. [ Like _| or † or ‡ etc.]! I'm sorry that I am not able to post an image of this because I apparently do not have a reputation of 10, which is necessary to post images.
I also need these shapes in 8 different orientations. I was initially contemplating generating point lists and using these to draw lines. But, for a single shape, I will need four points and I need 50 of these shapes. Again, I'm not sure how to rotate these once drawn. Can I use the Pygame Transform or something? I think they can be used, say on Rects. Or will I have to generate points for the different orientations too, so that when drawn, they come out looking rotated, that is, in the desired orientation?
The alternative I was thinking of was to generate images for the shapes in GIMP or some software like that. But, for any screen, I will have to load around 50 images. Will I have to use Pygame Image and make 50 calls for something like this? Or is there an easier way to handle multiple images?
Also, which method would be a bigger hit to performance? Since, it is an experiment, I am worried about timing precision too. I don't know if there is a different way to generate shapes in Pygame. Please help me decide which of these two (or a different method) is better to use for my purposes.
Thank you!
It is easer to use pygame.draw.rect() or pygame.draw.polygon() (because you don't need to know how to use GIMP or InkScape :) ) but you have to draw it on another pygame.Surface() (to get bitmap) and than you can rotate it, add alpha (to make transparet) and than you can put it on screen.
You can create function to generate images (using Surface()) with all shapes in different orientations at program start. If you will need better looking images you can change function to load images created in GIMP.
Try every method on your own - this is the best method to check which one is good for you.
By the way: you can save generated images pygame.image.save() and then load it. You can have all elements on one image and use part of image Surface.get_clip()

Randomly Generate Directed Graph on a grid

I am trying to randomly generate a directed graph for the purpose of making a puzzle game similar to the ice sliding puzzles from pokemon.
This is essentially what I want to be able to randomly generate: http://bulbanews.bulbagarden.net/wiki/Crunching_the_numbers:_Graph_theory
I need to be able to limit the size of the graph in an x and y dimension. In the example in the link, it would be restricted to an 8x4 grid.
The problem I am running in to is not randomly generating the graph, but randomly generating a graph which I can properly map out in a 2d space, since I need something (like a rock) on the opposite side of a node, to make it visually make sense when you stop sliding. The problem with this is sometimes the rock ends up in the path between two other nodes or possibly on another node itself, which causes the entire graph to become broken.
After discussing the problem with a few people I know, we came to a couple of conclusions that may lead to a solution. Including the obstacles in the grid as part of the graph when constructing it. Start out with a fully filled grid and just draw a random path and delete out blocks that will make that path work, though the problem then becomes figuring out which ones to delete so that you don't accidentally introduce an additional, shorter path. We were also thinking a dynamic programming algorithm may be beneficial, though none of us are too skilled with creating dynamic programming algorithms from nothing. Any ideas or references about what this problem is officially called (if it's an official graph problem) would be most helpful.
I wouldn't look at it as a graph problem, since as you say the representation is incomplete. To generate a puzzle I would work directly on a grid, and work backwards; first fix the destination spot, then place rocks in some way to reach it from one or more spots, and iteratively add stones to reach those other spots, with the constraint that you never add a stone which breaks all the paths to the destination.
You might want to generate a planar graph, which means that the edges of the graph will not overlap each other in a two dimensional space. Another definition of planar graphs ist that each planar graph does not have any subgraphs of the type K_3,3 (complete bi-partite with six nodes) or K_5 (complete graph with five nodes).
There's a paper on the fast generation of planar graphs.

document image processing

I working on an application for processing document images (mainly invoices) and basically, I'd like to convert certain regions of interest into an XML-structure and then classify the document based on that data. Currently I am using ImageJ for analyzing the document image and Asprise/tesseract for OCR.
Now I am looking for something to make developing easier. Specifically, I am looking for something to automatically deskew a document image and analyze the document structure (e.g. converting an image into a quadtree structure for easier processing). Although I prefer Java and ImageJ I am interested in any libraries/code/papers regardless of the programming language it's written in.
While the system I am working on should as far as possible process data automatically, the user should oversee the results and, if necessary, correct the classification suggested by the system. Therefore I am interested in using machine learning techniques to achieve more reliable results. When similar documents are processed, e.g. invoices of a specific company, its structure is usually the same. When the user has previously corrected data of documents from a company, these corrections should be considered in the future. I have only limited knowledge of machine learning techniques and would like to know how I could realize my idea.
The following prototype in Mathematica finds the coordinates of blocks of text and performs OCR within each block. You may need to adapt the parameters values to fit the dimensions of your actual images. I do not address the machine learning part of the question; perhaps you would not even need it for this application.
Import the picture, create a binary mask for the printed parts, and enlarge these parts using an horizontal closing (dilation and erosion).
Query for each blob's orientation, cluster the orientations, and determine the overall rotation by averaging the orientations of the largest cluster.
Use the previous angle to straighten the image. At this time OCR is possible, but you would lose the spatial information for the blocks of text, which will make the post-processing much more difficult than it needs to be. Instead, find blobs of text by horizontal closing.
For each connected component, query for the bounding box position and the centroid position. Use the bounding box positions to extract the corresponding image patch and perform OCR on the patch.
At this point, you have a list of strings and their spatial positions. That's not XML yet, but it sounds like a good starting point to be tailored straightforwardly to your needs.
This is the code. Again, the parameters (structuring elements) of the morphological functions may need to change, based on the scale of your actual images; also, if the invoice is too tilted, you may need to "rotate" roughly the structuring elements in order to still achieve good "un-skewing."
img = ColorConvert[Import#"http://www.team-bhp.com/forum/attachments/test-drives-initial-ownership-reports/490952d1296308008-laura-tsi-initial-ownership-experience-img023.jpg", "Grayscale"];
b = ColorNegate#Binarize[img];
mask = Closing[b, BoxMatrix[{2, 20}]]
orientations = ComponentMeasurements[mask, "Orientation"];
angles = FindClusters#orientations[[All, 2]]
\[Theta] = Mean[angles[[1]]]
straight = ColorNegate#Binarize[ImageRotate[img, \[Pi] - \[Theta], Background -> 1]]
TextRecognize[straight]
boxes = Closing[straight, BoxMatrix[{1, 20}]]
comp = MorphologicalComponents[boxes];
measurements = ComponentMeasurements[{comp, straight}, {"BoundingBox", "Centroid"}];
texts = TextRecognize#ImageTrim[straight, #] & /# measurements[[All, 2, 1]];
Cases[Thread[measurements[[All, 2, 2]] -> texts], (_ -> t_) /; StringLength[t] > 0] // TableForm
The paper we use for skew angle detection is: Skew detection and text line position determination in digitized documents by Gatos et. al. The only limitation with this paper is that it can detect skew upto -5 and +5 degrees. After that, we need something to slap the user with a message! :)
In your case, where there are primarily invoice scans, you may beautifully use: Multiresolution Analysis in Extraction of Reference Lines from Documents with Gray Level Background by Tag et. al.
We wrote the code in MATLAB, if you need help let me know!
I worked on a similar project once, and for being a long time user of OpenCV I ended up using it once again. OpenCV is a popular-cross-platform-computer-vision-library that offers programming interfaces for C and C++.
I found an interesting blog that had a post on how to detect the skew angle of a text using OpenCV, and then another on how to deskew.
To retrieve the text of the document and be able to pass a smaller image to tesseract, I suggest taking a look at the bounding box technique.
I don't know if the image acquisition procedure is your responsibility, but if it is you might want to take a look at how to do camera calibration with OpenCV to fix the distortion in the image caused by some camera lenses.

Vector graphics flood fill algorithms?

I am working on a simple drawing application, and i need an algorithm to make flood fills.
The user workflow will look like this (similar to Flash CS, just more simpler):
the user draws straight lines on the workspace. These are treated as vectors, and can be selected and moved after they are drawn.
user selects the fill tool, and clicks on the drawing area. If the area is surrounded by lines in every direction a fill is applied to the area.
if the lines are moved after the fill is applied, the area of fill is changed accordingly.
Anyone has a nice idea, how to implement such algorithm? The main task is basically to determine the line segments surrounding a point. (and storing this information somehow, incase the lines are moved)
EDIT: an explanation image: (there can be other lines of course in the canvas, that do not matter for the fill algorithm)
EDIT2: a more difficult situation:
EDIT3: I have found a way to fill polygons with holes http://alienryderflex.com/polygon_fill/ , now the main question is, how do i find my polygons?
You're looking for a point location algorithm. It's not overly complex, but it's not simple enough to explain here. There's a good chapter on it in this book: http://www.cs.uu.nl/geobook/
When I get home I'll get my copy of the book and see if I can try anyway. There's just a lot of details you need to know about. It all boils down to building a DCEL of the input and maintain a datastructure as lines are added or removed. Any query with a mouse coord will simply return an inner halfedge of the component, and those in particular contain pointers to all of the inner components, which is exactly what you're asking for.
One thing though, is that you need to know the intersections in the input (because you cannot build the trapezoidal map if you have intersecting lines) , and if you can get away with it (i.e. input is few enough segments) I strongly suggest that you just use the naive O(n²) algorithm (simple, codeable and testable in less than 1 hour). The O(n log n) algorithm takes a few days to code and use a clever and very non-trivial data structure for the status. It is however also mentioned in the book, so if you feel up to the task you have 2 reasons to buy it. It is a really good book on geometric problems in general, so for that reason alone any programmer with interest in algorithms and datastructures should have a copy.
Try this:
http://keith-hair.net/blog/2008/08/04/find-intersection-point-of-two-lines-in-as3/
The function returns the intersection (if any) between two lines in ActionScript. You'll need to loop through all your lines against each other to get all of them.
Of course the order of the points will be significant if you're planning on filling them - that could be harder!
With ActionScript you can use beginFill and endFill, e.g.
pen_mc.beginFill(0x000000,100);
pen_mc.lineTo(400,100);
pen_mc.lineTo(400,200);
pen_mc.lineTo(300,200);
pen_mc.lineTo(300,100);
pen_mc.endFill();
http://www.actionscript.org/resources/articles/212/1/Dynamic-Drawing-Using-ActionScript/Page1.html
Flash CS4 also introduces support for paths:
http://www.flashandmath.com/basic/drawpathCS4/index.html
If you want to get crazy and code your own flood fill then Wikipedia has a decent primer, but I think that would be reinventing the atom for these purposes.