What good are JUnit's #Ignore and #Disabled annotations? - junit

What is the advantage to adding the #Disabled or #Ignore annotations to JUnit tests, e.g.:
#Test
#Disabled
void testSomething() { /* ... */ }
instead of just removing the #Test annotation?
void testSomething() { /* ... */ }
Either way, the test should not be executed.

The utility of these annotations is largely in documentation/reporting. When you run a JUnit suite, you get a report of the results. #Ignored/#Disabled tests will be marked as such (with optional comments) in that report.
This lets you track how many tests are being ignored/disabled. You can set policies around this (i.e. if a test is #Ignored for a month, just delete it) or make CI systems fail if too many tests are being #Ignored. You can make graphs showing trends of Passed/Failed/Skipped over time.
Really, it all comes down to how you want to track the evolution of your test suite, and wether you'd want to see a section of "skipped" tests, or the total number of tests going down when a test is temporarily broken/no longer useful.

#Disabled or #Ignore annotations can be used to disable or ignore the test methods from the test suite.
#Disabled introduced in junit5. It accepts only one optional parameter, which indicates the reason this test is disabled. Example :
#Disabled("Do not run in a lower environment")
Advantages of adding #Disabled or #Ignore:
Search-ability: You can easily identify all #Ignore or #Disabled annotations in the source code, while unannotated or commented out tests are not so simple to find.
Maintainable: It is easy to maintain or modify it later. It is always good practice to use annotations.

In my opinion, #Ignore is cleaner than commenting an entire block of test method .
Also, when you run your test suite, you would get a warning about some tests are ignored. You won’t get that if you comment it. That maybe someday you would want to enable it

Other advantages:
Manual-only execution: ensures a test is never run automatically while still allowing you to run it manually with no code change. My preferred approach for this, since it defaults to safe behaviour without requiring any configuration of test engine or test run.
Avoids warnings: untagging can trigger "unused code"-warnings for tests that are in use, only manually
Modularity: You can use it on an entire test class, whereas in JUnit 5 you would need to untag each test case individually

Related

NUnit equivalent for JUnit test state management with #Before/#After

I come from Java world and I mostly used JUnit, and now I have some problems expressing some aspects of tests with NUnit 3. In JUnit, each test creates its own instance of a test class, so it's perfectly valid to create some instance variables in a test class, set up them in #Before method, test method and helpers can access these variables freely without worrying they would be overwritten by other tests run in parallel, and #After tears down the test data nicely. With NUnit it does not work and SetUp and TearDown methods seem to be useless in this case, because test fixture instance is reused between invocations of test method(s), so fields of test fixture class can (and are) overwritten by every invocation of a test method (my class has a few test methods, and each of them generates several test cases, so there are some tens of invocations in one test run).
I do not know how to work around this problem. In my scenario, set up would create a temporary folder, which would be used as a work folder for following test case. Tear down would delete the temporary folder afterwards, cleaning up all intermediate files created by tested method. But now, when SetUp creates and stores a temporary folder path in instance field (so it can be read by test logic and somewhat complicated asserts and verifiers), the value of such field is overwritten by test cases run in parallel. I considered several approaches:
implement an IDisposable which would represent a context of each test, and enclose it with using in each test method - I do not like this idea, because I do not like the idea of IDisposable being used as anything else than resource management tool and combinig IDisposable with using to simulate set up/tear down smells to me like an abuse of this particular language feature,
create a method which accepts a delegate for actual test logic, and which invokes custom SetUpTestCase/TearDownTestCase methods. The method would invoke set up, then test delegate, and tear down afterwards. What I do not like about this approach is that it does not play well with test methods which accept parameters - each set of test methods parametrized in particular way would need a corresponding delegate type. Also it somewhat seems to be against spirit of NUnit and the way of describing test methods with attributes - after all, why should the main logic of my test be delegated to anything? Shouldn't the [Test] or [TestCase] method be actual test?
maybe there's some way to use more advanced aspects of NUnit, like actions or some callbacks/triggers/whatever, I am just too unexperienced to see these. What I particularly miss is the way to transfer data from set up method (for example, a path to a temporary folder created by it) to the test method that follows. I cannot use instance fields for this, and I do not know whether there exists any "tag" structure which would pass test-specific data between methods invoked on different stages of a test lifecycle?
Generally, SetUp and TearDown attributes seem pretty useless to me, if they cannot set up the test case without their result being overwritten immediately by another test case run in parallel. What am I missing here?
How can I implemented such per-test case, scoped setup/tear down behavior with NUnit? What do I do wrong, or what do I miss?
As you have established, the TestFixture class is instantiated once before the OneTimeSetUp is called; then for each test it runs a set of SetUp, Test and TearDown; and finally, the OneTimeTearDown.
If you want the tests to be run in parallel (which is not the default) then you must specify The Parallelizable Attribute. Whether you do that or not, it is a good idea for your tests to be written independently, so they do not conflict with each other - they need to be structured.
The AAA (Arrange, Act, Assert) pattern is a common way of structuring unit tests for a method under test. If your tests are to be run in parallel, then TestFixture fields are not suitable for holding information which may conflict across parallel tests, in the same way that it wouldn't be suitable in a multithreaded class.
I'd suggest using a private method in the TestFixture to set up the temporary folder - it will need to have some way of providing a unique folder name, so that the parallel tests do not interact - perhaps use a Guid or CallerMemberName as part of the folder name, and return the folder name.
This method should be called from the Arrange part of the test. And you'll need a try...finally wrapping the rest of the Test to ensure the folder gets torn down. Or you could go with your IDisposable idea - I don't think there's anything wrong with that: the whole point of that is to guarantee tidying up resources (both managed and unmanaged) when something goes out of scope.
Your second suggestion of a delegate would also be fine if you used lambda expressions rather than strictly-defined delegates - the lambda expression can capture variables from the containing scope.

JUnit equivalents for TestNG's #BeforeSuite, #BeforeTest

I'm refactoring some test classes from TestNG to JUnit 4. During the process, I've stumbled upon the following annotations:
#BeforeTest
#AfterTest
According to the manual:
The annotated method will be run before/after any test method belonging to the classes inside the tag is run.
What would be the equivalent annotations in JUnit?
This is the original answer, but I think it is wrong. See below for a better one
The equivalent would be the annotations
#Before
and
#After
see also http://junit.sourceforge.net/javadoc/org/junit/Before.html
This is a better answer, after I learned about the difference between Before/AfterMethod and Before/AfterTest in TestNG
If I got it right, with Before/AfterTest you can run a method before or after a list of tests, that you specify inside the annotation or a separate document.
There is no out of the box feature like this in JUnit.
Probably the best you can do, is put what ever you want to do in a JUnit Rule. See also http://schauderhaft.de/2011/07/24/rules-in-junit-4-9-beta-3/
Then you can use that Rule in any test that needs it.

Detecting JUnit "tests" that never assert anything

We used to have a technical director who liked to contribute code and was also very enthusiastic about adding unit tests. Unfortunately his preferred style of test was to produce some output to screen and visually check the result.
Given that we have a large bank of tests, are there any tools or techniques I could use to identify the tests never assert?
Since that's a one time operation I would:
scan all test methods (easy, get the jUnit report XML)
use an IDE or other to search references to Assert.*, export result as a list of method
awk/perl/excel the results to find mismatches
Edit: another option is to just look for references to System.out or whatever his preferred way to output stuff was, most tests won't have that.
Not sure of a tool, but the thought that comes to mind is two-fold.
Create a TestRule class that keeps track of the number of asserts per test (use static counter, clear counter at beginning of test, assert that it is not 0 at end of test).
Wrap the Assert class in your own proxy that increments the TestRule's counter each time it is called.
Is your Assert class is called Assert that you would only need to update the imports and add the Rule to the tests. The above described mechanism is not thread-safe so if you have multiple tests running concurrently you will be incorrect results.
If those tests are the only ones that produce output, an automated bulk replacement of System.out.println( with org.junit.Assert.fail("Fix test: " + would highlight exactly those tests that aren't pulling their weight. This technique would make it easy to inspect those tests in an IDE after a run and decide whether to fix or delete them; it also gives a clear indication of progress.

Drools testing with junit

What is the best practice to test drools rules with junit?
Until now we used junit with dbunit to test rules. We had sample data that was put to hsqldb. We had couple of rule packages and by the end of the project it is very hard to make a good test input to test certain rules and not fire others.
So the exact question is that how can I limit tests in junit to one or more certain rule(s) for testing?
Personally I use unit tests to test isolated rules. I don't think there is anything too wrong with it, as long as you don't fall into a false sense of security that your knowledge base is working because isolated rules are working. Testing the entire knowledge base is more important.
You can write the isolating tests with AgendaFilter and StatelessSession
StatelessSession session = ruleBase.newStatelessSesssion();
session.setAgendaFilter( new RuleNameMatches("<regexp to your rule name here>") );
List data = new ArrayList();
... // create your test data here (probably built from some external file)
StatelessSessionResult result == session.executeWithResults( data );
// check your results here.
Code source: http://blog.athico.com/2007/07/my-rules-dont-work-as-expected-what-can.html
Do not attempt to limit rule execution to a single rule for a test. Unlike OO classes, single rules are not independent of other rules, so it does not make sense to test a rule in isolation in the same way that you would test a single class using a unit test. In other words, to test a single rule, test that it has the right effect in combination with the other rules.
Instead, run tests with a small amount of data on all of your rules, i.e. with a minimal number of facts in the rule session, and test the results and perhaps that a particular rule was fired. The result is not actually that much different from what you have in mind, because a minimal set of test data might only activate one or two rules.
As for the sample data, I prefer to use static data and define minimal test data for each test. There are various ways of doing this, but programmatically creating fact objects in Java might be good enough.
I created simple library that helps to write unit tests for Drools. One of the features is exactly what you need: declare particular drl files you want to use for your unit test:
#RunWith(DroolsJUnitRunner.class)
#DroolsFiles(value = "helloworld.drl", location = "/drl/")
public class AppTest {
#DroolsSession
StatefulSession session;
#Test
public void should_set_discount() {
Purchase purchase = new Purchase(new Customer(17));
session.insert(purchase);
session.fireAllRules();
assertTrue(purchase.getTicket().hasDiscount());
}
}
For more details have a look on blog post: https://web.archive.org/web/20140612080518/http://maciejwalkowiak.pl/blog/2013/11/24/jboss-drools-unit-testing-with-junit-drools/
A unit test with DBUnit doesn't really work. An integration test with DBUnit does. Here's why:
- A unit test should be fast.
-- A DBUnit database restore is slow. Takes 30 seconds easily.
-- A real-world application has many not null columns. So data, isolated for a single feature, still easily uses half the tables of the database.
- A unit test should be isolated.
-- Restoring the dbunit database for every test to keep them isolated has drawbacks:
--- Running all tests takes hours (especially as the application grows), so no one runs them, so they constantly break, so they are disabled, so there is no testing, so you application is full of bugs.
--- Creating half a database for every unit test is a lot of creation work, a lot of maintenance work, can easily become invalid (with regards to validation which database schema's don't support, see Hibernate Validator) and ussually does a bad job of representing reality.
Instead, write integration tests with DBunit:
- One DBunit, the same for all tests. Load it only once (even if you run 500 tests).
-- Wrap each test in a transaction and rollback the database after every test. Most methods use propagation required anyway. Set the testdata dirty only (to reset it in the next test if there is a next test) only when propagation is requires_new.
- Fill that database with corner cases. Don't add more common cases than are strictly needed to test your business rules, so ussually only 2 common cases (to be able to test "one to many").
- Write future-proof tests:
-- Don't test the number of activated rules or the number of inserted facts.
-- Instead, test if a certain inserted fact is present in the result. Filter the result on a certain property set to X (different from the common value of that property) and test the number of inserted facts with that property set to X.
Unit test is about taking minimum piece of code and test all possible usecases defining specification. With integration tests your goal is not all possible usecases but integration of several units that work together. Do the same with rules. Segregate rules by business meaning and purpose. Simplest 'unit under the test' could be file with single or high cohension set of rules and what is required for it to work (if any), like common dsl definition file and decision table. For integration test you could take meaningful subset or all rules of the system.
With this approach you'll have many isolated unit tests and few integration tests with limited amount of common input data to reproduce and test common scenarios. Adding new rules will not impact most of unit tests but few integration tests and will reflect how new rules impact common data flow.
Consider JUnit testing library that could be suitable for this approach

How do I define a TestSuite without using #SuiteClasses in Junit 4.5?

I'm trying to migrate to JUnit 4 and I'm not clear about the correct way to set up test suites.
I know how to set up a test suite with fixed tests using the #SuitesClasses annotation.
However, I want to have a top-level suite class, where I can programatically decide which test classes or suites I want to load. I know that there are addTest and addTestSuite operations in the TestSuite class.
However, if I define a TestSuite subclass with a constructor that attempts to add these tests and try to run it, I get an error "Must have SuiteClasses annotation".
Any idea how to do this?
I would recommend creating a subclass of the BlockJUnit4ClassRunner and pull in the classes you want to test manually. The protected methods of the class do all the hard work for you, although you might want to tweak the Descriptions a bit to make sure the results are all unique in the output files.