How to Change Field names of json object arrays - json

So I have a project with lots of incoming data about 15 sources in total, of course there are inconsistencies in how each label there data available in their rest api's. I need to Change some of their field names to be consistent with the others, but I am at a loss on how to do this when the data sources are json object arrays. A working example of what I am trying to do is found here playground and below
however I seem to lack the knowledge as to how to make this work when the data is not a single json object , but instead and array of objects that I am unmarshaling.
Another approach is using Maps like in this example but the result is the same, works great as is for single objects, but I can not seem to get it to work with json object arrays. Iteration through arrays is not a possibility as I am collecting about 8,000 records every few minutes.
package main
import (
"encoding/json"
"os"
)
type omit bool
type Value interface{}
type CacheItem struct {
Key string `json:"key"`
MaxAge int `json:"cacheAge"`
Value Value `json:"cacheValue"`
}
func NewCacheItem() (*CacheItem, error) {
i := &CacheItem{}
return i, json.Unmarshal([]byte(`{
"key": "foo",
"cacheAge": 1234,
"cacheValue": {
"nested": true
}
}`), i)
}
func main() {
item, _ := NewCacheItem()
json.NewEncoder(os.Stdout).Encode(struct {
*CacheItem
// Omit bad keys
OmitMaxAge omit `json:"cacheAge,omitempty"`
OmitValue omit `json:"cacheValue,omitempty"`
// Add nice keys
MaxAge int `json:"max_age"`
Value *Value `json:"value"`
}{
CacheItem: item,
// Set the int by value:
MaxAge: item.MaxAge,
// Set the nested struct by reference, avoid making a copy:
Value: &item.Value,
})
}

It appears your desired output is JSON. You can accomplish the conversion by unmarshaling into a slice of structs, and then iterating through each of those to convert them to the second struct type (your anonymous struct above), append them into a slice and then marshal the slice back to JSON:
package main
import (
"fmt"
"encoding/json"
)
type omit bool
type Value interface{}
type CacheItem struct {
Key string `json:"key"`
MaxAge int `json:"cacheAge"`
Value Value `json:"cacheValue"`
}
type OutGoing struct {
// Omit bad keys
OmitMaxAge omit `json:"cacheAge,omitempty"`
OmitValue omit `json:"cacheValue,omitempty"`
// Add nice keys
Key string `json:"key"`
MaxAge int `json:"max_age"`
Value *Value `json:"value"`
}
func main() {
objects := make([]CacheItem, 0)
sample := []byte(`[
{
"key": "foo",
"cacheAge": 1234,
"cacheValue": {
"nested": true
}},
{
"key": "baz",
"cacheAge": 123,
"cacheValue": {
"nested": true
}}]`)
json.Unmarshal(sample, &objects)
out := make([]OutGoing, 0, len(objects))
for _, o := range objects {
out = append(out, OutGoing{Key:o.Key, MaxAge:o.MaxAge, Value:&o.Value})
}
s, _ := json.Marshal(out)
fmt.Println(string(s))
}
This outputs
[{"key":"foo","max_age":1234,"value":{"nested":true}},{"key":"baz","max_age":123,"value":{"nested":true}}]
You could probably skip this iteration and conversion code if you wrote custom MarshalJSON and UnmarshalJSON methods for your CacheItem type, instead of relying on struct field tags. Then you could pass the same slice to both Unmarshal and Marshal.
To me there's no obvious performance mistake with these approaches -- contrast with building a string in a loop using the + operator -- and when that's the case it's often best to just get the software to work and then test for performance rather than ruling out a solution based on fears of performance issues without actually testing.
If there's a performance problem with the above approaches, and you really want to avoid marshal and unmarshal completely, you could look into byte replacement in the JSON data (e.g. regexp). I'm not recommending this approach, but if your changes are very simple and the inputs are very consistent it could work, and it would give another approach you could performance test, and then you could compare performance test results.

Related

Add a new key-value pair to a JSON object

I am connecting to an API which gives a rather large json payload. I need to add a key and value to the root object.Once I do ioutil.Readall from the package "net/http" the JSON is a byte array.
My goal is to just simply add to the structure and move on. As an example, the following the pretty similar to what I am doing: https://tutorialedge.net/golang/consuming-restful-api-with-go/
So how can I simply add to a JSON structure another element (key: value)?
If all you want to do is add a key and value to the root object and produce new JSON, and you don't care about having the data in a structure, you can unmarshal into map[string]interface{}, add your value, and then marshal again:
var m map[string]interface{}
err := json.Unmarshal(data, &m)
m["new_key"] = newValue
newData, err := json.Marshal(m)
(I'm not checking for errors, but you should do that of course.) Take a look at https://golang.org/pkg/encoding/json/ for more information about how to deal with JSON in Go.
Here's how you can do it in an efficient way while preserving the order of keys in the original JSON. The idea is to use json.RawMessage
// original JSON
bytes := []byte(`{"name": "Adele", "age": 24}`)
// let's try to add the kv pair "country": "USA" to it
type Person struct {
Bio json.RawMessage `json:"bio"`
Country string `json:"country"`
}
p := Person{
Bio: json.RawMessage(bytes),
Country: "USA",
}
// ignoring error for brevity
modifiedBytes, _ := json.Marshal(p)
fmt.Println(string(modifiedBytes))
Output:
{"bio":{"name":"Adele","age":24},"country":"USA"}
You can see that the ordering of original JSON is preserved, which wouldn't have been the case if you marshalled the JSON to a map[string]interface{}. This is also more efficient when you're dealing with huge JSONs since there's no reflection involved.
Complete code - https://play.golang.org/p/3hAPVbrAo_w
Since you have a byte data, you need to parse it and store the result in a variable that has your json structure using json.Marshal.
Then after, to add a new key value pair, you can define a new struct with the key and its data type
var variable type1
// Unmarshal the byte data in a variable
json.Unmarshall(data, &variable)
// to add a new key value you can define a new type
type type2 struct {
type1
key type
}
// and you can add
variable2 := type2{variable, newValueToAdd}
While deserializing & reserializing is the more "correct" approach, it may be overkill for just adding a value at the root, which can be done with simple string manipulation (really byte slice manipulation, but the semantics are similar and it's arguably easier):
data := []byte(`{"foo": 1, "bar": true}`)
ins := []byte(`, "baz": "hello"`) // Note the leading comma.
closingBraceIdx := bytes.LastIndexByte(data, '}')
data = append(data[:closingBraceIdx], ins...)
data = append(data, '}')
This is more error-prone, because it is unaware of JSON syntax entirely, but it's safe enough for most cases and for large JSON documents it is more efficient than a parse, insert, and reserialize.
Playground example: https://play.golang.org/p/h8kL4Zzp7rq
if you want to add key-value of json bytes to new json object, you can use json.RawMessage.
type Res struct {
Data interface{}
Message string
}
var row json.RawMessage
row = []byte(`{"Name":"xxx","Sex":1}`)
res := Res{Data:row,Message:"user"}
resBytes ,err := json.Marshal(res)
println(string(resBytes))
//print result:"Data":{"Name":"xxx","Sex":1},"Message":"user"}
SJSON package is another way to modify JSON values.
In this example :
json:= `{
"name": {"first":"James","last":"Bond"},
"age' :40,
"license" {"Diamond","Gold","Silver"}
}`
To replace a "Diamond" with "Ultimate"
value, _ := sjson.Set(json, "license.0", "Ultimate")
fmt.Println(value)
json:= `{
"name": {"first":"James","last":"Bond"},
"age' :40,
"license" {"Ultimate","Gold","Silver"}
}`
Or to add a value "Ultimate" in the end:
value, _ := sjson.Set(json, "license.-1", "Ultimate")
fmt.Println(value)
json:= `{
"name": {"first":"James","last":"Bond"},
"age' :40,
"license" {"Diamond","Gold","Silver","Ultimate"}
}`

Golang JSON Unmarshal to field, but NOT marshal into JSON response

I want to be able to access a struct field that's resulted from a JSON unmarshal, BUT I want to use that same struct to hide the field when it is marshaled.
Example:
type MyStruct struct {
GoodField string `json:"goodField"`
SecretField string `json:"secret"`
}
Incoming JSON gets unmarshaled and the secret field is accessible
Use the same MyStruct in the server response but hide the secret field.
I've looked at using omitempty and - tags, not working.
you were on the right track with omitempty you just have to set SecretField to "" for it to take effect
package main
import (
"fmt"
"encoding/json"
)
type MyStruct struct {
GoodField string `json:"goodField"`
SecretField string `json:"secret,omitempty"`
}
func main() {
data := MyStruct{}
s := `{"goodField": "xxx", "secret": "yyy"}`
json.Unmarshal([]byte(s), &data);
fmt.Println(data.GoodField, data.SecretField);
data.SecretField = ""
response, _ := json.Marshal(data)
fmt.Println(string(response))
}
In general I think the best pattern is to use separate request and response types, rather than mutating data just to prevent it from being marshaled; that's an intrusive and destructive approach, and the side-effect could bite you. In line with the Go proverb "a little duplication is better than a little dependency," you're better off just separating those concerns rather than try to have one type serve double duty.
If you want, though, you can try using struct embedding to DRY out the field declarations. With a combination of omitempty and - json tags, you can get the desired results:
type payload struct {
A string `json:"a"`
B string `json:"b,omitempty"`
}
type request struct {
payload
}
type response struct {
payload
B string `json:"-"`
}
Here's a worked example of the above.
It's not without its own issues to be aware of -- there are two fields named B here, not one. It works fine if you're just using dot-operator field access as in my example. If you use struct literals, you've got to be careful not to put the value in the wrong spot. Probably a good idea to write constructors for these types, to centralize that concern in one spot and get it right.
Also if you need this field accessible only from this package (which helps you to control access to it at all) you can make it unexported with first lowercase letter. Use this structure for all operations, except Marshalling/unmarshalling.
type MyStruct struct {
GoodField string `json:"goodField"`
secretField string `json:"secret"`
}
And make one more structure what will be used only for Marshalling.
If you can't, or don't want, to set the field to empty, you can accomplish this with a custom marshaler, as well:
type MyStruct struct {
GoodField string `json:"goodField"`
SecretField string `json:"secret"`
}
func (ms *MyStruct) MarshalJSON() ([]byte, error) {
type MyStructWithoutSecretFields struct {
GoodField string `json:"goodField"`
}
noSecrets := MyStructWithoutSecretFields{
GoodField: ms.GoodField,
}
return json.Marshal(noSecrets)
}

Converting from JSON to XML

I have seen lots of posts on here about converting from XML to JSON, and I've recently wrote a program to do so, but I was also curious how you would go about converting from JSON to XML?
Sample JSON:
"version":"0.1",
"termsofService":"http://www.wunderground.com/weather/api/d/terms.html",
"features": {
"conditions": 1
}
}
, "current_observation": {
"image": {
"url":"http://icons.wxug.com/graphics/wu2/logo_130x80.png",
"title":"Weather Underground",
"link":"http://www.wunderground.com"
},
"display_location": {
"full":"Kearney, MO",
"city":"Kearney",
"state":"MO",
"state_name":"Missouri",
I'm not sure if it'd be any use to you, but i'll post my JSON to XML program.
package main
import (
"fmt"
"net/url"
"encoding/xml"
"net/http"
"log"
"io/ioutil"
"encoding/json"
)
type reportType struct{
Version xml.CharData `xml:"version"`
TermsOfService xml.CharData `xml:"termsofService"
`
Features xml.CharData `xml:"features>feature"`
Full string `xml:"current_observation>display_location>full"`
StateName string `xml:"current_observation>display_location>state_name"`
WindGust string `xml:"current_observation>observation_location>full"`
Problem myErrorType `xml:"error"`
}
type myErrorType struct{
TypeOfError xml.CharData `xml:"type"`
Desciption xml.CharData `xml:"description"`
}
type reportTypeJson struct{
Version string `json:"version"`;
TermsOfService string `json:"termsofService"`;
Features map[string]string `json:"features"`;
CurrentObservation map[string]map[string]string `json:"current_observation"`
}
func main() {
fmt.Println("data is from WeatherUnderground.")
fmt.Println("https://www.wunderground.com/")
var state, city string
str1 := "What is your state?"
str2 := "What is your city?"
fmt.Println(str1)
fmt.Scanf("%s", &state)
fmt.Println(str2)
fmt.Scanf("%s", &city)
baseURL := "http://api.wunderground.com/api/";
apiKey := "Nunna"
var query string
//set up the query
query = baseURL+apiKey +
"/conditions/q/"+
url.QueryEscape(state)+ "/"+
url.QueryEscape(city)+ ".xml"
fmt.Println("The escaped query: "+query)
response, err := http.Get(query)
doErr(err, "After the GET")
var body []byte
body, err = ioutil.ReadAll(response.Body)
doErr(err, "After Readall")
fmt.Println(body);
fmt.Printf("The body: %s\n",body)
//Unmarshalling
var report reportType
xml.Unmarshal(body, &report)
fmt.Printf("The Report: %s\n", report)
fmt.Printf("The description is [%s]\n",report.Problem.Desciption)
//Now marshal the data out in JSON
var data []byte
var output reportTypeJson
output.Version = string(report.Version);
output.TermsOfService = string(report.TermsOfService)
output.Features= map[string]string{"feature":string(report.Features)} // allocate a map, add the 'features' value to it and assign it to output.Features
output.CurrentObservation = map[string]map[string]string {
"display_location": map[string]string {
"full": report.Full,
"state_name": report.StateName,
},"observation_location":map[string]string {"full": report.WindGust},
}
data,err = json.MarshalIndent(output,""," ")
doErr(err, "From marshalIndent")
fmt.Printf("JSON output nicely formatted: \n%s\n",data)
}
func doErr( err error, message string){
if err != nil{
log.Panicf("ERROR: %s %s \n", message, err.Error())
}
}
//OUTPUT:
//JSON output nicely formatted:
//{
// "version": "0.1",
// "termsofService": "http://www.wunderground.com/weather/api/d/terms.html",
// "features": {
// "feature": "conditions"
// },
// "current_observation": {
// "display_location": {
// "full": "Kearney, MO",
// "state_name": "Missouri"
// },
// "observation_location": {
// "full": "HOMESTEAD HILLS, Kearney, Missouri"
// }
// }
//}
This is the same process as going in the other direction. Define structs/objects to model the input (be it json in this case), create method to assign all the values from the struct modeling the input to the one you're using for output, then marshal the output to get a string. So to give a practice example using one of the more conceptually difficult fields from you type, having unmarshalled some json into an instance of reportTypeJson I can assign to reportType used to model xml like so;
report.StateName = jsonReport.CurrentObservation["display_location"]["state_name"]
The biggest difference here is the struct representing your xml is flat (like it has Something>InnerSomething>InnerInnerSomething to represent it's nested values while the struct in golang has no nesting) where as with the json, your structures in golang tend to have the same amount of nesting (like having a map[string]map[string][string] meaning items are nested 3 levels inside of the main struct). You can observe this by the amount of indirection when you access fields, like in the example above, there is one level of indirection to access CurrentObservation but that is a map of maps, so then I index into it with the display_location key which yields a map[string]string, since I'm looking for the statename value, I have to index into that with state_name to access that value.
Note that in an actual program, a number of checks would be required because these operations are unsafe. For example, if the json read did not contain a display_location object then jsonReport.CurrentObservation["display_location"] would return nil and the attempt to access ["state_name" would result in a panic.
Also, another side note, in your program I would recommend adding two functions, one called NewJsonReport(report *reportType) *reportTypeJson, err and one called NewXmlReport(report *reportTypeJson) *reportType, err in which you initialize/allocate the a new instance of the return type and return it as to avoid code duplication and make your programs main more readable. Doing this type of assignment in more than one location in a program is sloppy coding which will add a lot of maintenance cost and is likely to result in bugs down the line (like if something changes on one of the models or the input you have to fix every reference to it throughout the program rather than just updating the functions I mentioned above).

Ordering Difference in JSON Marshaled from Map and Struct

When marshaling from a map[string]interface{} and an equivalent struct, the JSON returned are similar but different in the internal order of the keys likewise:
var arg1 = map[string]interface{}{
"foo": "bar",
"baz": map[string]interface{}{
"bee": "boo",
},
}
type Arg struct {
Foo string `json:"foo"`
Baz map[string]interface{} `json:"baz"`
}
var arg2 = &Arg{
Foo: "bar",
Baz: map[string]interface{}{
"bee": "boo",
},
}
func main() {
result1, _ := json.Marshal(arg1)
result2, _ := json.Marshal(arg2)
fmt.Println(reflect.DeepEqual(result1, result2)
fmt.Println(string(result1))
fmt.Println(string(result2))
// false
// {"baz":{"bee":"boo"},"foo":"bar"}
// {"foo":"bar","baz":{"bee":"boo"}}
}
Check the playground here.
Although in JSON the order doesn't matter, I'd like to know why are the results ordered differently?
The encoding/json package marshals maps in sorted key order and structs in the order that the fields are declared.
Although the order used by the encoding/json package is not documented, it's safe to assume that maps are marshaled in sorted key order and structs are marshaled in field declaration order. There are many tests in the standard library and elsewhere that depend on these orders.
The order of elements in maps is not defined as Go uses a hash table to implement them. You should expect the elements to be marshalled in any order.
When marshalling a structure, the order of JSON fields should match the order of fields in structure. This is a side effect of accessing fields through reflection. Still you should not rely on this side effect.
The order of elements is not significant in JSON. The problem of comparing JSON structures is the same as the problem of comparing trees with unordered child nodes.

How to not marshal an empty struct into JSON with Go?

I have a struct like this:
type Result struct {
Data MyStruct `json:"data,omitempty"`
Status string `json:"status,omitempty"`
Reason string `json:"reason,omitempty"`
}
But even if the instance of MyStruct is entirely empty (meaning, all values are default), it's being serialized as:
"data":{}
I know that the encoding/json docs specify that "empty" fields are:
false, 0, any nil pointer or interface value, and any array,
slice, map, or string of length zero
but with no consideration for a struct with all empty/default values. All of its fields are also tagged with omitempty, but this has no effect.
How can I get the JSON package to not marshal my field that is an empty struct?
As the docs say, "any nil pointer." -- make the struct a pointer. Pointers have obvious "empty" values: nil.
Fix - define the type with a struct pointer field:
type Result struct {
Data *MyStruct `json:"data,omitempty"`
Status string `json:"status,omitempty"`
Reason string `json:"reason,omitempty"`
}
Then a value like this:
result := Result{}
Will marshal as:
{}
Explanation: Notice the *MyStruct in our type definition. JSON serialization doesn't care whether it is a pointer or not -- that's a runtime detail. So making struct fields into pointers only has implications for compiling and runtime).
Just note that if you do change the field type from MyStruct to *MyStruct, you will need pointers to struct values to populate it, like so:
Data: &MyStruct{ /* values */ }
As #chakrit mentioned in a comment, you can't get this to work by implementing json.Marshaler on MyStruct, and implementing a custom JSON marshalling function on every struct that uses it can be a lot more work. It really depends on your use case as to whether it's worth the extra work or whether you're prepared to live with empty structs in your JSON, but here's the pattern I use applied to Result:
type Result struct {
Data MyStruct
Status string
Reason string
}
func (r Result) MarshalJSON() ([]byte, error) {
return json.Marshal(struct {
Data *MyStruct `json:"data,omitempty"`
Status string `json:"status,omitempty"`
Reason string `json:"reason,omitempty"`
}{
Data: &r.Data,
Status: r.Status,
Reason: r.Reason,
})
}
func (r *Result) UnmarshalJSON(b []byte) error {
decoded := new(struct {
Data *MyStruct `json:"data,omitempty"`
Status string `json:"status,omitempty"`
Reason string `json:"reason,omitempty"`
})
err := json.Unmarshal(b, decoded)
if err == nil {
r.Data = decoded.Data
r.Status = decoded.Status
r.Reason = decoded.Reason
}
return err
}
If you have huge structs with many fields this can become tedious, especially changing a struct's implementation later, but short of rewriting the whole json package to suit your needs (not a good idea), this is pretty much the only way I can think of getting this done while still keeping a non-pointer MyStruct in there.
Also, you don't have to use inline structs, you can create named ones. I use LiteIDE with code completion though, so I prefer inline to avoid clutter.
Data is an initialized struct, so it isn't considered empty because encoding/json only looks at the immediate value, not the fields inside the struct.
Unfortunately, returning nil from json.Marshaler doesn't currently work:
func (_ MyStruct) MarshalJSON() ([]byte, error) {
if empty {
return nil, nil // unexpected end of JSON input
}
// ...
}
You could give Result a marshaler as well, but it's not worth the effort.
The only option, as Matt suggests, is to make Data a pointer and set the value to nil.
There is an outstanding Golang proposal for this feature which has been active for over 4 years, so at this point, it is safe to assume that it will not make it into the standard library anytime soon. As #Matt pointed out, the traditional approach is to convert the structs to pointers-to-structs. If this approach is infeasible (or impractical), then an alternative is to use an alternate json encoder which does support omitting zero value structs.
I created a mirror of the Golang json library (clarketm/json) with added support for omitting zero value structs when the omitempty tag is applied. This library detects zeroness in a similar manner to the popular YAML encoder go-yaml by recursively checking the public struct fields.
e.g.
$ go get -u "github.com/clarketm/json"
import (
"fmt"
"github.com/clarketm/json" // drop-in replacement for `encoding/json`
)
type Result struct {
Data MyStruct `json:"data,omitempty"`
Status string `json:"status,omitempty"`
Reason string `json:"reason,omitempty"`
}
j, _ := json.Marshal(&Result{
Status: "204",
Reason: "No Content",
})
fmt.Println(string(j))
// Note: `data` is omitted from the resultant json.
{
"status": "204"
"reason": "No Content"
}