Here is my code. I did not get the output that I want. It should hand over 50 but it does'nt. Someone please help me to fix the bug?
const checkNum = entity => typeof entity === 'string' ? parseInt(entity) : entity;
const multiply = (x , y) => x => y => x * y;
const multiOne = (ar, gr) => ar.map(checkNum).map(multiply);
multiOne([5, 10]);
map is a one-to-one operation, so for your array it produces another array. The second argument is not what you think it is.
reduce is a many-to-one operation, taking and array and reducing / folding it by repeatedly applying an operation to two elements at a time (two elements from the array at first, then the result of the previous operation combined with another element of the array).
const multiply = (x, y) => x * y;
const multiOne = (ar) => ar.reduce(multiply);
console.log(multiOne([5, 10]));
You also seem to want partially applied function, but you are currying too much. The standard functions in ES6 don't use currying a lot, it is more common in actual FP languages (e.g. Haskell).
Related
To test my understanding of Dart, I made a 2D immutable vector that stores not only its x and y components, but also its angle and length. They are computed only at construction out of the x and y values. I soon realized that final fields need to be set with initializer lists or the this-parameter shortcut, which don't allow for much computed values. Like this answer points out, I had to use a factory constructor to create my vector out of its x and y components. The factory constructor then validates input and computes the length and angle before calling the private constructor.
import 'dart:math';
class ImmutableVector {
// private fields
final double _x;
final double _y;
final double _angle;
final double _length;
// getters
double get x => _x;
double get y => _y;
double get angle => _angle;
double get length => _length;
/// Constructs a vector out of cartesian components.
///
/// Converts both arguments to doubles.
/// Null values will be treated as zeroes.
factory ImmutableVector.xy(num x, num y) {
x ??= 0.0;
y ??= 0.0;
x = x.toDouble();
y = y.toDouble();
var angle = atan2(y, x) % (2*PI);
var length = sqrt(pow(x, 2) + pow(y, 2));
return new ImmutableVector._raw(x, y, angle, length);
}
/// Constructs a vector by setting the fields directly.
const ImmutableVector._raw(this._x, this._y, this._angle, this._length);
}
But it came to my attention that I could not make the factory constructor const, because const factories can only be redirecting constructors. Is there absolutely no way to make my vector have code in its constructor and still have it an immutable with const constructors? And if so, why?
I'll also mention that I used to throw errors if the values passed were null, but I made it default to zero so I could actually use initializer lists. I then tried to do this, and turns out it works when the constructor isn't a factory:
ImmutableVector.xy(num x, num y) : this._raw(
x = (x ?? 0.0).toDouble(),
y = (y ?? 0.0).toDouble(),
atan2(y, x) % (2*PI),
sqrt(pow(x, 2) + pow(y, 2)));
But as soon as I try to make it const, it tells me that the code in the initializer list contains non-compile-time constants.
The only immutable vector I could find in dart was here on GitHub, and it doesn't do any kind of null-validation or computation on constructor parameters, relying entirely on the fact that methods will break at some point on null-vectors. It also has a constructor that creates a unit vector out of another one with poor performance and repetition thanks to the obligatory initializer list:
const Vector.unit(final num x, final num y, final num z) :
this(x / PMath.len(x, y, z), y / PMath.len(x, y, z), z / PMath.len(x, y, z));
So what should be my conclusion? Did I miss a feature that makes this possible, or should I just give up on using const for this class?
Dart doesn't execute Dart code during compilation. This is the reason const constructors can't have a body and why there is no other way to work around this limitation.
If you want to execute code when an instance is created, just don't make use of const. Const isn't that important in Dart anyway. There were even discussions to remove it from the language because the benefits are not big enough.
I am attempting to use Octave to solve for a differential equation using Euler's method.
The Euler method was given to me (and is correct), which works for the given Initial Value Problem,
y*y'' + (y')^2 + 1 = 0; y(1) = 1;
That initial value problem is defined in the following Octave function:
function [YDOT] = f(t, Y)
YDOT(1) = Y(2);
YDOT(2) = -(1 + Y(2)^2)/Y(1);
The question I have is about this function definition. Why is YDOT(1) != 1? What is Y(2)?
I have not found any documentation on the definition of a function using function [YDOT] instead of simply function YDOT, and I would appreciate any clarification on what the Octave code is doing.
First things first: You have a (non linear) differential equation of order two which will require you to have two initial conditions. Thus the given information from above is not enough.
The following is defined for further explanations: A==B means A is identical to B; A=>B means B follows from A.
It seems you are mixing a few things. The guy who gave you the files rewrote the equation in the following way:
y*y'' + (y')^2 + 1 = 0; y(1) = 1; | (I) y := y1 & (II) y' := y2
(I) & (II)=>(III): y' = y2 = y1' | y2==Y(2) & y1'==YDOT(1)
Ocatve is "matrix/vector oriented" so we are writing everything in vectors or matrices. Rather writing y1=alpha and y2=beta we are writing y=[alpha; beta] where y(1)==y1=alpha and y(2)==y2=beta. You will soon realize the tremendous advantage of using especially this mathematical formalization for ALL of your problems.
(III) & f(t,Y)=>(IV): y2' == YDOT(2) = y'' = (-1 -(y')^2) / y
Now recall what is y' and y from the definitions in (I) and (II)!
y' = y2 == Y(2) & y = y1 == Y(1)
So we can rewrite equation (IV)
(IV): y2' == YDOT(2) = (-1 -(y')^2) / y == -(1 + Y(2)^2)/Y(1)
So from equation (III) and (IV) we can derive what you already know:
YDOT(1) = Y(2)
YDOT(2) = -(1 + Y(2)^2)/Y(1)
These equations are passed to the solver. Differential equations of all types are solved numerically by retrieving the "next" value in a near neighborhood to some "previously known" value. (The step size inside this neighborhood is one of the key questions when writing solvers!) So your solver uses your initial condition Y(1)==y(1)=1 to make the next step and calculate the "next" value. So right at the start YDOT(1)=Y(2)==y(2) but you didn't tell us this value! But from then on YDOT(1) is varied by the solver in dependency to the function shape to solve your problem and give you ONE unique y(t) solution.
It seems you are using Octave for the first time so let's make a last comment on function [YDOT] = f(t, Y). In general a function is defined in this way:
function[retVal1, retVal2, ...] = myArbitraryName(arg1, arg2, ...)
Where retVal is the return value or output and arg is the argument or input.
I am trying to plot the function
f(x, y) = (x – 3).^2 – (y – 2).^2.
x is a vector from 2 to 4, and y is a vector from 1 to 3, both with increments of 0.2. However, I am getting the error:
"Subscript indices must either be real positive integers or logicals".
What do I do to fix this error?
I (think) I see what you are trying to achieve. You are writing your syntax like a mathematical function definition. Matlab is interpreting f as a 2-dimensional data type and trying to assign the value of the expression to data indexed at x,y. The values of x and y are not integers, so Matlab complains.
If you want to plot the output of the function (we'll call it z) as a function of x and y, you need to define the function quite differently . . .
f = #(x,y)(x-3).^2 - (y-2).^2;
x=2:.2:4;
y=1:.2:3;
z = f( repmat(x(:)',numel(y),1) , repmat(y(:),1,numel(x) ) );
surf(x,y,z);
xlabel('X'); ylabel('Y'); zlabel('Z');
This will give you an output like this . . .
The f = #(x,y) part of the first line states you want to define a function called f taking variables x and y. The rest of the line is the definition of that function.
If you want to plot z as a function of both x and y, then you need to supply all possible combinations in your range. This is what the line containing the repmat commands is for.
EDIT
There is a neat Matlab function meshgrid that can replace the repmat version of the script as suggested by #bas (welcome bas, please scroll to bas' answer and +1 it!) ...
f = #(x,y)(x-3).^2 - (y-2).^2;
x=2:.2:4;
y=1:.2:3;
[X,Y] = meshgrid(x,y);
surf(x,y,f(X,Y));
xlabel('x'); ylabel('y'); zlabel('z');
I typically use the MESHGRID function. Like so:
x = 2:0.2:4;
y = 1:0.2:3;
[X,Y] = meshgrid(x,y);
F = (X-3).^2-(Y-2).^2;
surf(x,y,F);
xlabel('x');ylabel('y');zlabel('f')
This is identical to the answer by #learnvst. it just does the repmat-ing for you.
Your problem is that the function you are using uses integers, and you are trying to assign a double to it. Integers cannot have decimal places. To fix this, you can make it to where it increases in increments of 1, instead of 0.2
This is a general question, not related to a particular operation. I would like to be able to write the results of an arbitrary function into elements of a cell array without regard for the data type the function returns. Consider this pseudocode:
zout = cell(n,m);
myfunc = str2func('inputname'); %assume myfunc puts out m values to match zout dimensions
zout(1,:) = myfunc(x,y);
That will work for "inputname" == "strcat" , for example, given that x and y are strings or cells of strings with appropriate dimension. But if "inputname" == "strcmp" then the output is a logical array, and Matlab throws an error. I'd need to do
zout(1,:) = num2cell(strcmp(x,y));
So my question is: is there a way to fill the cell array zout without having to test for the type of variable generated by myfunc(x,y ? Should I be using a struct in the first place (and if so, what's the best way to populate it)?
(I'm usually an R user, where I could just use a list variable without any pain)
Edit: To simplify the overall scope, add the following "requirement" :
Let's assume for now that, for a function which returns multiple outputs, only the first one need be captured in zout . But when this output is a vector of N values or a vector of cells (i.e. Nx1 cell array), these N values get mapped to zout(1,1:N) .
So my question is: is there a way to fill the cell array zout without having to test for the type of variable generated by myfunc(x,y) ? Should I be using a struct in the first place (and if so, what's the best way to populate it)?
The answer provided by #NotBoStyf is almost there, but not quite. Cell arrays are the right way to go. However, the answer very much depends on the number of outputs from the function.
Functions with only one output
The function strcmp has only one output, which is an array. The reason that
zout{1,:} = strcmp(x,y)
gives you an error message, when zout is dimensioned N x 2, is that the left-hand side (zout{1,:}) expects two outputs from the right-hand side. You can fix this with:
[zout{1,:}] = num2cell(strcmp(x,y)); % notice the square brackets on the LHS
However, there's really no reason to do this. You can simply define zout as an N x 1 cell array and capture the results:
zout = cell(1,1);
x = 'a';
y = { 'a', 'b' };
zout{1} = strcmp(x,y);
% Referring to the results:
x_is_y_1 = zout{1}(1);
x_is_y_2 = zout{1}(2);
There's one more case to consider...
Functions with multiple outputs
If your function produces multiple outputs (as opposed to a single output that is an array), then this will only capture the first output. Functions that produce multiple outputs are defined like this:
function [outA,outB] = do_something( a, b )
outA = a + 1;
outB = b + 2;
end
Here, you need to explicitly capture both output arguments. Otherwise, you just get a. For example:
outA = do_something( [1,2,3], [4,5,6] ); % outA is [2,3,4]
[outA,outB] = do_something( [1,2,3], [4,5,6] ); % outA is [2,3,4], outB is [6,7,8]
Z1 = cell(1,1);
Z1{1,1} = do_something( [1,2,3], [4,5,6] ); % Z1{1,1} is [2,3,4]
Z2 = cell(1,2);
Z2{1,1:2} = do_something( [1,2,3], [4,5,6] ); % Same error as above.
% NB: You really never want to have a cell expansion that is not surrounded
% by square brackets.
% Do this instead:
[Z2{1,1:2}] = do_something( [1,2,3], [4,5,6] ); % Z2{1,1} is [2,3,4], Z2{1,2} is [6,7,8]
This can also be done programmatically, with some limits. Let's say we're given function
func that takes one input and returns a constant (but unknown) number of outputs. We
have cell array inp that contains the inputs we want to process, and we want to collect the results in cell around outp:
N = numel(inp);
M = nargout(#func); % number of outputs produced by func
outp = cell(N,M);
for i=1:N
[ outp{i,:} ] = func( inp{i} );
end
This approach has a few caveats:
It captures all of the outputs. This is not always what you want.
Capturing all of the outputs can often change the behavior of the function. For example, the find function returns linear indices if only one output is used, row/column indices if two outputs are used, and row/column/value if three outputs are used.
It won't work for functions that have a variable number of outputs. These functions are defined as function [a,b,...,varargout] = func( ... ). nargout will return a negative number if the function has varargout declared in its output list, because there's no way for Matlab to know how many outputs will be produced.
Unpacking array and cell outputs into a cell
All true so far, but: what I am hoping for is a generic solution. I can't use num2cell if the function produces cell outputs. So what worked for strcmp will fail for strcat and vice versa. Let's assume for now that, for a function which returns multiple outputs, only the first one need be captured in zout – Carl Witthoft
To provide a uniform output syntax for all functions that return either a cell or an array, use an adapter function. Here is an example that handles numeric arrays and cells:
function [cellOut] = cellify(input)
if iscell(input)
cellOut = input;
elseif isnumeric(input)
cellOut = num2cell(input);
else
error('cellify currently does not support structs or objects');
end
end
To unpack the output into a 2-D cell array, the size of each output must be constant. Assuming M outputs:
N = numel(inp);
% M is known and constant
outp = cell(N,M);
for i=1:N
outp(i,:) = cellify( func( inp{i} ) ); % NB: parentheses instead of curlies on LHS
end
The output can then be addressed as outp{i,j}. An alternate approach allows the size of the output to vary:
N = numel(inp);
% M is not necessary here
outp = cell(N,1);
for i=1:N
outp{i} = cellify( func( inp{i} ) ); % NB: back to curlies on LHS
end
The output can then be addressed as outp{i}{j}, and the size of the output can vary.
A few things to keep in mind:
Matlab cells are basically inefficient pointers. The JIT compiler does not always optimize them as well as numeric arrays.
Splitting numeric arrays into cells can cost quite a bit of memory. Each split value is actually a numeric array, which has size and type information associated with it. In numeric array form, this occurs once for each array. When the array is split, this incurs once for each element.
Use curly braces instead when asigning a value.
Using
zout{1,:} = strcmp(x,y);
instead should work.
I have a problem with estimation.
I have a function, which is dependent on the values of an unknown vector V = [v1, …, v4].
I also have a vector of reference data YREF = [yref1, …, yrefn].
I would like to write a function, which returns the vector Y (in order to compare it later, say using lsqnonlin). I am aware of the “arrayfun”, but it seems not to work.
I have a subfunction, which returns a concrete value from the range [-100, 100],
%--------------------------------------------------------------------------
function y = SubFunction(Y, V)
y = fzero(#(x) v(1).*sinh(x./v(2)) + v(3).*x - Y, [-100 100]);
end
%--------------------------------------------------------------------------
then I make some operations on the results:
%--------------------------------------------------------------------------
function y = SomeFunction(Y,V)
temp = SubFunction (Y,V);
y = temp + v(4).*Y;
end
%--------------------------------------------------------------------------
These functions work well for a single value of Y, but not for the whole vector. How to store the results into a matrix for future comparison?
Thanks in advance
Chris
If Y is a vector, then the anonymous function defined as an argument to fzero returns a vector, not a scalar.
You can solve it by using a loop (notice the Y(k) inside the anonymous function definition):
function y = SubFunction(Y, v)
y = zeros (size(Y));
for k = 1 : length (Y)
y(k) = fzero(#(x) v(1).*sinh(x./v(2)) + v(3).*x - Y(k), [-100 100]);
end
end