Access 2016 prevent double loading of data - ms-access

My Setup:
I have a decently large table where each record should be all sales for a specific store for that day.
For example the records look roughly like:
Location | Date | Sales | etc.
Store 1 | 1/29/2018 | $20 | etc.
Store 2 | 1/29/2018 | $5 | etc.
Store 1 | 1/30/2018 | $25 | etc.
Store 2 | 1/30/2018 | $10 | etc.
In short you should NEVER have the same store on the same day more than once.
What's the best way to check this? Can I do data validation on my records (i'm assuming no because my understanding is it won't check vs the loaded data), or do I need to write something in VBA (i'm currently using canned saved imports but if it's a must I can write something).
I have an automated daily append to the table, but occasionally things get messed up and stripping out a days worth of duplicate data manually is obviously not ideal.

My original answer was:
Access can help you to detect those duplicates stores and days easily
with the query assistant. Just design a "search for duplicates" query,
using as criteria the fields you don't want to be repeated (in your
question, I understand those fields are Location and Date
OP tried and said:
Yeah it works. Really just easier to handle by importing to a temp
table and then using a query to check it for duplicates before loading
as opposed to arcane data validation rules
So OP could resolve the problem by importing the data to a temp table, and then using the "check for duplicates" query, before loading the data to non-temp tables.

Related

How to extract relational data from a flat table using SQL?

I have a single flat table containing a list of people which records their participation in different groups and their activities over time. The table contains following columns:
- name (first/last)
- e-mail
- secondary e-mail
- group
- event date
+ some other data in a series of columns, relevant to a specific event (meeting, workshop).
I want to extract distinct people from that into a separate table, so that further down the road it could be used for their profiles giving them a list of what they attended and relevant info. In other words, I would like to have a list of people (profiles) and then link that to a list of groups they are in and then a list of events per group they participated in.
Obviously, same people appear a number of times:
| Full name | email | secondary email | group | date |
| John Smith | jsmith#someplace.com | | AcOP | 2010-02-12 |
| John Smith | jsmith#gmail.com | jsmith#somplace.com | AcOP | 2010-03-14 |
| John Smith | jsmith#gmail.com | | CbDP | 2010-03-18 |
| John Smith | jsmith#someplace.com | | BDz | 2010-04-02 |
Of course, I would like to roll it into one record for John Smith with both e-mails in the resulting People table. I can't rule out that there might be more records for same person with other e-mails than those two - I can live with that. To make it more complex ideally I would like to derive a list of groups, creating a Groups table (possibly with further details on the groups) and then a list of meetings/activities for each group. By linking that I would then have clean relational model.
Now, the question: is there a way to perform such a transformation of data in SQL? Or do I need to write a procedure (program) that would traverse the database and do it?
The database is in MySQL, though I can also use MS Access (it was given to me in that format).
There is no tool that does this automatically. You will have to write a couple queries (unless you want to write a DTS package or something proprietary). Here's a typical approach:
Write two select statements for the two tables you wish to create-- one for users and one for groups. You may need to use DISTINCT or GROUP BY to ensure you only get one row when the source table contains duplicates.
Run the two select statements and inspect them for problems. For example, it's possible some users show up with two different email addresses, or some users have the same name and were combined incorrectly. These will need to be cleaned up in order to proceed. There is great way to do this-- it's more or less a manual process requiring expert knowledge of the data.
Write CREATE TABLE scripts based on the two SELECT statements so that you can store the results somewhere.
Use INSERT FROM or SELECT INTO to populate the tables from your two SELECT statements.

Questionnaire Database Structure for Analysis in SPSS

I am using MySQL to store questionnaire data for a study. The structure of the questionnaire is fairly simple. Each participant will complete four identical questionnaires - baseline (0 weeks), 6 weeks, 12 weeks, 36 weeks. There are 30 questions which all use a coded Likert Scale.
My proposed table to store the responses was like so:
ID | Participant | Week | Q1 | Q2 | Q3 | Q4 ...
That way I can insert a new row for each response. However, I spoke with the statistician yesterday (a professor) who told me that for analysis in SPSS it would be preferable if the data was structured more like so:
ID | Participant | W0Q1 | W0Q2 ... W6Q1 | W6Q2 ... W12Q1 | W12Q2 ...
In this case, I would have to update the entry for each participant rather than inserting. It sounded illogical to me.
I only have limited experience with SPSS. What you be the general consensus on this matter?
Whether you would use long form (the first) or wide form (the second) depends on the analysis you will do. However SPSS Statistics provides CASESTOVAR and VARSTOCASES commands that make it easy to restructure either one into the other, so it doesn't much matter how you structure the cases initially.

How do I make a MySQL query that's equivalent to Fusion Tables "summarize" function?

I am parsing a collection of monthly lists of bulletin board systems from 1993-2000 in a city. The goal is to make visualizations from this data. For example, a line chart that shows month by month the total number of BBSes using various kinds of BBS software.
I have assembled the data from all these lists into one large table of around 17,000 rows. Each row represents a single BBS during a single month in time. I know this is probably not the optimal table scheme, but that's a question for a different day. The structure is something like this:
date | name | phone | codes | sysop | speed | software
1990-12 | Aviary | xxx-xxx-xxxx | null | Birdman | 2400 | WWIV
Google Fusion Tables offers a function called "summarize" (or "aggregation" in the older version). If I make a view summarizing by the "date" and "software" columns, then FT produces a table of around 500 rows with three columns: date, software, count. Each row lists the number of BBSes using a given type of software in a given month. With this data, I can make the graph I described above.
So, now to my question. Rather than FT, I'd like to work on this data in MySQL. I have imported the same 17,000-row table into a MySQL database, and have been trying various queries with COUNT and DISTINCT, hoping to return a list equivalent what I get from FT's Summarize function. But nothing I've tried has worked.
Can anyone suggest how to structure such a query?
Kirkman, you can do this using a COUNT function and the GROUP BY statement (which is used in conjunction with aggregate SQL functions)
select date, software, count(*) as cnt
from your_table
group by date, software

Whether to merge avatar and profile tables?

I have two tables:
Avatars:
Id | UserId | Name | Size
-----------------------------------------------
1 | 2 | 124.png | Large
2 | 2 | 124_thumb.png | Thumb
Profiles:
Id | UserId | Location | Website
-----------------------------------------------
1 | 2 | Dallas, Tx | www.example.com
These tables could be merged into something like:
User Meta:
Id | UserId | MetaKey | MetaValue
-----------------------------------------------
1 | 2 | location | Dallas, Tx
2 | 2 | website | www.example.com
3 | 2 | avatar_lrg | 124.png
4 | 2 | avatar_thmb | 124_thumb.png
This to me could be a cleaner, more flexible setup (at least at first glance). For instance, if I need to allow a "user status message", I can do so without touching the database.
However, the user's avatars will be pulled far more than their profile information.
So I guess my real questions are:
What king of performance hit would this produce?
Is merging these tables just a really bad idea?
This is almost always a bad idea. What you are doing is a form of the Entity Attribute Value model. This model is sometimes necessary when a system needs a flexible attribute system to allow the addition of attributes (and values) in production.
This type of model is essentially built on metadata in lieu of real relational data. This can lead to referential integrity issues, orphan data, and poor performance (depending on the amount of data in question).
As a general matter, if your attributes are known up front, you want to define them as real data (i.e. actual columns with actual types) as opposed to string-based metadata.
In this case, it looks like users may have one large avatar and one small avatar, so why not make those columns on the user table?
We have a similar type of table at work that probably started with good intentions, but is now quite the headache to deal with. This is because it now has 100s of different "MetaKeys", and there is no good documentation about what is allowed and what each does. You basically have to look at how each is used in the code and figure it out from there. Thus, figure out how you will document this for future developers before you go down that route.
Also, to retrieve all the information about each user it is no longer a 1-row query, but an n-row query (where n is the number of fields on the user). Also, once you have that data, you have to post-process each of those based on your meta-key to get the details about your user (which usually turns out to be more of a development effort because you have to do a bunch of String comparisons). Next, many databases only allow a certain number of rows to be returned from a query, and thus the number of users you can retrieve at once is divided by n. Last, ordering users based on information stored this way will be much more complicated and expensive.
In general, I would say that you should make any fields that have specialized functionality or require ordering to be columns in your table. Since they will require a development effort anyway, you might as well add them as an extra column when you implement them. I would say your avatar pics fall into this category, because you'll probably have one of each, and will always want to display the large one in certain places and the small one in others. However, if you wanted to allow users to make their own fields, this would be a good way to do this, though I would make it another table that can be joined to from the user table. Below are the tables I'd suggest. I assume that "Status" and "Favorite Color" are custom fields entered by user 2:
User:
| Id | Name |Location | Website | avatarLarge | avatarSmall
----------------------------------------------------------------------
| 2 | iPityDaFu |Dallas, Tx | www.example.com | 124.png | 124_thumb.png
UserMeta:
Id | UserId | MetaKey | MetaValue
-----------------------------------------------
1 | 2 | Status | Hungry
2 | 2 | Favorite Color | Blue
I'd stick with the original layout. Here are the downsides of replacing your existing table structure with a big table of key-value pairs that jump out at me:
Inefficient storage - since the data stored in the metavalue column is mixed, the column must be declared with the worst-case data type, even if all you would need to hold is a boolean for some keys.
Inefficient searching - should you ever need to do a lookup from the value in the future, the mishmash of data will make indexing a nightmare.
Inefficient reading - reading a single user record now means doing an index scan for multiple rows, instead of pulling a single row.
Inefficient writing - writing out a single user record is now a multi-row process.
Contention - having mixed your user data and avatar data together, you've forced threads that only one care about one or the other to operate on the same table, increasing your risk of running into locking problems.
Lack of enforcement - your data constraints have now moved into the business layer. The database can no longer ensure that all users have all the attributes they should, or that those attributes are of the right type, etc.

Database - Designing an "Events" Table

After reading the tips from this great Nettuts+ article I've come up with a table schema that would separate highly volatile data from other tables subjected to heavy reads and at the same time lower the number of tables needed in the whole database schema, however I'm not sure if this is a good idea since it doesn't follow the rules of normalization and I would like to hear your advice, here is the general idea:
I've four types of users modeled in a Class Table Inheritance structure, in the main "user" table I store data common to all the users (id, username, password, several flags, ...) along with some TIMESTAMP fields (date_created, date_updated, date_activated, date_lastLogin, ...).
To quote the tip #16 from the Nettuts+ article mentioned above:
Example 2: You have a “last_login”
field in your table. It updates every
time a user logs in to the website.
But every update on a table causes the
query cache for that table to be
flushed. You can put that field into
another table to keep updates to your
users table to a minimum.
Now it gets even trickier, I need to keep track of some user statistics like
how many unique times a user profile was seen
how many unique times a ad from a specific type of user was clicked
how many unique times a post from a specific type of user was seen
and so on...
In my fully normalized database this adds up to about 8 to 10 additional tables, it's not a lot but I would like to keep things simple if I could, so I've come up with the following "events" table:
|------|----------------|----------------|---------------------|-----------|
| ID | TABLE | EVENT | DATE | IP |
|------|----------------|----------------|---------------------|-----------|
| 1 | user | login | 2010-04-19 00:30:00 | 127.0.0.1 |
|------|----------------|----------------|---------------------|-----------|
| 1 | user | login | 2010-04-19 02:30:00 | 127.0.0.1 |
|------|----------------|----------------|---------------------|-----------|
| 2 | user | created | 2010-04-19 00:31:00 | 127.0.0.2 |
|------|----------------|----------------|---------------------|-----------|
| 2 | user | activated | 2010-04-19 02:34:00 | 127.0.0.2 |
|------|----------------|----------------|---------------------|-----------|
| 2 | user | approved | 2010-04-19 09:30:00 | 217.0.0.1 |
|------|----------------|----------------|---------------------|-----------|
| 2 | user | login | 2010-04-19 12:00:00 | 127.0.0.2 |
|------|----------------|----------------|---------------------|-----------|
| 15 | user_ads | created | 2010-04-19 12:30:00 | 127.0.0.1 |
|------|----------------|----------------|---------------------|-----------|
| 15 | user_ads | impressed | 2010-04-19 12:31:00 | 127.0.0.2 |
|------|----------------|----------------|---------------------|-----------|
| 15 | user_ads | clicked | 2010-04-19 12:31:01 | 127.0.0.2 |
|------|----------------|----------------|---------------------|-----------|
| 15 | user_ads | clicked | 2010-04-19 12:31:02 | 127.0.0.2 |
|------|----------------|----------------|---------------------|-----------|
| 15 | user_ads | clicked | 2010-04-19 12:31:03 | 127.0.0.2 |
|------|----------------|----------------|---------------------|-----------|
| 15 | user_ads | clicked | 2010-04-19 12:31:04 | 127.0.0.2 |
|------|----------------|----------------|---------------------|-----------|
| 15 | user_ads | clicked | 2010-04-19 12:31:05 | 127.0.0.2 |
|------|----------------|----------------|---------------------|-----------|
| 2 | user | blocked | 2010-04-20 03:19:00 | 217.0.0.1 |
|------|----------------|----------------|---------------------|-----------|
| 2 | user | deleted | 2010-04-20 03:20:00 | 217.0.0.1 |
|------|----------------|----------------|---------------------|-----------|
Basically the ID refers to the primary key (id) field in the TABLE table, I believe the rest should be pretty straightforward. One thing that I've come to like in this design is that I can keep track of all the user logins instead of just the last one, and thus generate some interesting metrics with that data.
Due to the growing nature of the events table I also thought of making some optimizations, such as:
#9: Since there is only a finite number of tables and a finite (and predetermined) number of events, the TABLE and EVENTS columns could be setup as ENUMs instead of VARCHARs to save some space.
#14: Store IPs as UNSIGNED INTs with INET_ATON() instead of VARCHARs.
Store DATEs as TIMESTAMPs instead of DATETIMEs.
Use the ARCHIVE (or the CSV?) engine instead of InnoDB / MyISAM.
Only INSERTs and SELECTs are supported, and data is compressed on the fly.
Overall, each event would only consume 14 (uncompressed) bytes which is okay for my traffic I guess.
Pros:
Ability to store more detailed data (such as logins).
No need to design (and code for) almost a dozen additional tables (dates and statistics).
Reduces a few columns per table and keeps volatile data separated.
Cons:
Non-relational (still not as bad as EAV):
SELECT * FROM events WHERE id = 2 AND table = 'user' ORDER BY date DESC();
6 bytes overhead per event (ID, TABLE and EVENT).
I'm more inclined to go with this approach since the pros seem to far outweigh the cons, but I'm still a little bit reluctant... Am I missing something? What are your thoughts on this?
Thanks!
#coolgeek:
One thing that I do slightly
differently is to maintain an
entity_type table, and use its ID in
the object_type column (in your case,
the 'TABLE' column). You would want to
do the same thing with an event_type
table.
Just to be clear, you mean I should add an additional table that maps which events are allowed in a table and use the PK of that table in the events table instead of having a TABLE / EVENT pair?
#ben:
These are all statistics derived from
existing data, aren't they?
The additional tables are mostly related to statistics but I the data doesn't already exists, some examples:
user_ad_stats user_post_stats
------------- ---------------
user_ad_id (FK) user_post_id (FK)
ip ip
date date
type (impressed, clicked)
If I drop these tables I've no way to keep track of who, what or when, not sure how views can help here.
I agree that it ought to be separate,
but more because it's fundamentally
different data. What someone is and
what someone does are two different
things. I don't think volatility is so
important.
I've heard it both ways and I couldn't find anything in the MySQL manual that states that either one is right. Anyway, I agree with you that they should be separated tables because they represent kinds of data (with the added benefit of being more descriptive than a regular approach).
I think you're missing the forest for
the trees, so to speak.
The predicate for your table would be
"User ID from IP IP at time DATE
EVENTed to TABLE" which seems
reasonable, but there are issues.
What I meant for "not as bad as EAV" is that all records follow a linear structure and they are pretty easy to query, there is no hierarchical structure so all queries can be done with a simple SELECT.
Regarding your second statement, I think you understood me wrong here; the IP address is not necessarily associated with the user. The table structure should read something like this:
IP address (IP) did something
(EVENT) to the PK (ID) of the
table (TABLE) on date (DATE).
For instance, in the last row of my example above it should read that IP 217.0.0.1 (some admin), deleted the user #2 (whose last known IP is 127.0.0.2) at 2010-04-20 03:20:00.
You can still join, say, user events
to users, but you can't implement a
foreign key constraint.
Indeed, that's my main concern. However I'm not totally sure what can go wrong with this design that couldn't go wrong with a traditional relational design. I can spot some caveats but as long as the app messing with the database knows what it is doing I guess there shouldn't be any problems.
One other thing that counts in this argument is that I will be storing much more events, and each event will more than double compared to the original design, it makes perfect sense to use the ARCHIVE storage engine here, the only thing is it doesn't support FKs (neither UPDATEs or DELETEs).
I highly recommend this approach. Since you're presumably using the same database for OLTP and OLAP, you can gain significant performance benefits by adding in some stars and snowflakes.
I have a social networking app that is currently at 65 tables. I maintain a single table to track object (blog/post, forum/thread, gallery/album/image, etc) views, another for object recommends, and a third table to summarize insert/update activity in a dozen other tables.
One thing that I do slightly differently is to maintain an entity_type table, and use its ID in the object_type column (in your case, the 'TABLE' column). You would want to do the same thing with an event_type table.
Clarifying for Alix - Yes, you maintain a reference table for objects, and a reference table for events (these would be your dimension tables). Your fact table would have the following fields:
id
object_id
event_id
event_time
ip_address
It looks like a pretty reasonable design, so I just wanted to challenge a few of your assumptions to make sure you had concrete reasons for what you're doing.
In my fully normalized database this
adds up to about 8 to 10 additional
tables
These are all statistics derived from existing data, aren't they? (Update: okay, they're not, so disregard following.) Why wouldn't these simply be views, or even materialized views?
It may seem like a slow operation to gather those statistics, however:
proper indexing can make it quite fast
it's not a common operation, so the speed doesn't matter all that much
eliminating redundant data might make other common operations fast and reliable
I've come up with a table schema that
would separate highly volatile data
from other tables subjected to heavy
reads
I guess you're talking about how the user (just to pick one table) events, which would be pretty volatile, are separated from the user data. I agree that it ought to be separate, but more because it's fundamentally different data. What someone is and what someone does are two different things.
I don't think volatility is so important. The DBMS should already allow you to put the log file and database file on separate devices, which accomplishes the same thing, and contention shouldn't be an issue with row-level locking.
Non-relational (still not as bad as
EAV)
I think you're missing the forest for the trees, so to speak.
The predicate for your table would be "User ID from IP IP at time DATE EVENTed to TABLE" which seems reasonable, but there are issues. (Update: Okay, so it's sort of kinda like that.)
You can still join, say, user events to users, but you can't implement a foreign key constraint. That's why EAV is generally problematic; whether or not something is exactly EAV doesn't really matter. It's generally one or two lines of code to implement a constraint in your schema, but in your app it could be dozens of lines of code, and if the same data is accessed in multiple places by multiple apps, it can easily multiply to thousands of lines of code. So, generally, if you can prevent bad data with a foreign key constraint, you're guaranteed that no app will do that.
You might think that events aren't so important, but, as an example, ad impressions are money. I would definitely want to catch any bugs relating to ad impressions as early in the design process as possible.
Further comment
I can spot some caveats but as long as
the app messing with the database
knows what it is doing I guess there
shouldn't be any problems.
And with some caveats you can make a very successful system. With a proper system of constraints, you get to say, "if any app messing with the database doesn't know what it's doing, the DBMS will flag an error." That may require a more time and money than you've got, so something simpler that you can have is probably better than something more perfect that you can't. C'est la vie.
I can't add a comment to Ben's answer, so two things...
First, it would be one thing to use views in a standalone OLAP/DSS database; it's quite another to use them in your transaction database. The High Performance MySQL people recommend against using views where performance matters
WRT data integrity, I agree, and that's another advantage to using a star or snowflake with 'events' as the central fact table (as well as using multiple event tables, like I do). But you cannot design a referential integrity scheme around IP addresses