How can I specify the base level of a factor variable? - regression

I have data for 2000-2016 and I am trying to estimate the following regression:
xtset id
xtreg lnp i.year i.year#fp, fe vce(robust)
However, when I do this, Stata omits 2008 because of collinearity.
Is there a way to specify which year is omitted?

More generally, you can specify the omitted level of a factor variable (i.e. the
base) by using the ib operator (see also help fvvarlist).
Below is a reproducible example using Stata's toy dataset nlswork:
webuse nlswork, clear
xtset idcode
Using 77 as the base year:
xtreg ln_wage ib77.year age, fe vce(robust)
Fixed-effects (within) regression Number of obs = 28,510
Group variable: idcode Number of groups = 4,710
R-sq: Obs per group:
within = 0.1060 min = 1
between = 0.0914 avg = 6.1
overall = 0.0805 max = 15
F(15,4709) = 69.49
corr(u_i, Xb) = 0.0467 Prob > F = 0.0000
(Std. Err. adjusted for 4,710 clusters in idcode)
------------------------------------------------------------------------------
| Robust
ln_wage | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
year |
68 | -.108365 .1111117 -0.98 0.329 -.3261959 .1094659
69 | -.0335029 .0995142 -0.34 0.736 -.2285973 .1615915
70 | -.0604953 .0867605 -0.70 0.486 -.2305866 .1095959
71 | -.0218073 .0742761 -0.29 0.769 -.1674232 .1238087
72 | -.0226893 .0622792 -0.36 0.716 -.1447857 .0994071
73 | -.0203581 .049851 -0.41 0.683 -.1180894 .0773732
75 | -.0305043 .0259707 -1.17 0.240 -.081419 .0204104
78 | .0225868 .0147272 1.53 0.125 -.0062854 .0514591
80 | .0058999 .0381391 0.15 0.877 -.0688706 .0806704
82 | .0006801 .0622403 0.01 0.991 -.1213399 .1227001
83 | .0127622 .074435 0.17 0.864 -.1331653 .1586897
85 | .0381987 .0989316 0.39 0.699 -.1557535 .2321508
87 | .0298993 .1237839 0.24 0.809 -.2127751 .2725736
88 | .0716091 .1397635 0.51 0.608 -.2023927 .345611
|
age | .0125992 .0123091 1.02 0.306 -.0115323 .0367308
_cons | 1.312096 .3453967 3.80 0.000 .6349571 1.989235
-------------+----------------------------------------------------------------
sigma_u | .4058746
sigma_e | .30300411
rho | .64212421 (fraction of variance due to u_i)
------------------------------------------------------------------------------
Using 80 as the base year:
xtreg ln_wage ib80.year age, fe vce(robust)
Fixed-effects (within) regression Number of obs = 28,510
Group variable: idcode Number of groups = 4,710
R-sq: Obs per group:
within = 0.1060 min = 1
between = 0.0914 avg = 6.1
overall = 0.0805 max = 15
F(15,4709) = 69.49
corr(u_i, Xb) = 0.0467 Prob > F = 0.0000
(Std. Err. adjusted for 4,710 clusters in idcode)
------------------------------------------------------------------------------
| Robust
ln_wage | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
year |
68 | -.1142649 .1480678 -0.77 0.440 -.4045471 .1760172
69 | -.0394028 .136462 -0.29 0.773 -.3069323 .2281266
70 | -.0663953 .1237179 -0.54 0.592 -.3089402 .1761497
71 | -.0277072 .1112026 -0.25 0.803 -.2457164 .190302
72 | -.0285892 .0991208 -0.29 0.773 -.2229124 .165734
73 | -.026258 .0866489 -0.30 0.762 -.1961303 .1436142
75 | -.0364042 .0625743 -0.58 0.561 -.1590791 .0862706
77 | -.0058999 .0381391 -0.15 0.877 -.0806704 .0688706
78 | .0166869 .0258678 0.65 0.519 -.0340261 .0673999
82 | -.0052198 .0257713 -0.20 0.840 -.0557437 .0453041
83 | .0068623 .0378166 0.18 0.856 -.0672759 .0810005
85 | .0322987 .0620538 0.52 0.603 -.0893558 .1539533
87 | .0239993 .0868397 0.28 0.782 -.1462471 .1942457
88 | .0657092 .1028815 0.64 0.523 -.1359868 .2674052
|
age | .0125992 .0123091 1.02 0.306 -.0115323 .0367308
_cons | 1.317996 .3824809 3.45 0.001 .5681546 2.067838
-------------+----------------------------------------------------------------
sigma_u | .4058746
sigma_e | .30300411
rho | .64212421 (fraction of variance due to u_i)
------------------------------------------------------------------------------

Related

Stata Probit Model Interaction Term Interpretation

for my thesis i am currently investigating the effects of emissions on health on a regional basis. the dependent variable is bicategorical which takes the value 0 (if health is good) and 1 (if health is bad) with the exception of emissions and capita_gdp every variable is categorical:
here is an exemplary regression:
probit health i.year i.region##emissions age educ smoker gender urban capita_gdp, robust
nofvlabel allbaselevels
Probit regression Number of obs = 67,041
Wald chi2(64) = 5850.28
Prob > chi2 = 0.0000
Log pseudolikelihood = -43026.965 Pseudo R2 = 0.0660
-------------------------------------------------------------------------------------
| Robust
health | Coef. Std. Err. z P>|z| [95% Conf. Interval]
--------------------+----------------------------------------------------------------
year |
1 | 0 (base)
2 | -.0236149 .0290446 -0.81 0.416 -.0805412 .0333115
3 | -.0552885 .0343119 -1.61 0.107 -.1225386 .0119615
4 | -.7498958 .0521191 -14.39 0.000 -.8520474 -.6477442
|
region |
1 | 0 (base)
2 | .3424928 .1944582 1.76 0.078 -.0386383 .723624
3 | .6631291 .343445 1.93 0.054 -.0100107 1.336269
4 | 1.005453 .1809361 5.56 0.000 .6508251 1.360081
5 | .5202438 .2705144 1.92 0.054 -.0099547 1.050442
6 | .853456 .2053275 4.16 0.000 .4510215 1.25589
7 | -1.32784 1.329886 -1.00 0.318 -3.934369 1.278688
8 | .2074103 .5587633 0.37 0.710 -.8877457 1.302566
9 | .8778635 1.005655 0.87 0.383 -1.093184 2.848911
10 | .614019 .2058646 2.98 0.003 .2105317 1.017506
11 | 1.103564 .2395228 4.61 0.000 .6341078 1.57302
12 | -.9928198 1.189953 -0.83 0.404 -3.325084 1.339444
13 | .2024027 .3014841 0.67 0.502 -.3884953 .7933008
14 | .8510637 .1966648 4.33 0.000 .4656078 1.23652
15 | -.4685238 1.062594 -0.44 0.659 -2.551171 1.614123
16 | .1222191 .4271317 0.29 0.775 -.7149435 .9593818
17 | 1.777416 .9296525 1.91 0.056 -.0446694 3.599502
18 | .7016812 .3960197 1.77 0.076 -.0745032 1.477866
19 | .2164103 .2324297 0.93 0.352 -.2391436 .6719642
20 | -.8683004 2.079837 -0.42 0.676 -4.944707 3.208106
21 | .6094313 .1969787 3.09 0.002 .2233601 .9955025
22 | .4586692 .2175369 2.11 0.035 .0323048 .8850336
23 | .1376296 .316405 0.43 0.664 -.4825129 .7577721
24 | .8800929 .2139805 4.11 0.000 .4606989 1.299487
25 | .5008748 .181908 2.75 0.006 .1443417 .8574079
26 | .7885192 .2055236 3.84 0.000 .3857004 1.191338
27 | .8370192 .2066431 4.05 0.000 .4320061 1.242032
28 | .0342872 .3383975 0.10 0.919 -.6289597 .697534
|
emissions | .2331187 .0475761 4.90 0.000 .1398713 .3263662
|
region#c.emissions|
1 | 0 (base)
2 | -.1763598 .0473856 -3.72 0.000 -.2692338 -.0834858
3 | .0902526 .3483855 0.26 0.796 -.5925705 .7730757
4 | -.2545669 .0436166 -5.84 0.000 -.3400539 -.1690798
5 | -.1903919 .0525988 -3.62 0.000 -.2934837 -.0873002
6 | -.2595892 .0565328 -4.59 0.000 -.3703914 -.148787
7 | .3660934 .3615611 1.01 0.311 -.3425534 1.07474
8 | -.1810636 .0873587 -2.07 0.038 -.3522836 -.0098436
9 | -.2360667 .2817683 -0.84 0.402 -.7883225 .316189
10 | -.2362498 .0452001 -5.23 0.000 -.3248403 -.1476593
11 | -.2986525 .0606014 -4.93 0.000 -.4174291 -.179876
12 | .4210453 .4355456 0.97 0.334 -.4326084 1.274699
13 | -.1393217 .063414 -2.20 0.028 -.2636109 -.0150324
14 | -.2428271 .0452505 -5.37 0.000 -.3315166 -.1541377
15 | -.1078827 .1281398 -0.84 0.400 -.359032 .1432667
16 | -.1121361 .0991541 -1.13 0.258 -.3064746 .0822024
17 | -.3670531 .1360779 -2.70 0.007 -.6337609 -.1003453
18 | -.241021 .1572069 -1.53 0.125 -.5491408 .0670988
19 | -.2128744 .0452858 -4.70 0.000 -.3016328 -.1241159
20 | .103139 .4313025 0.24 0.811 -.7421983 .9484763
21 | -.217597 .0532092 -4.09 0.000 -.3218851 -.1133089
22 | -.1796928 .0509009 -3.53 0.000 -.2794568 -.0799288
23 | -.1510797 .0529603 -2.85 0.004 -.2548799 -.0472795
24 | -.2589344 .0509662 -5.08 0.000 -.3588264 -.1590425
25 | -.231851 .0448358 -5.17 0.000 -.3197276 -.1439745
26 | -.2411263 .0442314 -5.45 0.000 -.3278182 -.1544344
27 | -.2452313 .0465597 -5.27 0.000 -.3364867 -.153976
28 | -.0563099 .1191566 -0.47 0.637 -.2898525 .1772328
|
age | .1085835 .0049886 21.77 0.000 .098806 .1183609
educ | -.1802489 .0107034 -16.84 0.000 -.2012272 -.1592707
smoker | .080728 .0145963 5.53 0.000 .0521198 .1093362
gender | -.2019473 .0145416 -13.89 0.000 -.2304483 -.1734463
urban | -.1362217 .0112233 -12.14 0.000 -.1582189 -.1142245
capita_gdp | -8.36e-06 .0000194 -0.43 0.667 -.0000464 .0000297
_cons | -.4987429 .1638654 -3.04 0.002 -.8199132 -.1775726
-------------------------------------------------------------------------------------
My question is, how can I exactly interpret the coefficients of emissions and the interaction of region.c#emissions on the dependent variable ? To my understanding the coefficient of emissions for region 1 is the base level and the coefficient of emissions in region 2 is lower than region 1 by -.176 ?
Correct. Two extra things worth noting:
Interactions work both ways. So the interaction coefficient tells you that the emissions effect is 0.176 smaller in region 2, but also that the effect of being in region 2 is 0.176 smaller if emissions are one unit larger. That also means you cannot directly interpret any coefficient involved in the interaction (region & emissions) as they both depend on each other.
Stata has an excellent margins and marginsplot command that calculates for you what the coefficients are at particular levels of region and/or emissions. It has a bit of a learning curve, but if you get the hang of it you can produce beautiful graphs to illustrate the interaction effect that will be much more informative than a long regression table.
There are many tutorials online on how to use margins and there's also this presentation by Ben Jann.

sql how to select the next to last row of the groups with two or more rows

I have a table of performed actions over different object instances that have different versions. If I group the actions per instance and version, with this SELECT (abbreviated)
SELECT instance, version, COUNT(id) AS cnt
FROM actions
WHERE status=0
AND version IS NOT NULL
GROUP BY instance, version
I obtain this table (abbreviated)
instance | version | cnt
----------+---------+------
1021 | 18.1 | 263
1021 | 18.2 | 422
1021 | 19.1 | 949
1191 | 18.2 | 28
1195 | 18.1 | 584
1195 | 18.2 | 176
1195 | 18.3 | 437
1195 | 19.1 | 152
1195 | 19.2 | 545
1195 | 19.3 | 399
1196 | 18.3 | 844
1196 | 19.1 | 800
1197 | 18.3 | 2
1201 | 18.1 | 471
1201 | 18.2 | 584
1201 | 18.3 | 553
1201 | 19.1 | 498
1201 | 19.2 | 203
1201 | 19.3 | 36
1208 | 18.1 | 444
1208 | 18.2 | 548
1208 | 18.3 | 31
1208 | 19.2 | 357
1210 | 19.1 | 514
1211 | 18.2 | 341
1211 | 19.1 | 531
....
now, I want the row corresponding to the previous to the last version for the instances that have more than one version.
So, in the example, I need to select the rows
instance | version | cnt
----------+---------+------
1021 | 18.2 | 422
1195 | 19.2 | 545
1196 | 18.3 | 844
1201 | 19.2 | 203
1208 | 18.3 | 31
1211 | 18.2 | 341
...
I have tried GROUP BY instance HAVING count(*) >= 2 to begin by filtering the results, but it counts the original rows, not the resulting rows after the first GROUP BY instance, version.
Any hint on how to achieve this?
Assuming that abbreviated results are stored in temp table test. Following query will give you the expected output.
select * from test where (instance,version)in
(select instance,max(version) as version from test A where exists
(select max(version) as version from test B where A.instance=B.instance and A.version<B.version group by instance) group by instance)
Ouput
instance version cnt
1021 18.2 422
1195 19.2 545
1196 18.3 844
1201 19.2 203
1208 18.3 31
1211 18.2 341
It seems you need (no optimization!)
WITH
cte1 AS ( SELECT instance, version, COUNT(id) AS cnt
FROM actions
WHERE status=0
AND version IS NOT NULL
GROUP BY instance, version ),
cte2 AS ( SELECT instance, MAX(version) version
FROM cte1
GROUP BY instance ),
cte3 AS ( SELECT instance, MAX(version) version
FROM cte1
LEFT JOIN cte2 USING (instance, version)
WHERE cte2.instance IS NULL
GROUP BY instance )
SELECT cte1.*
FROM cte1
JOIN cte3 USING (instance, version)
fiddle
You can use window functions:
SELECT iv.*
FROM (SELECT instance, version, COUNT(id) AS cnt,
ROW_NUMBER() OVER (PARTITION BY instance ORDER BY version DESC) as seqnum
FROM actions
WHERE status = 0 AND
version IS NOT NULL
GROUP BY instance, version
) iv
WHERE seqnum = 2;

Regression with all variables without explicitly declaring them

I have a dataset that I would like to run a regression on in Stata. I want to make one of the dummy variables the base so I use the ib1.month1 in the regress command.
Is it possible to include in my regression all other variables in the dataset without explicitly writing out each variable again?
You can use the ds command:
sysuse auto, clear
drop make
ds price foreign, not
regress price ib1.foreign `r(varlist)'
Source | SS df MS Number of obs = 69
-------------+---------------------------------- F(10, 58) = 8.66
Model | 345416162 10 34541616.2 Prob > F = 0.0000
Residual | 231380797 58 3989324.09 R-squared = 0.5989
-------------+---------------------------------- Adj R-squared = 0.5297
Total | 576796959 68 8482308.22 Root MSE = 1997.3
------------------------------------------------------------------------------
price | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
foreign |
Domestic | -3334.848 957.2253 -3.48 0.001 -5250.943 -1418.754
mpg | -21.80518 77.3599 -0.28 0.779 -176.6578 133.0475
rep78 | 184.7935 331.7921 0.56 0.580 -479.3606 848.9476
headroom | -635.4921 383.0243 -1.66 0.102 -1402.198 131.2142
trunk | 71.49929 95.05012 0.75 0.455 -118.7642 261.7628
weight | 4.521161 1.411926 3.20 0.002 1.694884 7.347438
length | -76.49101 40.40303 -1.89 0.063 -157.3665 4.38444
turn | -114.2777 123.5374 -0.93 0.359 -361.5646 133.0092
displacement | 11.54012 8.378315 1.38 0.174 -5.230896 28.31115
gear_ratio | -318.6479 1124.34 -0.28 0.778 -2569.259 1931.964
_cons | 13124.34 6726.3 1.95 0.056 -339.8103 26588.5
------------------------------------------------------------------------------

Unit-specific Trends and R-squared near 1

I am currently working on a country panel dataset in which I am running a Dif-in-Dif regression including unit specific trends in Stata
My main concern is that the adjusted R-squared obtained is really high, sometimes even 0.99. I am assuming this is a sign of some kind of mistake but I do not know how to correct it.
For the model, I have near 5000 observations. The number of countries are 201, I have 36 years and 5 control variables, then the number of parameters would be around 450.
Here I attach the code used:
xtset id_num year // id_num = id_country
reg `outcome' i.treatment i.year i.id_num c.year#i.id_num `controls' if id_country!="USA" & `subgroup'==1, cluster(id_num)
In case is useful, this is the first part of the output
note: 201.id_num#c.year omitted because of collinearity
Linear regression Number of obs = 4,789
F(39, 174) = .
Prob > F = .
R-squared = 0.9994
Root MSE = .20753
(Std. Err. adjusted for 175 clusters in id_country)
-------------------------------------------------------------------------------
| Robust
obesity_as | Coef. Std. Err. t P>|t| [95% Conf. Interval]
--------------+----------------------------------------------------------------
1.treatment | .1847802 .1341994 1.38 0.170 -.080088 .4496483
|
year |
1981 | .2162895 .0156983 13.78 0.000 .185306 .2472731
1982 | .4461132 .0224864 19.84 0.000 .4017319 .4904944
1983 | .6690157 .0281392 23.78 0.000 .6134777 .7245538
1984 | .915047 .0311529 29.37 0.000 .8535609 .9765332
1985 | 1.177176 .0344991 34.12 0.000 1.109085 1.245266
1986 | 1.421679 .0389734 36.48 0.000 1.344758 1.498601
1987 | 1.68354 .0413294 40.73 0.000 1.601969 1.765112
1988 | 1.963494 .0440206 44.60 0.000 1.876611 2.050377
1989 | 2.236331 .0472635 47.32 0.000 2.143048 2.329615
1990 | 2.52923 .0498206 50.77 0.000 2.4309 2.62756

date Subquery PHP and Mysql

Following is my sql query with included subquery. Essentially I'm looking to obtain the most recent meter readings for our equipment for a given month and year. I know it's in my subquery where the issue is coming up but I don't know how to properly fix it.
Following is result if I delete the subquery and just select equipment with meter readings for that month.
eid eqid name pid hours date
70 C1 KOMATSU WA250 3YD BUCKET 27 1176 2013-10-07
70 C1 KOMATSU WA250 3YD BUCKET 27 1195 2013-10-28
70 C1 KOMATSU WA250 3YD BUCKET 27 1178 2013-10-14
73 C11 KOMATSU PC200 EXCAVATOR 27 1080 2013-10-14
73 C11 KOMATSU PC200 EXCAVATOR 27 1099 2013-10-28
73 C11 KOMATSU PC200 EXCAVATOR 27 1078 2013-10-07
92 C4 CATERPILLAR 304D MINI EX 27 646 2013-10-14
92 C4 CATERPILLAR 304D MINI EX 27 645 2013-10-07
92 C4 CATERPILLAR 304D MINI EX 27 649 2013-10-28
58 E14 BOBCAT-ATV 2300 Utility 8 522 2013-10-31
61 E17 SKYTRAK FORKLIFT 40 943 2013-10-10
62 E18 SKYTRAK FORKLIFT 5 1790 2013-10-30
62 E18 SKYTRAK FORKLIFT 5 1789 2013-10-29
62 E18 SKYTRAK FORKLIFT 5 1777 2013-10-13
62 E18 SKYTRAK FORKLIFT 5 1772 2013-10-07
62 E18 SKYTRAK FORKLIFT 5 1777 2013-10-13
62 E18 SKYTRAK FORKLIFT 5 1772 2013-10-04
62 E18 SKYTRAK FORKLIFT 5 1772 2013-10-07
62 E18 SKYTRAK FORKLIFT 5 1772 2013-10-04
67 E23 BOBCAT SKID STEER 27 1178 2013-10-28
Following is result of full query including subquery.
92 C4 CATERPILLAR 304D MINI EX 27 649 2013-10-28
61 E17 SKYTRAK FORKLIFT 40 943 2013-10-10
62 E18 SKYTRAK FORKLIFT 5 1790 2013-10-30
Following is query I am using.
SELECT e.eid, e.eqid, e.name, m.pid, m.hours, m.date FROM meter m
JOIN equipment e ON m.eid = e.eid
WHERE MONTH(date) = $month
AND YEAR(date) = $year
AND m.date = (SELECT MAX(m2.date) FROM meter m2 WHERE m2.eid = m.eid)
ORDER BY e.eqid ASC
Any help is greatly appreciated.
EDIT***
I would have never gotten there Sebas. I had to change one thing and it worked perfectly.
SELECT DISTINCT e.eid, e.eqid, e.name, m.pid, m.hours, m.date
FROM equipment e
JOIN (
SELECT eid, MAX(date) as date
FROM meter
WHERE MONTH(date) = $month
AND YEAR(date) = $year
GROUP BY eid
) maxdate ON maxdate.eid = e.eid
JOIN meter m ON m.eid = e.eid AND m.date = maxdate.date
ORDER BY e.eqid ASC
Guessing out the fields of each table, I figured the following query:
SELECT DISTINCT e.eid, e.eqid, e.name, m.pid, m.hours, m.date
FROM
equipment e
JOIN (
SELECT eid, MAX(date) date
FROM meter
WHERE
MONTH(date) = $month
AND YEAR(date) = $year
GROUP BY eid
) maxdate ON maxdate.eid = e.eid
JOIN meter m ON m.eid = e.eid AND m.date = maxdate.date
ORDER BY e.eqid ASC
Try
SELECT e.eid, e.eqid, e.name, m.pid, m.hours, m.date
FROM
(
SELECT eid, MAX(date) date
FROM meter
WHERE date BETWEEN '2013-10-01' AND LAST_DAY('2013-10-01')
GROUP BY eid
) q JOIN meter m
ON q.eid = m.eid
AND q.date = m.date JOIN equipment e
ON q.eid = e.eid
ORDER BY e.eid
Note: make sure you have an index on date. Don't apply any functions (MONTH() and such) to this columns in WHERE clause because it prevents from using any index you might have on it effectively causing full table scan.
Sample output:
| EID | EQID | NAME | PID | HOURS | DATE |
|-----|------|--------------------------|-----|-------|------------|
| 58 | E14 | BOBCAT-ATV 2300 Utility | 8 | 522 | 2013-10-31 |
| 61 | E17 | SKYTRAK FORKLIFT | 40 | 943 | 2013-10-10 |
| 62 | E18 | SKYTRAK FORKLIFT | 5 | 1790 | 2013-10-30 |
| 67 | E23 | BOBCAT SKID STEER | 27 | 1178 | 2013-10-28 |
| 70 | C1 | KOMATSU WA250 3YD BUCKET | 27 | 1195 | 2013-10-28 |
| 73 | C11 | KOMATSU PC200 EXCAVATOR | 27 | 1099 | 2013-10-28 |
| 92 | C4 | CATERPILLAR 304D MINI EX | 27 | 649 | 2013-10-28 |
Here is SQLFiddle demo