mysql not using index? - mysql

I have a table with columns like word, A_, E_, U_ .. these columns with X_ are tinyints having the value of how many times the specific letter exists in the word (to later help optimize the wildcard search query).
There is totally 252k rows. If i make search like WHERE u_ > 0 i get 60k rows. But if i do the explain of that select, it says there is 225k rows to go through and no index possible. Why? Column was added as index. Why it doesn't say there is 60k rows to go through and that possible key is U_?
listing the indexes on table (also strange that others are groupped under A_ index)
In comparison if i run query: where id > 250000 i get 2983 results, and if i do explain of that select it says there is 2982 rows and key to be used primary.
Btw if i group by U_ i get this: (but probably doesnt matter much because i already said the query returns 60k results)
EDIT:
If i create column U (varchar(1)) and do the update U = 'U' where U_ > 0, then if i do the select WHERE U = 'U' i get also 60k rows (obviously), but if i do explain i get this:
Still not so good (rows 120k not 60k) but at least better than rows 225k in previous case. Although this solution is bit more piggy that than the first one, but maybe bit more efficient.

My experience is that MySQL chooses to do a tablescan, even if there is an index on the column you're searching, if your query would select more than approximately 25% of the rows in the table.
The reason for this is that using a secondary index in InnoDB is a bit more work than using a primary index.
Look up value in secondary index, like your index on u_.
Read index entry, and find corresponding primary key value(s) of rows where that value in u_ is stored.
Look up row(s) by primary key.
It's actually at least double the work to look up by secondary key. This isn't a problem if you ultimately match a small minority of rows of the table, and there are definitely cases where a secondary index is really important for your query. So don't be reluctant to use secondary indexes.
But if your query matches too many rows, and that becomes a big portion of the table, then it would be less work to just scan the table start-to-finish.
By analogy, why doesn't the index at the back of a book contain the word "the"? Because the entry would naturally list every single page in the book, and it would be a waste for you to refer to the index and then use it to guide you to each page in the main part of the book. You would have been better off just reading the book.
MySQL does not have any officially documented threshold for choosing a tablescan over an indexed search. The 25% figure is only my experience (actually sometimes it seems closer to 21%, but I don't know the code well enough to understand exactly how the threshold is calculated).
I've seen cases where the proportion of rows matched was very close to whatever threshold is in the implementation, and the behavior of the optimizer can actually flip-flop from one query to the next, resulting in highly variable performance.
If this case applies to you, you can use an index hint to make MySQL's optimizer pretend that a tablescan is prohibitively expensive, and it should prefer an index to a tablescan. This is done with the FORCE INDEX hint.
SELECT * FROM words FORCE INDEX(U_) WHERE U_ > 0
I still try to use index hints conservatively. They aren't necessary except in rare cases, and using an index hint means your query must include the index name. This makes it hard to change indexes without breaking your application code.

You're asking about the backend query optimizer. In particular you're asking: "how does it choose an access path? Why index here but tablescan there?"
Let's think about that optimizer. What is it optimizing? Elapsed time, in expectation. It has a model for how long sequential reads and random reads take, and for query selectivity, that is, expected number of rows returned by a query. From several alternative access paths it chooses the one that appears to require the least elapsed time.
Your id > 250000 query had a few things going for it:
good selectivity, so less than 1% of rows will appear in the result set
id is the Primary Key, so all columns are immediately available upon navigating to the right place in the btree
This caused the optimizer to compute an expected elapsed time for the indexed access path much smaller than expected time for tablescan.
On the other hand, your u_ > 0 query has very poor selectivity, dragging nearly a quarter of the rows into the result set. Additionally, the index is not a covering index for your * demand of copying all column values into the result set. So the optimizer predicts it will have to read a quarter of the index blocks, and then essentially all of the data row blocks that they point to. So compared to tablescan, we'd have to read more blocks from disk, and they would be random reads instead of sequential reads. Both of those argue against using the index, so tablescan was selected because it was cheapest. Also, remember that often multiple rows will fit within a single disk block, or within a single read request. We would call it a pessimizer if it always chose the indexed access path, even in cases where indexed disk I/O would take longer.
summary advice
Use an index on a single column when your queries have good selectivity, returning much less than 1% of a relation's rows. Use a covering index when your queries have poor selectivity and you're willing to make a space vs. time tradeoff.

Related

Improve Mysql Select Query Performance [duplicate]

I've been using indexes on my MySQL databases for a while now but never properly learnt about them. Generally I put an index on any fields that I will be searching or selecting using a WHERE clause but sometimes it doesn't seem so black and white.
What are the best practices for MySQL indexes?
Example situations/dilemmas:
If a table has six columns and all of them are searchable, should I index all of them or none of them?
What are the negative performance impacts of indexing?
If I have a VARCHAR 2500 column which is searchable from parts of my site, should I index it?
You should definitely spend some time reading up on indexing, there's a lot written about it, and it's important to understand what's going on.
Broadly speaking, an index imposes an ordering on the rows of a table.
For simplicity's sake, imagine a table is just a big CSV file. Whenever a row is inserted, it's inserted at the end. So the "natural" ordering of the table is just the order in which rows were inserted.
Imagine you've got that CSV file loaded up in a very rudimentary spreadsheet application. All this spreadsheet does is display the data, and numbers the rows in sequential order.
Now imagine that you need to find all the rows that have some value "M" in the third column. Given what you have available, you have only one option. You scan the table checking the value of the third column for each row. If you've got a lot of rows, this method (a "table scan") can take a long time!
Now imagine that in addition to this table, you've got an index. This particular index is the index of values in the third column. The index lists all of the values from the third column, in some meaningful order (say, alphabetically) and for each of them, provides a list of row numbers where that value appears.
Now you have a good strategy for finding all the rows where the value of the third column is "M". For instance, you can perform a binary search! Whereas the table scan requires you to look N rows (where N is the number of rows), the binary search only requires that you look at log-n index entries, in the very worst case. Wow, that's sure a lot easier!
Of course, if you have this index, and you're adding rows to the table (at the end, since that's how our conceptual table works), you need to update the index each and every time. So you do a little more work while you're writing new rows, but you save a ton of time when you're searching for something.
So, in general, indexing creates a tradeoff between read efficiency and write efficiency. With no indexes, inserts can be very fast -- the database engine just adds a row to the table. As you add indexes, the engine must update each index while performing the insert.
On the other hand, reads become a lot faster.
Hopefully that covers your first two questions (as others have answered -- you need to find the right balance).
Your third scenario is a little more complicated. If you're using LIKE, indexing engines will typically help with your read speed up to the first "%". In other words, if you're SELECTing WHERE column LIKE 'foo%bar%', the database will use the index to find all the rows where column starts with "foo", and then need to scan that intermediate rowset to find the subset that contains "bar". SELECT ... WHERE column LIKE '%bar%' can't use the index. I hope you can see why.
Finally, you need to start thinking about indexes on more than one column. The concept is the same, and behaves similarly to the LIKE stuff -- essentially, if you have an index on (a,b,c), the engine will continue using the index from left to right as best it can. So a search on column a might use the (a,b,c) index, as would one on (a,b). However, the engine would need to do a full table scan if you were searching WHERE b=5 AND c=1)
Hopefully this helps shed a little light, but I must reiterate that you're best off spending a few hours digging around for good articles that explain these things in depth. It's also a good idea to read your particular database server's documentation. The way indices are implemented and used by query planners can vary pretty widely.
Check out presentations like More Mastering the Art of Indexing.
Update 12/2012: I have posted a new presentation of mine: How to Design Indexes, Really. I presented this in October 2012 at ZendCon in Santa Clara, and in December 2012 at Percona Live London.
Designing the best indexes is a process that has to match the queries you run in your app.
It's hard to recommend any general-purpose rules about which columns are best to index, or whether you should index all columns, no columns, which indexes should span multiple columns, etc. It depends on the queries you need to run.
Yes, there is some overhead so you shouldn't create indexes needlessly. But you should create the indexes that give benefit to the queries you need to run quickly. The overhead of an index is usually far outweighed by its benefit.
For a column that is VARCHAR(2500), you probably want to use a FULLTEXT index or a prefix index:
CREATE INDEX i ON SomeTable(longVarchar(100));
Note that a conventional index can't help if you're searching for words that may be in the middle of that long varchar. For that, use a fulltext index.
I won't repeat some of the good advice in other answers, but will add:
Compound Indices
You can create compound indices - an index that includes multiple columns. MySQL can use these from left to right. So if you have:
Table A
Id
Name
Category
Age
Description
if you have a compound index that includes Name/Category/Age in that order, these WHERE clauses would use the index:
WHERE Name='Eric' and Category='A'
WHERE Name='Eric' and Category='A' and Age > 18
but
WHERE Category='A' and Age > 18
would not use that index because everything has to be used from left to right.
Explain
Use Explain / Explain Extended to understand what indices are available to MySQL and which one it actually selects. MySQL will only use ONE key per query.
EXPLAIN EXTENDED SELECT * from Table WHERE Something='ABC'
Slow Query Log
Turn on the slow query log to see which queries are running slow.
Wide Columns
If you have a wide column where MOST of the distinction happens in the first several characters, you can use only the first N characters in your index. Example: We have a ReferenceNumber column defined as varchar(255) but 97% of the cases, the reference number is 10 characters or less. I changed the index to only look at the first 10 characters and improved performance quite a bit.
If a table has six columns and all of them are searchable, should i index all of them or none of them
Are you searching on a field by field basis or are some searches using multiple fields?
Which fields are most being searched on?
What are the field types? (Index works better on INTs than on VARCHARs for example)
Have you tried using EXPLAIN on the queries that are being run?
What are the negetive performance impacts of indexing
UPDATEs and INSERTs will be slower. There's also the extra storage space requirments, but that's usual unimportant these days.
If i have a VARCHAR 2500 column which is searchable from parts of my site, should i index it
No, unless it's UNIQUE (which means it's already indexed) or you only search for exact matches on that field (not using LIKE or mySQL's fulltext search).
Generally I put an index on any fields that i will be searching or selecting using a WHERE clause
I'd normally index the fields that are the most queried, and then INTs/BOOLEANs/ENUMs rather that fields that are VARCHARS. Don't forget, often you need to create an index on combined fields, rather than an index on an individual field. Use EXPLAIN, and check the slow log.
Load Data Efficiently: Indexes speed up retrievals but slow down inserts and deletes, as well as updates of values in indexed columns. That is, indexes slow down most operations that involve writing. This occurs because writing a row requires writing not only the data row, it requires changes to any indexes as well. The more indexes a table has, the more changes need to be made, and the greater the average performance degradation. Most tables receive many reads and few writes, but for a table with a high percentage of writes, the cost of index updating might be significant.
Avoid Indexes: If you don’t need a particular index to help queries perform better, don’t create it.
Disk Space: An index takes up disk space, and multiple indexes take up correspondingly more space. This might cause you to reach a table size limit more quickly than if there are no indexes. Avoid indexes wherever possible.
Takeaway: Don't over index
In general, indices help speedup database search, having the disadvantage of using extra disk space and slowing INSERT / UPDATE / DELETE queries. Use EXPLAIN and read the results to find out when MySQL uses your indices.
If a table has six columns and all of them are searchable, should i index all of them or none of them?
Indexing all six columns isn't always the best practice.
(a) Are you going to use any of those columns when searching for specific information?
(b) What is the selectivity of those columns (how many distinct values are there stored, in comparison to the total amount of records on the table)?
MySQL uses a cost-based optimizer, which tries to find the "cheapest" path when performing a query. And fields with low selectivity aren't good candidates.
What are the negetive performance impacts of indexing?
Already answered: extra disk space, lower performance during insert - update - delete.
If i have a VARCHAR 2500 column which is searchable from parts of my site, should i index it?
Try the FULLTEXT Index.
1/2) Indexes speed up certain select operations but they slow down other operations like insert, update and deletes. It can be a fine balance.
3) use a full text index or perhaps sphinx

How can I detect if an MySQL index is necessary or required?

How can I detect if an MySQL index is necessary or required?
We have the idea that some queries can be improved. And I know that I can dive in slow query logs ... but I ran across the post below for MS SQL and was wondering if there is an easy way of analyzing if an index is required (and will give immediate speed improvements) for the current MySQL database.
Help appreciated
Resource for MS SQL: https://dba.stackexchange.com/questions/56/how-to-determine-if-an-index-is-required-or-necessary
You can't.
There are ways to detect, over a period of time, whether an index is used. But there is no way to be sure that an index is not used. Let's say you have a once-a-month task that does some major maintenance on the table. And you really need a certain index to keep the task from locking the table and bringing down the application. If you checked for index usage for most of the month, but failed to include that usage, you might decide that you don't need the index. Then you would drop the index... and be sorry. (This is a real anecdote.)
Meanwhile, there are some simplistic rules about indexes...
INDEX(a) is unnecessary if you also have INDEX(a,b).
INDEX(id) is unnecessary if you also have PRIMARY KEY(id) or UNIQUE(id).
An index with 5 or more columns may be used, but is unlikely to be "useful". (Shorten it.)
INDEX(a), INDEX(b) is not the same as INDEX(a,b).
INDEX(b,a) is not the same as INDEX(a,b); you may need both.
INDEX(flag), where flag has a small number of distinct values, will probably never be used -- the optimizer will scan the table instead.
In many cases, "prefix" indexing (INDEX(foo(10))) is useless. (But there are many exceptions.)
"I indexed every column" -- a bad design pattern.
Often, but not always, having both a PRIMARY KEY and a UNIQUE key means that something is less than optimal.
InnoDB tables really should have an explicit PRIMARY KEY.
InnoDB implicitly include the PK in any secondary key. So, given PRIMARY KEY(id), INDEX(foo) is really INDEX(foo, id).
Sometimes the Optimizer will ignore the WHERE clause and use an index for the ORDER BY.
Some queries have such skewed properties that the Optimizer will use a different index depending on different constants. (I have literally see as many as 6 different explain plans for one query.)
"Index merge intersect" is almost always not as good as a composite index.
There are exceptions to most of these tips.
So, I prefer to take all the queries (SELECTs, UPDATEs, and DELETEs), decide on the optimal index for each, eliminate redundancies, etc, in order to find the "best" set of indexes. See my cookbook on creating an index, given a SELECT.
You should definitely spend some time reading up on indexing, there's a lot written about it, and it's important to understand what's going on.
Broadly speaking, and index imposes an ordering on the rows of a table.
For simplicity's sake, imagine a table is just a big CSV file. Whenever a row is inserted, it's inserted at the end. So the "natural" ordering of the table is just the order in which rows were inserted.
Imagine you've got that CSV file loaded up in a very rudimentary spreadsheet application. All this spreadsheet does is display the data, and numbers the rows in sequential order.
Now imagine that you need to find all the rows that has some value "M" in the third column. Given what you have available, you have only one option. You scan the table checking the value of the third column for each row. If you've got a lot of rows, this method (a "table scan") can take a long time!
Now imagine that in addition to this table, you've got an index. This particular index is the index of values in the third column. The index lists all of the values from the third column, in some meaningful order (say, alphabetically) and for each of them, provides a list of row numbers where that value appears.
Now you have a good strategy for finding all the rows where the value of the third column is "M". For instance, you can perform a binary search! Whereas the table scan requires you to look N rows (where N is the number of rows), the binary search only requires that you look at log-n index entries, in the very worst case. Wow, that's sure a lot easier!
Of course, if you have this index, and you're adding rows to the table (at the end, since that's how our conceptual table works), you need to update the index each and every time. So you do a little more work while you're writing new rows, but you save a ton of time when you're searching for something.
So, in general, indexing creates a tradeoff between read efficiency and write efficiency. With no indexes, inserts can be very fast -- the database engine just adds a row to the table. As you add indexes, the engine must update each index while performing the insert.
On the other hand, reads become a lot faster.

Indexing on column with few fixed values but values constitue to less than 25% of total rows

I have a field table_name in a table which can have only 20 different values. The total records in the table is about few tens of thousands of rows. If I do a query like this:
SELECT * FROM table WHERE table_name = 'adasd';
at most the returned records are 25% of the total rows. Mostly I get only 10% of the total records. Is there a scope to index the field table_name here? I hear that for indexes to work well it requires the values in that field to be unique or close to it. In my case, its not at all close to unique. But I also heard that if the returned rows are less in number compared to total number of rows, it makes a good case for indexing.
How should I go about this?
No they don't have to be unique to get a benefit from using indexes, however take some time to think about what the DBMS does when processing a query:
Full table scan - a sequential read through the data (i.e. very few seek operations)
Index lookup - a few seeks on the index to find the start of the selected data, then a sequential read (few seeks) to identify rows in the underlying table, then LOTS AND LOTS of seeks to fetch the rows from the table
Seeks are expensive.
(there is a secondary effect of full table scans in that they are more prone to flushing hot data out of the cache - but you should address the primary concern first).
In this case, it's unlikely that the DBMS would use the index if it were present, and even if it did, it would probably be slower than a full table scan. As a (very) rough rule of thumb, you're only going to get a benefit from an index if a predicate identifies less than around 5% of the rows (but it will vary depending on the relative size of the index and the data).
i.e. don't bother adding an index on this field alone.
I think you may benefit from spending some time thinking about why you need to run queries which return so many rows?
Revised Answer
I just learned that creating an index does not mean that MySQL will use it. Keeping that in mind, I will re-phrase my answer:
You should create an index on that column if (general or your own) practices suggest you to do so. MySQL will use heuristics; which include looking at the available indexes and their respective cardinality, to determine the best index to use or not to use an index at all.
Interesting reading about this topic here.

MySQL indexes - what are the best practices?

I've been using indexes on my MySQL databases for a while now but never properly learnt about them. Generally I put an index on any fields that I will be searching or selecting using a WHERE clause but sometimes it doesn't seem so black and white.
What are the best practices for MySQL indexes?
Example situations/dilemmas:
If a table has six columns and all of them are searchable, should I index all of them or none of them?
What are the negative performance impacts of indexing?
If I have a VARCHAR 2500 column which is searchable from parts of my site, should I index it?
You should definitely spend some time reading up on indexing, there's a lot written about it, and it's important to understand what's going on.
Broadly speaking, an index imposes an ordering on the rows of a table.
For simplicity's sake, imagine a table is just a big CSV file. Whenever a row is inserted, it's inserted at the end. So the "natural" ordering of the table is just the order in which rows were inserted.
Imagine you've got that CSV file loaded up in a very rudimentary spreadsheet application. All this spreadsheet does is display the data, and numbers the rows in sequential order.
Now imagine that you need to find all the rows that have some value "M" in the third column. Given what you have available, you have only one option. You scan the table checking the value of the third column for each row. If you've got a lot of rows, this method (a "table scan") can take a long time!
Now imagine that in addition to this table, you've got an index. This particular index is the index of values in the third column. The index lists all of the values from the third column, in some meaningful order (say, alphabetically) and for each of them, provides a list of row numbers where that value appears.
Now you have a good strategy for finding all the rows where the value of the third column is "M". For instance, you can perform a binary search! Whereas the table scan requires you to look N rows (where N is the number of rows), the binary search only requires that you look at log-n index entries, in the very worst case. Wow, that's sure a lot easier!
Of course, if you have this index, and you're adding rows to the table (at the end, since that's how our conceptual table works), you need to update the index each and every time. So you do a little more work while you're writing new rows, but you save a ton of time when you're searching for something.
So, in general, indexing creates a tradeoff between read efficiency and write efficiency. With no indexes, inserts can be very fast -- the database engine just adds a row to the table. As you add indexes, the engine must update each index while performing the insert.
On the other hand, reads become a lot faster.
Hopefully that covers your first two questions (as others have answered -- you need to find the right balance).
Your third scenario is a little more complicated. If you're using LIKE, indexing engines will typically help with your read speed up to the first "%". In other words, if you're SELECTing WHERE column LIKE 'foo%bar%', the database will use the index to find all the rows where column starts with "foo", and then need to scan that intermediate rowset to find the subset that contains "bar". SELECT ... WHERE column LIKE '%bar%' can't use the index. I hope you can see why.
Finally, you need to start thinking about indexes on more than one column. The concept is the same, and behaves similarly to the LIKE stuff -- essentially, if you have an index on (a,b,c), the engine will continue using the index from left to right as best it can. So a search on column a might use the (a,b,c) index, as would one on (a,b). However, the engine would need to do a full table scan if you were searching WHERE b=5 AND c=1)
Hopefully this helps shed a little light, but I must reiterate that you're best off spending a few hours digging around for good articles that explain these things in depth. It's also a good idea to read your particular database server's documentation. The way indices are implemented and used by query planners can vary pretty widely.
Check out presentations like More Mastering the Art of Indexing.
Update 12/2012: I have posted a new presentation of mine: How to Design Indexes, Really. I presented this in October 2012 at ZendCon in Santa Clara, and in December 2012 at Percona Live London.
Designing the best indexes is a process that has to match the queries you run in your app.
It's hard to recommend any general-purpose rules about which columns are best to index, or whether you should index all columns, no columns, which indexes should span multiple columns, etc. It depends on the queries you need to run.
Yes, there is some overhead so you shouldn't create indexes needlessly. But you should create the indexes that give benefit to the queries you need to run quickly. The overhead of an index is usually far outweighed by its benefit.
For a column that is VARCHAR(2500), you probably want to use a FULLTEXT index or a prefix index:
CREATE INDEX i ON SomeTable(longVarchar(100));
Note that a conventional index can't help if you're searching for words that may be in the middle of that long varchar. For that, use a fulltext index.
I won't repeat some of the good advice in other answers, but will add:
Compound Indices
You can create compound indices - an index that includes multiple columns. MySQL can use these from left to right. So if you have:
Table A
Id
Name
Category
Age
Description
if you have a compound index that includes Name/Category/Age in that order, these WHERE clauses would use the index:
WHERE Name='Eric' and Category='A'
WHERE Name='Eric' and Category='A' and Age > 18
but
WHERE Category='A' and Age > 18
would not use that index because everything has to be used from left to right.
Explain
Use Explain / Explain Extended to understand what indices are available to MySQL and which one it actually selects. MySQL will only use ONE key per query.
EXPLAIN EXTENDED SELECT * from Table WHERE Something='ABC'
Slow Query Log
Turn on the slow query log to see which queries are running slow.
Wide Columns
If you have a wide column where MOST of the distinction happens in the first several characters, you can use only the first N characters in your index. Example: We have a ReferenceNumber column defined as varchar(255) but 97% of the cases, the reference number is 10 characters or less. I changed the index to only look at the first 10 characters and improved performance quite a bit.
If a table has six columns and all of them are searchable, should i index all of them or none of them
Are you searching on a field by field basis or are some searches using multiple fields?
Which fields are most being searched on?
What are the field types? (Index works better on INTs than on VARCHARs for example)
Have you tried using EXPLAIN on the queries that are being run?
What are the negetive performance impacts of indexing
UPDATEs and INSERTs will be slower. There's also the extra storage space requirments, but that's usual unimportant these days.
If i have a VARCHAR 2500 column which is searchable from parts of my site, should i index it
No, unless it's UNIQUE (which means it's already indexed) or you only search for exact matches on that field (not using LIKE or mySQL's fulltext search).
Generally I put an index on any fields that i will be searching or selecting using a WHERE clause
I'd normally index the fields that are the most queried, and then INTs/BOOLEANs/ENUMs rather that fields that are VARCHARS. Don't forget, often you need to create an index on combined fields, rather than an index on an individual field. Use EXPLAIN, and check the slow log.
Load Data Efficiently: Indexes speed up retrievals but slow down inserts and deletes, as well as updates of values in indexed columns. That is, indexes slow down most operations that involve writing. This occurs because writing a row requires writing not only the data row, it requires changes to any indexes as well. The more indexes a table has, the more changes need to be made, and the greater the average performance degradation. Most tables receive many reads and few writes, but for a table with a high percentage of writes, the cost of index updating might be significant.
Avoid Indexes: If you don’t need a particular index to help queries perform better, don’t create it.
Disk Space: An index takes up disk space, and multiple indexes take up correspondingly more space. This might cause you to reach a table size limit more quickly than if there are no indexes. Avoid indexes wherever possible.
Takeaway: Don't over index
In general, indices help speedup database search, having the disadvantage of using extra disk space and slowing INSERT / UPDATE / DELETE queries. Use EXPLAIN and read the results to find out when MySQL uses your indices.
If a table has six columns and all of them are searchable, should i index all of them or none of them?
Indexing all six columns isn't always the best practice.
(a) Are you going to use any of those columns when searching for specific information?
(b) What is the selectivity of those columns (how many distinct values are there stored, in comparison to the total amount of records on the table)?
MySQL uses a cost-based optimizer, which tries to find the "cheapest" path when performing a query. And fields with low selectivity aren't good candidates.
What are the negetive performance impacts of indexing?
Already answered: extra disk space, lower performance during insert - update - delete.
If i have a VARCHAR 2500 column which is searchable from parts of my site, should i index it?
Try the FULLTEXT Index.
1/2) Indexes speed up certain select operations but they slow down other operations like insert, update and deletes. It can be a fine balance.
3) use a full text index or perhaps sphinx

MySQL: low cardinality/selectivity columns = how to index?

I need to add indexes to my table (columns) and stumbled across this post:
How many database indexes is too many?
Quote:
“Having said that, you can clearly add a lot of pointless indexes to a table that won't do anything. Adding B-Tree indexes to a column with 2 distinct values will be pointless since it doesn't add anything in terms of looking the data up. The more unique the values in a column, the more it will benefit from an index.”
Is an Index really pointless if there are only two distinct values? Given a table as follows (MySQL Database, InnoDB)
Id (BIGINT)
fullname (VARCHAR)
address (VARCHAR)
status (VARCHAR)
Further conditions:
The Database contains 300 Million records
Status can only be “enabled” and “disabled”
150 Million records have status= enabled and 150 Million records have
stauts= disabled
My understanding is, without having an index on status, a select with where status=’enabled’ would result in a full tablescan with 300 Million Records to process?
How efficient is the lookup when I use a BTREE index on status?
Should I index this column or not?
What alternatives (maybe any other indexes) does MySQL InnoDB provide to efficiently look records up by the "where status="enabled" clause in the given example with a very low cardinality/selectivity of the values?
The index that you describe is pretty much pointless. An index is best used when you need to select a small number of rows in comparison to the total rows.
The reason for this is related to how a database accesses a table. Tables can be assessed either by a full table scan, where each block is read and processed in turn. Or by a rowid or key lookup, where the database has a key/rowid and reads the exact row it requires.
In the case where you use a where clause based on the primary key or another unique index, eg. where id = 1, the database can use the index to get an exact reference to where the row's data is stored. This is clearly more efficient than doing a full table scan and processing every block.
Now back to your example, you have a where clause of where status = 'enabled', the index will return 150m rows and the database will have to read each row in turn using separate small reads. Whereas accessing the table with a full table scan allows the database to make use of more efficient larger reads.
There is a point at which it is better to just do a full table scan rather than use the index. With mysql you can use FORCE INDEX (idx_name) as part of your query to allow comparisons between each table access method.
Reference:
http://dev.mysql.com/doc/refman/5.5/en/how-to-avoid-table-scan.html
I'm sorry to say that I do not agree with Mike. Adding an index is meant to limit the amount of full records searches for MySQL, thereby limiting IO which usually is the bottleneck.
This indexing is not free; you pay for it on inserts/updates when the index has to be updated and in the search itself, as it now needs to load the index file (full text index for 300M records is probably not in memory). So it might well be that you get extra IO in stead of limitting it.
I do agree with the statement that a binary variable is best stored as one, a bool or tinyint, as that decreases the length of a row and can thereby limit disk IO, also comparisons on numbers are faster.
If you need speed and you seldom use the disabled records, you may wish to have 2 tables, one for enabled and one for disabled records and move the records when the status changes. As it increases complexity and risk this would be my very last choice of course. Definitely do the move in 1 transaction if you happen to go for it.
It just popped into my head that you can check wether an index is actually used by using the explain statement. That should show you how MySQL is optimizing the query. I don't really know hoe MySQL optimizes queries, but from postgresql I do know that you should explain a query on a database approximately the same (in size and data) as the real database. So if you have a copy on the database, create an index on the table and see wether it's actually used. As I said, I doubt it, but I most definitely don't know everything:)
If the data is distributed like 50:50 then query like where status="enabled" will avoid half scanning of the table.
Having index on such tables is completely depends on distribution of data, i,e : if entries having status enabled is 90% and other is 10%. and for query where status="disabled" it scans only 10% of the table.
so having index on such columns depends on distribution of data.
#a'r answer is correct, however it needs to be pointed out that the usefulness of an index is given not only by its cardinality but also by the distribution of data and the queries run on the database.
In OP's case, with 150M records having status='enabled' and 150M having status='disabled', the index is unnecessary and a waste of resource.
In case of 299M records having status='enabled' and 1M having status='disabled', the index is useful (and will be used) in queries of type SELECT ... where status='disabled'.
Queries of type SELECT ... where status='enabled' will still run with a full table scan.
You will hardly need all 150 mln records at once, so I guess "status" will always be used in conjunction with other columns. Perhaps it'd make more sense to use a compound index like (status, fullname)
Jan, you should definitely index that column. I'm not sure of the context of the quote, but everything you said above is correct. Without an index on that column, you are most certainly doing a table scan on 300M rows, which is about the worst you can do for that data.
Jan, as asked, where your query involves simply "where status=enabled" without some other limiting factor, an index on that column apparently won't help (glad to SO community showed me what's up). If however, there is a limiting factor, such as "limit 10" an index may help. Also, remember that indexes are also used in group by and order by optimizations. If you are doing "select count(*),status from table group by status", an index would be helpful.
You should also consider converting status to a tinyint where 0 would represent disabled and 1 would be enabled. You're wasting tons of space storing that string vs. a tinyint which only requires 1 byte per row!
I have a similar column in my MySQL database. Approximately 4 million rows, with the distribution of 90% 1 and 10% 0.
I've just discovered today that my queries (where column = 1) actually run significantly faster WITHOUT the index.
Foolishly I deleted the index. I say foolishly, because I now suspect the queries (where column = 0) may have still benefited from it. So, instead I should explicitly tell MySQL to ignore the index when I'm searching for 1, and to use it when I'm searching for 0. Maybe.