Reshaping image in Pyfaster RCNN CAFFE model - caffe

I am working on a project to train the Pyfaster RCNN model using CAFFE. test.prototxt uses the below input parameters:
name: "ZF"
input: "data"
input_shape {
dim: 1
dim: 3
dim: 224
dim: 224
}
When demo.py is called this prototxt file is used. Can someone please tell me where exactly the the demo image gets reshaped to the above dimensions. I have traced that all the way back to the fast_rcnn.test.py file which has a function called im_detect. that has a line which I believe does the reshaping:
def im_detect(net, im, boxes=None):
"""Detect object classes in an image given object proposals.
Arguments:
net (caffe.Net): Fast R-CNN network to use
im (ndarray): color image to test (in BGR order)
boxes (ndarray): R x 4 array of object proposals or None (for RPN)
Returns:
scores (ndarray): R x K array of object class scores (K includes
background as object category 0)
boxes (ndarray): R x (4*K) array of predicted bounding boxes
"""
blobs, im_scales = _get_blobs(im, boxes)
# When mapping from image ROIs to feature map ROIs, there's some aliasing
# (some distinct image ROIs get mapped to the same feature ROI).
# Here, we identify duplicate feature ROIs, so we only compute features
# on the unique subset.
if cfg.DEDUP_BOXES > 0 and not cfg.TEST.HAS_RPN:
v = np.array([1, 1e3, 1e6, 1e9, 1e12])
hashes = np.round(blobs['rois'] * cfg.DEDUP_BOXES).dot(v)
_, index, inv_index = np.unique(hashes, return_index=True,
return_inverse=True)
blobs['rois'] = blobs['rois'][index, :]
boxes = boxes[index, :]
if cfg.TEST.HAS_RPN:
im_blob = blobs['data']
blobs['im_info'] = np.array(
[[im_blob.shape[2], im_blob.shape[3], im_scales[0]]],
dtype=np.float32)
# reshape network inputs
net.blobs['data'].reshape(*(blobs['data'].shape))
if cfg.TEST.HAS_RPN:
net.blobs['im_info'].reshape(*(blobs['im_info'].shape))
else:
net.blobs['rois'].reshape(*(blobs['rois'].shape))
But I am still not able to figure out how can I get to the file/code where these dimensions are defined.
Any help would be appreciated.

Look at the line
# reshape network inputs
net.blobs['data'].reshape(*(blobs['data'].shape))
As you can see, the input blob 'data' is reshaped according to the input image size. Once you forward caffe will reshape all consequent blobs according to the input shape

Related

Do linear layer after GRU saved the sequence output order?

I'm dealing with the following senario:
My input has the shape of: [batch_size, input_sequence_length, input_features]
where:
input_sequence_length = 10
input_features = 3
My output has the shape of: [batch_size, output_sequence_length]
where:
output_sequence_length = 5
i.e: for each time slot of 10 units (each slot with 3 features) I need to predict the next 5 slots values.
I built the following model:
import torch
import torch.nn as nn
import torchinfo
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
self.GRU = nn.GRU(input_size=3, hidden_size=32, num_layers=2, batch_first=True)
self.fc = nn.Linear(32, 5)
def forward(self, input_series):
output, h = self.GRU(input_series)
output = output[:, -1, :] # get last state
output = self.fc(output)
output = output.view(-1, 5, 1) # reorginize output
return output
torchinfo.summary(MyModel(), (512, 10, 3))
==========================================================================================
Layer (type:depth-idx) Output Shape Param #
==========================================================================================
MyModel [512, 5, 1] --
├─GRU: 1-1 [512, 10, 32] 9,888
├─Linear: 1-2 [512, 5] 165
==========================================================================================
I'm getting good results (very small MSE loss, and the predictions looks good),
but I'm not sure if the model output (5 sequence values) are really ordered by the model ?
i.e the second output based on the first output and the third output based on the second output ...
I know that the GRU output based on the learned sequence history.
But I'm also used linear layer, so is the output (after the linear layer) still sorted by time ?
UPDATE
This answer isn't quite right, see this follow-up question. The best way is to write the math and show that the 5 scalar outputs aren't functions of each other.
Old Answer
I'm not sure if the model output (5 sequence values) are really ordered by the model ? i.e the second output based on the first output and the third output based on the second output
No, they aren't. You can check that the gradients of, say, the last output w.r.t to the previous outputs are zeroes, which basically means that the last output isn't a function of the previous outputs.
model = MyModel()
x = torch.rand([2, 10, 3])
y = model(x)
y.retain_grad() # allows accessing y.grad although y is a non-leaf Tensor
y[:, -1].sum().backward() # computes gradients of last output
assert torch.allclose(y.grad[:, :-1], torch.tensor(0.)) # gradients w.r.t previous outputs are zeroes
A popular model to capture dependencies among output labels is conditional random fields. But since you're already happy with the predictions of the current model, perhaps modelling the output dependencies isn't that important.

Pytorch: Overfitting on a small batch: Debugging

I am building a multi-class image classifier.
There is a debugging trick to overfit on a single batch to check if there any deeper bugs in the program.
How to design the code in a way that can do it in a much portable format?
One arduous and a not smart way is to build a holdout train/test folder for a small batch where test class consists of 2 distribution - seen data and unseen data and if the model is performing better on seen data and poorly on unseen data, then we can conclude that our network doesn't have any deeper structural bug.
But, this does not seems like a smart and a portable way, and have to do it with every problem.
Currently, I have a dataset class where I am partitioning the data in train/dev/test in the below way -
def split_equal_into_val_test(csv_file=None, stratify_colname='y',
frac_train=0.6, frac_val=0.15, frac_test=0.25,
):
"""
Split a Pandas dataframe into three subsets (train, val, and test).
Following fractional ratios provided by the user, where val and
test set have the same number of each classes while train set have
the remaining number of left classes
Parameters
----------
csv_file : Input data csv file to be passed
stratify_colname : str
The name of the column that will be used for stratification. Usually
this column would be for the label.
frac_train : float
frac_val : float
frac_test : float
The ratios with which the dataframe will be split into train, val, and
test data. The values should be expressed as float fractions and should
sum to 1.0.
random_state : int, None, or RandomStateInstance
Value to be passed to train_test_split().
Returns
-------
df_train, df_val, df_test :
Dataframes containing the three splits.
"""
df = pd.read_csv(csv_file).iloc[:, 1:]
if frac_train + frac_val + frac_test != 1.0:
raise ValueError('fractions %f, %f, %f do not add up to 1.0' %
(frac_train, frac_val, frac_test))
if stratify_colname not in df.columns:
raise ValueError('%s is not a column in the dataframe' %
(stratify_colname))
df_input = df
no_of_classes = 4
sfact = int((0.1*len(df))/no_of_classes)
# Shuffling the data frame
df_input = df_input.sample(frac=1)
df_temp_1 = df_input[df_input['labels'] == 1][:sfact]
df_temp_2 = df_input[df_input['labels'] == 2][:sfact]
df_temp_3 = df_input[df_input['labels'] == 3][:sfact]
df_temp_4 = df_input[df_input['labels'] == 4][:sfact]
dev_test_df = pd.concat([df_temp_1, df_temp_2, df_temp_3, df_temp_4])
dev_test_y = dev_test_df['labels']
# Split the temp dataframe into val and test dataframes.
df_val, df_test, dev_Y, test_Y = train_test_split(
dev_test_df, dev_test_y,
stratify=dev_test_y,
test_size=0.5,
)
df_train = df[~df['img'].isin(dev_test_df['img'])]
assert len(df_input) == len(df_train) + len(df_val) + len(df_test)
return df_train, df_val, df_test
def train_val_to_ids(train, val, test, stratify_columns='labels'): # noqa
"""
Convert the stratified dataset in the form of dictionary : partition['train] and labels.
To generate the parallel code according to https://stanford.edu/~shervine/blog/pytorch-how-to-generate-data-parallel
Parameters
-----------
csv_file : Input data csv file to be passed
stratify_columns : The label column
Returns
-----------
partition, labels:
partition dictionary containing train and validation ids and label dictionary containing ids and their labels # noqa
"""
train_list, val_list, test_list = train['img'].to_list(), val['img'].to_list(), test['img'].to_list() # noqa
partition = {"train_set": train_list,
"val_set": val_list,
}
labels = dict(zip(train.img, train.labels))
labels.update(dict(zip(val.img, val.labels)))
return partition, labels
P.S - I know about the Pytorch lightning and know that they have an overfitting feature which can be used easily but I don't want to move to PyTorch lightning.
I don't know how portable it will be, but a trick that I use is to modify the __len__ function in the Dataset.
If I modified it from
def __len__(self):
return len(self.data_list)
to
def __len__(self):
return 20
It will only output the first 20 elements in the dataset (regardless of shuffle). You only need to change one line of code and the rest should work just fine so I think it's pretty neat.

Combining two pretrained models for Training in pytorch

I am trying to use resnet18 and densenet121 as the pretrained models and have added 1 FC layer at the end of each network two change dimensions to 512 of both network and then have concatenated the outputs and passed to two final FC layers.
this can be seen here:
class classifier(nn.Module):
def __init__(self,num_classes):
super(classifier,self).__init__()
self.resnet=models.resnet18(pretrained=True)
self.rfc1=nn.Linear(512,512)
self.densenet=models.densenet121(pretrained=True)
self.dfc1=nn.Linear(1024,512)
self.final_fc1=nn.Linear(1024,512)
self.final_fc2=nn.Linear(512,num_classes)
self.dropout=nn.Dropout(0.2)
def forward(self,x):
y=x.detach().clone()
x=self.resnet.conv1(x)
x=self.resnet.bn1(x)
x=self.resnet.relu(x)
x=self.resnet.maxpool(x)
x=self.resnet.layer1(x)
x=self.resnet.layer2(x)
x=self.resnet.layer3(x)
x=self.resnet.layer4(x)
x=self.resnet.avgpool(x)
x=x.view(x.size(0),-1)
x=nn.functional.relu(self.rfc1(x))
y=self.densenet.features(y)
y=y.view(y.size(0),-1)
y=nn.functional.relu(self.dfc1(y))
x=torch.cat((x,y),0)
x=nn.functional.relu(self.final_fc1(x))
x=self.dropout(x)
x=self.final_fc2(x)
return x
Error:
size mismatch, m1: [1048576 x 1], m2: [1024 x 512] at /pytorch/aten/src/THC/generic/THCTensorMathBlas.cu:283
but as i could see the densenet outputs 1024 feature to the last layer
Questions:
Is the implementation correct ?
Can this implementation work as a Ensemble

How to estimate the parameters of a mixture model in OpenTURNS?

I would like to estimate the parameters of a mixture model of normal distributions in OpenTURNS (that is, the distribution of a weighted sum of Gaussian random variables). OpenTURNS can create such a mixture, but it cannot estimate its parameters. Moreover, I need to create the mixture as an OpenTURNS distribution in order to propagate uncertainty through a function.
For example, I know how to create a mixture of two normal distributions:
import openturns as ot
mu1 = 1.0
sigma1 = 0.5
mu2 = 3.0
sigma2 = 2.0
weights = [0.3, 0.7]
n1 = ot.Normal(mu1, sigma1)
n2 = ot.Normal(mu2, sigma2)
m = ot.Mixture([n1, n2], weights)
In this example, I would like to estimate mu1, sigma1, mu2, sigma2 on a given sample. In order to create a working example, it is easy to generate a sample by simulation.
s = m.getSample(100)
You can rely on scikit-learn's GaussianMixture to estimate the parameters and then use them to define a Mixture model in OpenTURNS.
The script hereafter contains a Python class MixtureFactory that estimates the parameters of a scikitlearn GaussianMixture and outputs an OpenTURNS Mixture distribution:
from sklearn.mixture import GaussianMixture
from sklearn.utils.validation import check_is_fitted
import openturns as ot
import numpy as np
class MixtureFactory(GaussianMixture):
"""
Representation of a Gaussian mixture model probability distribution.
This class allows to estimate the parameters of a Gaussian mixture
distribution using scikit algorithms & provides openturns Mixture object.
Read more in scikit learn user guide & openturns theory.
Parameters:
-----------
n_components : int, defaults to 1.
The number of mixture components.
covariance_type : {'full' (default), 'tied', 'diag', 'spherical'}
String describing the type of covariance parameters to use.
Must be one of:
'full'
each component has its own general covariance matrix
'tied'
all components share the same general covariance matrix
'diag'
each component has its own diagonal covariance matrix
'spherical'
each component has its own single variance
tol : float, defaults to 1e-3.
The convergence threshold. EM iterations will stop when the
lower bound average gain is below this threshold.
reg_covar : float, defaults to 1e-6.
Non-negative regularization added to the diagonal of covariance.
Allows to assure that the covariance matrices are all positive.
max_iter : int, defaults to 100.
The number of EM iterations to perform.
n_init : int, defaults to 1.
The number of initializations to perform. The best results are kept.
init_params : {'kmeans', 'random'}, defaults to 'kmeans'.
The method used to initialize the weights, the means and the
precisions.
Must be one of::
'kmeans' : responsibilities are initialized using kmeans.
'random' : responsibilities are initialized randomly.
weights_init : array-like, shape (n_components, ), optional
The user-provided initial weights, defaults to None.
If it None, weights are initialized using the `init_params` method.
means_init : array-like, shape (n_components, n_features), optional
The user-provided initial means, defaults to None,
If it None, means are initialized using the `init_params` method.
precisions_init : array-like, optional.
The user-provided initial precisions (inverse of the covariance
matrices), defaults to None.
If it None, precisions are initialized using the 'init_params' method.
The shape depends on 'covariance_type'::
(n_components,) if 'spherical',
(n_features, n_features) if 'tied',
(n_components, n_features) if 'diag',
(n_components, n_features, n_features) if 'full'
random_state : int, RandomState instance or None, optional (default=None)
If int, random_state is the seed used by the random number generator;
If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used
by `np.random`.
warm_start : bool, default to False.
If 'warm_start' is True, the solution of the last fitting is used as
initialization for the next call of fit(). This can speed up
convergence when fit is called several times on similar problems.
In that case, 'n_init' is ignored and only a single initialization
occurs upon the first call.
See :term:`the Glossary <warm_start>`.
verbose : int, default to 0.
Enable verbose output. If 1 then it prints the current
initialization and each iteration step. If greater than 1 then
it prints also the log probability and the time needed
for each step.
verbose_interval : int, default to 10.
Number of iteration done before the next print.
"""
def __init__(self, n_components=2, covariance_type='full', tol=1e-6,
reg_covar=1e-6, max_iter=1000, n_init=1, init_params='kmeans',
weights_init=None, means_init=None, precisions_init=None,
random_state=41, warm_start=False,
verbose=0, verbose_interval=10):
super().__init__(n_components, covariance_type, tol, reg_covar,
max_iter, n_init, init_params, weights_init, means_init,
precisions_init, random_state, warm_start, verbose, verbose_interval)
def fit(self, X):
"""
Fit the mixture model parameters.
EM algorithm is applied here to estimate the model parameters and build a
Mixture distribution (see openturns mixture).
The method fits the model ``n_init`` times and sets the parameters with
which the model has the largest likelihood or lower bound. Within each
trial, the method iterates between E-step and M-step for ``max_iter``
times until the change of likelihood or lower bound is less than
``tol``, otherwise, a ``ConvergenceWarning`` is raised.
If ``warm_start`` is ``True``, then ``n_init`` is ignored and a single
initialization is performed upon the first call. Upon consecutive
calls, training starts where it left off.
Parameters
----------
X : array-like, shape (n_samples, n_features)
List of n_features-dimensional data points. Each row
corresponds to a single data point.
Returns
-------
"""
data = np.array(X)
# Evaluate the model parameters.
super().fit(data)
# openturns mixture
# n_components ==> weight of size n_components
weights = self.weights_
n_components = len(weights)
# Create ot distribution
collection = n_components * [0]
# Covariance matrices
cov = self.covariances_
mu = self.means_
# means : n_components x n_features
n_components, n_features = mu.shape
# Following the type of covariance, we define the collection of gaussians
# Spherical : C_k = Identity * sigma_k
if self.covariance_type is 'spherical':
c = ot.CorrelationMatrix(n_features)
for l in range(n_components):
sigma = np.sqrt(cov[l])
collection[l] = ot.Normal(list(mu[l]), [ sigma ] * n_features , c)
elif self.covariance_type is 'diag' :
for l in range(n_components):
c = ot.CovarianceMatrix(n_features)
for i in range(n_features):
c[i,i] = cov[l, i]
collection[l] = ot.Normal(list(mu[l]), c)
elif self.covariance_type == 'tied':
# Same covariance for all clusters
c = ot.CovarianceMatrix(n_features)
for i in range(n_features):
for j in range(0, i+1):
c[i,j] = cov[i,j]
# Define the collection with the same covariance
for l in range(n_components):
collection[l] = ot.Normal(list(mu[l]), c)
else:
n_features = cov.shape[1]
for l in range(n_components):
c = ot.CovarianceMatrix(n_features)
for i in range(n_features):
for j in range(0, i+1):
c[i,j] = cov[l][i,j]
collection[l] = ot.Normal(list(mu[l]), c)
self._mixture = ot.Mixture(collection, weights)
return self
def get_mixture(self):
"""
Returns the Mixture object
"""
check_is_fitted(self)
return self._mixture
if __name__ == "__main__":
mu1 = 1.0
sigma1 = 0.5
mu2 = 3.0
sigma2 = 2.0
weights = [0.3, 0.7]
n1 = ot.Normal(mu1, sigma1)
n2 = ot.Normal(mu2, sigma2)
m = ot.Mixture([n1, n2], weights)
x = m.getSample(1000)
est_dist = MixtureFactory(random_state=1)
est_dist.fit(x)
print(est_dist.get_mixture())
I have actually tried this method and it works perfectly. On top of that the fit of the model through the SciKit GMM and the ulterior adjustment thanks to OpenTurns are very fast. I recommend future users to test several numbers of components and covariance matrix structures, as it will not take a lot of time and can substantially improve the goodness of fit to the data.
Thanks for the answer.
Here is a pure OpenTURNS solution. It is probably slower than the scikit-learn-based method, but it is more generic: you could use it to estimate the parameters of any mixture model, not necessarily a mixture of normal distributions.
The idea is to retrieve the log-likelihood function from the Mixture object and minimize it.
In the following, let us assume that s is the sample we want to fit the mixture on.
First, we need to build the mixture we want to estimate the parameters of. We can specify any valid set of parameters, it does not matter. In your example, you want a mixture of 2 normal distributions.
mixture = ot.Mixture([ot.Normal()]*2, [0.5]*2)
There is a small hurdle. All weights sum to 1, thus one of them is determined by the others: the solver must not be allowed to freely set it. The order of the parameters of an OpenTURNS Mixture is as follows:
weight of the first distribution;
parameters of the first distribution;
weight of the second distribution;
parameters of the second distribution:
...
You can view all parameters with mixture.getParameter() and their names with mixture.getParameterDescription(). The following is a helper function that:
takes as input the list containing of all mixture parameters except the weight of its first distribution;
outputs a Point containing all parameters including the weight of the first distribution.
def full(params):
"""
Point of all mixture parameters from a list that omits the first weight.
"""
params = ot.Point(params)
aux_mixture = ot.Mixture(mixture)
dist_number = aux_mixture.getDistributionCollection().getSize()
index = aux_mixture.getDistributionCollection()[0].getParameter().getSize()
list_weights = []
for num in range(1, dist_number):
list_weights.append(params[index])
index += 1 + aux_mixture.getDistributionCollection()[num].getParameter().getSize()
complementary_weight = ot.Point([abs(1.0 - sum(list_weights))])
complementary_weight.add(params)
return complementary_weight
The next function computes the opposite of the log-likelihood of a given list of parameters (except the first weight).
For the sake of numerical stability, it divides this value by the number of observations.
We will minimize this function in order to find the Maximum Likelihood Estimate.
def minus_log_pdf(params):
"""
- log-likelihood of a list of parameters excepting the first weight
divided by the number of observations
"""
aux_mixture = ot.Mixture(mixture)
full_params = full(params)
try:
aux_mixture.setParameter(full_params)
except TypeError:
# case where the proposed parameters are invalid:
# return a huge value
return [ot.SpecFunc.LogMaxScalar]
res = - aux_mixture.computeLogPDF(s).computeMean()
return res
To use OpenTURNS optimization facilities, we need to turn this function into a PythonFunction object.
OT_minus_log_pdf = ot.PythonFunction(mixture.getParameter().getSize()-1, 1, minus_log_pdf)
Cobyla is usually good at likelihood optimization.
problem = ot.OptimizationProblem(OT_minus_log_pdf)
algo = ot.Cobyla(problem)
In order to decrease chances of Cobyla being stuck on a local minimum, we are going to use MultiStart. We pick a starting set of parameters and randomly change the weights. The following helper function makes it easy:
def random_weights(params, nb):
"""
List of nb Points representing mixture parameters with randomly varying weights.
"""
aux_mixture = ot.Mixture(mixture)
full_params = full(params)
aux_mixture.setParameter(full_params)
list_params = []
for num in range(nb):
dirichlet = ot.Dirichlet([1.0] * aux_mixture.getDistributionCollection().getSize()).getRealization()
dirichlet.add(1.0 - sum(dirichlet))
aux_mixture.setWeights(dirichlet)
list_params.append(aux_mixture.getParameter()[1:])
return list_params
We pick 10 starting points and increase the number of maximum evaluations of the log-likelihood from 100 (by default) to 10000.
init = mixture.getParameter()[1:]
starting_points = random_weights(init, 10)
algo_multistart = ot.MultiStart(algo, starting_points)
algo_multistart.setMaximumEvaluationNumber(10000)
Let's run the solver and retrieve the result.
algo_multistart.run()
result = algo_multistart.getResult()
All that remains is to set the mixture's parameters to the optimal value.
We must not forget to add the first weight back!
optimal_parameters = result.getOptimalPoint()
mixture.setParameter(full(optimal_parameters))
Below is an alternative.
The first step creates a new GaussianMixture class, derived from PythonDistribution. The key point is to implement the computeLogPDF method and the set/getParameters methods. Notice that this parametrization of a mixture only has one single weight w.
class GaussianMixture(ot.PythonDistribution):
def __init__(self, mu1 = -5.0, sigma1 = 1.0, \
mu2 = 5.0, sigma2 = 1.0, \
w = 0.5):
super(GaussianMixture, self).__init__(1)
if w < 0.0 or w > 1.0:
raise ValueError('The weight is not in [0, 1]. w=%s.' % (w))
self.mu1 = mu2
self.sigma1 = sigma1
self.mu2 = mu2
self.sigma2 = sigma2
self.w = w
collDist = [ot.Normal(mu1, sigma1), ot.Normal(mu2, sigma2)]
weight = [w, 1.0 - w]
self.distribution = ot.Mixture(collDist, weight)
def computeCDF(self, x):
p = self.distribution.computeCDF(x)
return p
def computePDF(self, x):
p = self.distribution.computePDF(x)
return p
def computeQuantile(self, prob, tail = False):
quantile = self.distribution.computeQuantile(prob, tail)
return quantile
def getSample(self, size):
X = self.distribution.getSample(size)
return X
def getParameter(self):
parameter = ot.Point([self.mu1, self.sigma1, \
self.mu2, self.sigma2, \
self.w])
return parameter
def setParameter(self, parameter):
[mu1, sigma1, mu2, sigma2, w] = parameter
self.__init__(mu1, sigma1, mu2, sigma2, w)
return parameter
def computeLogPDF(self, sample):
logpdf = self.distribution.computeLogPDF(sample)
return logpdf
In order to create the distribution, we use the Distribution class:
gm = ot.Distribution(GaussianMixture())
Estimating the parameters of this distribution is straightforward with MaximumLikelihoodFactory. However, we must set the bounds, because sigma cannot be negative and that w is in (0, 1).
factory = ot.MaximumLikelihoodFactory(gm)
lowerBound = [0.0, 1.e-6, 0.0, 1.e-6, 0.01]
upperBound = [0.0, 0.0, 0.0, 0.0, 0.99]
finiteLowerBound = [False, True, False, True, True]
finiteUpperBound = [False, False, False, False, True]
bounds = ot.Interval(lowerBound, upperBound, finiteLowerBound, finiteUpperBound)
factory.setOptimizationBounds(bounds)
Then we configure the optimization solver.
solver = factory.getOptimizationAlgorithm()
startingPoint = [-4.0, 1.0, 7.0, 1.5, 0.3]
solver.setStartingPoint(startingPoint)
factory.setOptimizationAlgorithm(solver)
Estimating the parameters is based on the build method.
distribution = factory.build(sample)
There are two limitations with this implementation.
First, it is not as fast as it should be, because of a limitation of the PythonDistribution (see https://github.com/openturns/openturns/issues/1391).
Estimating the parameters may be difficult, because the problem may have local optimas that cannot be retrieved with the default algorithm in MaximumLikelihoodFactory. This kind of task is generally done with the EM algorithm.

Simple LSTM in PyTorch with Sequential module

In PyTorch, we can define architectures in multiple ways. Here, I'd like to create a simple LSTM network using the Sequential module.
In Lua's torch I would usually go with:
model = nn.Sequential()
model:add(nn.SplitTable(1,2))
model:add(nn.Sequencer(nn.LSTM(inputSize, hiddenSize)))
model:add(nn.SelectTable(-1)) -- last step of output sequence
model:add(nn.Linear(hiddenSize, classes_n))
However, in PyTorch, I don't find the equivalent of SelectTable to get the last output.
nn.Sequential(
nn.LSTM(inputSize, hiddenSize, 1, batch_first=True),
# what to put here to retrieve last output of LSTM ?,
nn.Linear(hiddenSize, classe_n))
Define a class to extract the last cell output:
# LSTM() returns tuple of (tensor, (recurrent state))
class extract_tensor(nn.Module):
def forward(self,x):
# Output shape (batch, features, hidden)
tensor, _ = x
# Reshape shape (batch, hidden)
return tensor[:, -1, :]
nn.Sequential(
nn.LSTM(inputSize, hiddenSize, 1, batch_first=True),
extract_tensor(),
nn.Linear(hiddenSize, classe_n)
)
According to the LSTM cell documentation the outputs parameter has a shape of (seq_len, batch, hidden_size * num_directions) so you can easily take the last element of the sequence in this way:
rnn = nn.LSTM(10, 20, 2)
input = Variable(torch.randn(5, 3, 10))
h0 = Variable(torch.randn(2, 3, 20))
c0 = Variable(torch.randn(2, 3, 20))
output, hn = rnn(input, (h0, c0))
print(output[-1]) # last element
Tensor manipulation and Neural networks design in PyTorch is incredibly easier than in Torch so you rarely have to use containers. In fact, as stated in the tutorial PyTorch for former Torch users PyTorch is built around Autograd so you don't need anymore to worry about containers. However, if you want to use your old Lua Torch code you can have a look to the Legacy package.
As far as I'm concerned there's nothing like a SplitTable or a SelectTable in PyTorch. That said, you are allowed to concatenate an arbitrary number of modules or blocks within a single architecture, and you can use this property to retrieve the output of a certain layer. Let's make it more clear with a simple example.
Suppose I want to build a simple two-layer MLP and retrieve the output of each layer. I can build a custom class inheriting from nn.Module:
class MyMLP(nn.Module):
def __init__(self, in_channels, out_channels_1, out_channels_2):
# first of all, calling base class constructor
super().__init__()
# now I can build my modular network
self.block1 = nn.Linear(in_channels, out_channels_1)
self.block2 = nn.Linear(out_channels_1, out_channels_2)
# you MUST implement a forward(input) method whenever inheriting from nn.Module
def forward(x):
# first_out will now be your output of the first block
first_out = self.block1(x)
x = self.block2(first_out)
# by returning both x and first_out, you can now access the first layer's output
return x, first_out
In your main file you can now declare the custom architecture and use it:
from myFile import MyMLP
import numpy as np
in_ch = out_ch_1 = out_ch_2 = 64
# some fake input instance
x = np.random.rand(in_ch)
my_mlp = MyMLP(in_ch, out_ch_1, out_ch_2)
# get your outputs
final_out, first_layer_out = my_mlp(x)
Moreover, you could concatenate two MyMLP in a more complex model definition and retrieve the output of each one in a similar way.
I hope this is enough to clarify, but in case you have more questions, please feel free to ask, since I may have omitted something.