Need help installing adspy module in python - data-analysis

I am trying the following and getting the same error each time:
pip install adspy
pip install adspy-0.2.0.tar.gz
Error:
Collecting adspy
Using cached adspy-0.2.0.tar.gz
Complete output from command python setup.py egg_info:
Traceback (most recent call last):
File "<string>", line 1, in <module>
File "C:\Users\Abhinav\AppData\Local\Temp\pip-build-4we07kw9\adspy\setup.p
y", line 5, in <module>
long_description = open(README).read() + 'nn'
FileNotFoundError: [Errno 2] No such file or directory: 'C:\\Users\\Abhinav\
\AppData\\Local\\Temp\\pip-build-4we07kw9\\adspy\\README.md'
Error is same in both case

Create adspy_shared_utilities.py file in your project and paste the code below in it
import numpy
import pandas as pd
import seaborn as sn
import matplotlib.pyplot as plt
import matplotlib.cm as cm
from matplotlib.colors import ListedColormap, BoundaryNorm
from sklearn import neighbors
import matplotlib.patches as mpatches
import graphviz
from sklearn.tree import export_graphviz
import matplotlib.patches as mpatches
def load_crime_dataset():
# Communities and Crime dataset for regression
# https://archive.ics.uci.edu/ml/datasets/Communities+and+Crime+Unnormalized
crime = pd.read_table('readonly/CommViolPredUnnormalizedData.txt', sep=',', na_values='?')
# remove features with poor coverage or lower relevance, and keep ViolentCrimesPerPop target column
columns_to_keep = [5, 6] + list(range(11,26)) + list(range(32, 103)) + [145]
crime = crime.ix[:,columns_to_keep].dropna()
X_crime = crime.ix[:,range(0,88)]
y_crime = crime['ViolentCrimesPerPop']
return (X_crime, y_crime)
def plot_decision_tree(clf, feature_names, class_names):
# This function requires the pydotplus module and assumes it's been installed.
# In some cases (typically under Windows) even after running conda install, there is a problem where the
# pydotplus module is not found when running from within the notebook environment. The following code
# may help to guarantee the module is installed in the current notebook environment directory.
#
# import sys; sys.executable
# !{sys.executable} -m pip install pydotplus
export_graphviz(clf, out_file="adspy_temp.dot", feature_names=feature_names, class_names=class_names, filled = True, impurity = False)
with open("adspy_temp.dot") as f:
dot_graph = f.read()
# Alternate method using pydotplus, if installed.
# graph = pydotplus.graphviz.graph_from_dot_data(dot_graph)
# return graph.create_png()
return graphviz.Source(dot_graph)
def plot_feature_importances(clf, feature_names):
c_features = len(feature_names)
plt.barh(range(c_features), clf.feature_importances_)
plt.xlabel("Feature importance")
plt.ylabel("Feature name")
plt.yticks(numpy.arange(c_features), feature_names)
def plot_labelled_scatter(X, y, class_labels):
num_labels = len(class_labels)
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
marker_array = ['o', '^', '*']
color_array = ['#FFFF00', '#00AAFF', '#000000', '#FF00AA']
cmap_bold = ListedColormap(color_array)
bnorm = BoundaryNorm(numpy.arange(0, num_labels + 1, 1), ncolors=num_labels)
plt.figure()
plt.scatter(X[:, 0], X[:, 1], s=65, c=y, cmap=cmap_bold, norm = bnorm, alpha = 0.40, edgecolor='black', lw = 1)
plt.xlim(x_min, x_max)
plt.ylim(y_min, y_max)
h = []
for c in range(0, num_labels):
h.append(mpatches.Patch(color=color_array[c], label=class_labels[c]))
plt.legend(handles=h)
plt.show()
def plot_class_regions_for_classifier_subplot(clf, X, y, X_test, y_test, title, subplot, target_names = None, plot_decision_regions = True):
numClasses = numpy.amax(y) + 1
color_list_light = ['#FFFFAA', '#EFEFEF', '#AAFFAA', '#AAAAFF']
color_list_bold = ['#EEEE00', '#000000', '#00CC00', '#0000CC']
cmap_light = ListedColormap(color_list_light[0:numClasses])
cmap_bold = ListedColormap(color_list_bold[0:numClasses])
h = 0.03
k = 0.5
x_plot_adjust = 0.1
y_plot_adjust = 0.1
plot_symbol_size = 50
x_min = X[:, 0].min()
x_max = X[:, 0].max()
y_min = X[:, 1].min()
y_max = X[:, 1].max()
x2, y2 = numpy.meshgrid(numpy.arange(x_min-k, x_max+k, h), numpy.arange(y_min-k, y_max+k, h))
P = clf.predict(numpy.c_[x2.ravel(), y2.ravel()])
P = P.reshape(x2.shape)
if plot_decision_regions:
subplot.contourf(x2, y2, P, cmap=cmap_light, alpha = 0.8)
subplot.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold, s=plot_symbol_size, edgecolor = 'black')
subplot.set_xlim(x_min - x_plot_adjust, x_max + x_plot_adjust)
subplot.set_ylim(y_min - y_plot_adjust, y_max + y_plot_adjust)
if (X_test is not None):
subplot.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cmap_bold, s=plot_symbol_size, marker='^', edgecolor = 'black')
train_score = clf.score(X, y)
test_score = clf.score(X_test, y_test)
title = title + "\nTrain score = {:.2f}, Test score = {:.2f}".format(train_score, test_score)
subplot.set_title(title)
if (target_names is not None):
legend_handles = []
for i in range(0, len(target_names)):
patch = mpatches.Patch(color=color_list_bold[i], label=target_names[i])
legend_handles.append(patch)
subplot.legend(loc=0, handles=legend_handles)
def plot_class_regions_for_classifier(clf, X, y, X_test=None, y_test=None, title=None, target_names = None, plot_decision_regions = True):
numClasses = numpy.amax(y) + 1
color_list_light = ['#FFFFAA', '#EFEFEF', '#AAFFAA', '#AAAAFF']
color_list_bold = ['#EEEE00', '#000000', '#00CC00', '#0000CC']
cmap_light = ListedColormap(color_list_light[0:numClasses])
cmap_bold = ListedColormap(color_list_bold[0:numClasses])
h = 0.03
k = 0.5
x_plot_adjust = 0.1
y_plot_adjust = 0.1
plot_symbol_size = 50
x_min = X[:, 0].min()
x_max = X[:, 0].max()
y_min = X[:, 1].min()
y_max = X[:, 1].max()
x2, y2 = numpy.meshgrid(numpy.arange(x_min-k, x_max+k, h), numpy.arange(y_min-k, y_max+k, h))
P = clf.predict(numpy.c_[x2.ravel(), y2.ravel()])
P = P.reshape(x2.shape)
plt.figure()
if plot_decision_regions:
plt.contourf(x2, y2, P, cmap=cmap_light, alpha = 0.8)
plt.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold, s=plot_symbol_size, edgecolor = 'black')
plt.xlim(x_min - x_plot_adjust, x_max + x_plot_adjust)
plt.ylim(y_min - y_plot_adjust, y_max + y_plot_adjust)
if (X_test is not None):
plt.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cmap_bold, s=plot_symbol_size, marker='^', edgecolor = 'black')
train_score = clf.score(X, y)
test_score = clf.score(X_test, y_test)
title = title + "\nTrain score = {:.2f}, Test score = {:.2f}".format(train_score, test_score)
if (target_names is not None):
legend_handles = []
for i in range(0, len(target_names)):
patch = mpatches.Patch(color=color_list_bold[i], label=target_names[i])
legend_handles.append(patch)
plt.legend(loc=0, handles=legend_handles)
if (title is not None):
plt.title(title)
plt.show()
def plot_fruit_knn(X, y, n_neighbors, weights):
X_mat = X[['height', 'width']].to_numpy()
y_mat = y.to_numpy()
# Create color maps
cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA', '#AAAAFF','#AFAFAF'])
cmap_bold = ListedColormap(['#FF0000', '#00FF00', '#0000FF','#AFAFAF'])
clf = neighbors.KNeighborsClassifier(n_neighbors, weights=weights)
clf.fit(X_mat, y_mat)
# Plot the decision boundary by assigning a color in the color map
# to each mesh point.
mesh_step_size = .01 # step size in the mesh
plot_symbol_size = 50
x_min, x_max = X_mat[:, 0].min() - 1, X_mat[:, 0].max() + 1
y_min, y_max = X_mat[:, 1].min() - 1, X_mat[:, 1].max() + 1
xx, yy = numpy.meshgrid(numpy.arange(x_min, x_max, mesh_step_size),
numpy.arange(y_min, y_max, mesh_step_size))
Z = clf.predict(numpy.c_[xx.ravel(), yy.ravel()])
# Put the result into a color plot
Z = Z.reshape(xx.shape)
plt.figure()
plt.pcolormesh(xx, yy, Z, cmap=cmap_light)
# Plot training points
plt.scatter(X_mat[:, 0], X_mat[:, 1], s=plot_symbol_size, c=y, cmap=cmap_bold, edgecolor = 'black')
plt.xlim(xx.min(), xx.max())
plt.ylim(yy.min(), yy.max())
patch0 = mpatches.Patch(color='#FF0000', label='apple')
patch1 = mpatches.Patch(color='#00FF00', label='mandarin')
patch2 = mpatches.Patch(color='#0000FF', label='orange')
patch3 = mpatches.Patch(color='#AFAFAF', label='lemon')
plt.legend(handles=[patch0, patch1, patch2, patch3])
plt.xlabel('height (cm)')
plt.ylabel('width (cm)')
plt.show()
def plot_two_class_knn(X, y, n_neighbors, weights, X_test, y_test):
X_mat = X
y_mat = y
# Create color maps
cmap_light = ListedColormap(['#FFFFAA', '#AAFFAA', '#AAAAFF','#EFEFEF'])
cmap_bold = ListedColormap(['#FFFF00', '#00FF00', '#0000FF','#000000'])
clf = neighbors.KNeighborsClassifier(n_neighbors, weights=weights)
clf.fit(X_mat, y_mat)
# Plot the decision boundary by assigning a color in the color map
# to each mesh point.
mesh_step_size = .01 # step size in the mesh
plot_symbol_size = 50
x_min, x_max = X_mat[:, 0].min() - 1, X_mat[:, 0].max() + 1
y_min, y_max = X_mat[:, 1].min() - 1, X_mat[:, 1].max() + 1
xx, yy = numpy.meshgrid(numpy.arange(x_min, x_max, mesh_step_size),
numpy.arange(y_min, y_max, mesh_step_size))
Z = clf.predict(numpy.c_[xx.ravel(), yy.ravel()])
# Put the result into a color plot
Z = Z.reshape(xx.shape)
plt.figure()
plt.pcolormesh(xx, yy, Z, cmap=cmap_light)
# Plot training points
plt.scatter(X_mat[:, 0], X_mat[:, 1], s=plot_symbol_size, c=y, cmap=cmap_bold, edgecolor = 'black')
plt.xlim(xx.min(), xx.max())
plt.ylim(yy.min(), yy.max())
title = "Neighbors = {}".format(n_neighbors)
if (X_test is not None):
train_score = clf.score(X_mat, y_mat)
test_score = clf.score(X_test, y_test)
title = title + "\nTrain score = {:.2f}, Test score = {:.2f}".format(train_score, test_score)
patch0 = mpatches.Patch(color='#FFFF00', label='class 0')
patch1 = mpatches.Patch(color='#000000', label='class 1')
plt.legend(handles=[patch0, patch1])
plt.xlabel('Feature 0')
plt.ylabel('Feature 1')
plt.title(title)
plt.show()
adspy_shared_utilities.py is not a module it is just a file that it is used in "Applied Machine Learning in Python" course in coursera.
I hope it solve this problem.

Related

Keras Tuner on autoencoder - Add condition : first hidden layer units greater than or equal next hidden layer units

I want to use Keras-tuner to tune an autoencoder hyperparameters.
It is a symetric AE with two layers. I want the number of units in the first layer always greater than or equal the units in the second layer. But I don't know how implement it with keras-tuner. If someone can help, it would be very great. Thank you in advance.
class DAE(tf.keras.Model):
'''
A DAE model
'''
def __init__(self, hp, **kwargs):
'''
DAE instantiation
args :
hp : Tuner
input_dim : input dimension
return:
None
'''
super(DAE, self).__init__(**kwargs)
input_dim = 15
latent_dim = hp.Choice("latent_space", [2,4,8])
units_0 = hp.Choice("units_0", [8, 16, 32, 64])
units_1 = hp.Choice("units_1", [8, 16, 32, 64])
for i in [8, 16, 32, 64]:
with hp.conditional_scope("units_0", [i]):
if units_0 == i:
......? # units_1 should be <= i
dropout = hp.Choice("dropout_rate", [0.1, 0.2, 0.3, 0.4, 0.5])
inputs = tf.keras.Input(shape = (input_dim,))
x = layers.Dense(units_0, activation="relu")(inputs)
x = layers.Dropout(dropout)(x)
x = layers.Dense(units_1, activation="relu")(x)
x = layers.Dropout(dropout)(x)
z = layers.Dense(latent_dim)(x)
self.encoder = tf.keras.Model(inputs, z, name="encoder")
inputs = tf.keras.Input(shape=(latent_dim,))
x = layers.Dense(units_1, activation="relu")(inputs)
x = layers.Dropout(dropout)(x)
x = layers.Dense(units_0, activation="relu")(x)
x = layers.Dropout(dropout)(x)
outputs = layers.Dense(input_dim, activation="linear")(x)
self.decoder = tf.keras.Model(inputs, outputs, name="decoder")```
See above my code. It's a denoising autoencoder class
I found the solution. We need to create differents units_1 for for each units_O values
class DAE(tf.keras.Model):
'''
A DAE model
'''
def __init__(self, hp, training=None, **kwargs):
'''
DAE instantiation
args :
hp : Tuner
input_dim : input dimension
return:
None
'''
super(DAE, self).__init__(**kwargs)
self.input_dim = 15
l_units = [16, 32, 64, 128]
latent_dim = hp.Choice("latent_space", [2,4,8])
units_0 = hp.Choice("units_0", l_units)
dropout_0 = hp.Choice("dropout_rate_0", [0.1, 0.2, 0.3, 0.4, 0.5])
dropout_1 = hp.Choice("dropout_rate_1", [0.1, 0.2, 0.3, 0.4, 0.5])
for i in l_units:
name = "units_1_%d" % i # generates unique name for each hp.Int object
with hp.conditional_scope("units_0", [i]):
if units_0 == i:
locals()[name] = hp.Int(name, min_value = 8, max_value = i, step = 2, sampling = "log" )
inputs = tf.keras.Input(shape = (self.input_dim,))
x = layers.Dense(units_0, activation="relu")(inputs)
x = layers.Dropout(dropout_0)(x, training=training)
x = layers.Dense(locals()[name], activation="relu")(x)
x = layers.Dropout(dropout_1)(x, training=training)
z = layers.Dense(latent_dim)(x)
self.encoder = tf.keras.Model(inputs, z, name="encoder")
inputs = tf.keras.Input(shape=(latent_dim,))
x = layers.Dense(locals()[name], activation="relu")(inputs)
x = layers.Dropout(dropout_1)(x, training=training)
x = layers.Dense(units_0, activation="relu")(x)
x = layers.Dropout(dropout_0)(x, training=training)
outputs = layers.Dense(self.input_dim, activation="linear")(x)
self.decoder = tf.keras.Model(inputs, outputs, name="decoder")

How i can use dqn and ddpg to successfully train an agent excellent in customized environment?

I'm new in AI, and i want to get in the field, i have spent some time finishing a program to train an agent for a simple customized environment, but when i perform the training in colab for 10000 episodes, it still can not get well performance. I guess whether there is something wrong with the customized env or there is something wrong with the training process.
Env: a helicopter tries to get throw the continous flow of birds (max num: 10), the birds moves from the right to the left, and there is fuel randomly. If the helicopter is still alive, i.e., it has not collided with a bird and still has fuel (initialized by 1000, when it collides with the fuel icon (max num: 2), fuel_left will be reset to 1000), its rewards plus 1.
the environment is shown in the figure:
after 10000 episode in ddpg/dqn, the agent still can not play more than 15 seconds, could you point out where the problem is?
Action space(1 dim): 0, 1, 2, 3, 4 -> helicopter moves up, down, left, right and keep static.
State space(28 dim): (x,y) for 10 birds, 2 fuel, and 1 helicopter. Besides, there is fuel left and rewards obtained.
Rewards: If the helicopter is alive, rewards plus 1.
the env settings code is as follwos (custom.py):
import numpy as np
import cv2
import matplotlib.pyplot as plt
import random
import math
import time
from gym import Env, spaces
import time
font = cv2.FONT_HERSHEY_COMPLEX_SMALL
class ChopperScape(Env):
def __init__(self):
super(ChopperScape,self).__init__()
self.maxbirdnum = 10
self.maxfuelnum = 2
self.observation_shape = (28,)
self.canvas_shape = (600,800,3)
self.action_space = spaces.Discrete(5,)
self.last_action = 0
self.obs = np.zeros(self.observation_shape)
self.canvas = np.ones(self.canvas_shape) * 1
self.elements = []
self.maxfuel = 1000
self.y_min = int (self.canvas_shape[0] * 0.1)
self.x_min = 0
self.y_max = int (self.canvas_shape[0] * 0.9)
self.x_max = self.canvas_shape[1]
def draw_elements_on_canvas(self):
self.canvas = np.ones(self.canvas_shape) * 1
for elem in self.elements:
elem_shape = elem.icon.shape
x,y = elem.x, elem.y
self.canvas[y : y + elem_shape[1], x:x + elem_shape[0]] = elem.icon
text = 'Fuel Left: {} | Rewards: {}'.format(self.fuel_left, self.ep_return)
self.canvas = cv2.putText(self.canvas, text, (10,20), font, 0.8, (0,0,0), 1, cv2.LINE_AA)
def reset(self):
self.fuel_left = self.maxfuel
self.ep_return = 0
self.obs = np.zeros(self.observation_shape)
self.obs[26] = self.maxfuel
self.bird_count = 0
self.fuel_count = 0
x = random.randrange(int(self.canvas_shape[0] * 0.05), int(self.canvas_shape[0] * 0.90))
y = random.randrange(int(self.canvas_shape[1] * 0.05), int(self.canvas_shape[1] * 0.90))
self.chopper = Chopper("chopper", self.x_max, self.x_min, self.y_max, self.y_min)
self.chopper.set_position(x,y)
self.obs[24] = x
self.obs[25] = y
self.elements = [self.chopper]
self.canvas = np.ones(self.canvas_shape) * 1
self.draw_elements_on_canvas()
return self.obs
def get_action_meanings(self):
return {0: "Right", 1: "Left", 2: "Down", 3: "Up", 4: "Do Nothing"}
def has_collided(self, elem1, elem2):
x_col = False
y_col = False
elem1_x, elem1_y = elem1.get_position()
elem2_x, elem2_y = elem2.get_position()
if 2 * abs(elem1_x - elem2_x) <= (elem1.icon_w + elem2.icon_w):
x_col = True
if 2 * abs(elem1_y - elem2_y) <= (elem1.icon_h + elem2.icon_h):
y_col = True
if x_col and y_col:
return True
return False
def step(self, action):
done = False
reward = 1
assert self.action_space.contains(action), "invalid action"
if action == 4:
self.chopper.move(0,5)
elif action == 1:
self.chopper.move(0,-5)
elif action == 2:
self.chopper.move(5,0)
elif action == 0:
self.chopper.move(-5,0)
elif action == 3:
self.chopper.move(0,0)
if random.random() < 0.1 and self.bird_count<self.maxbirdnum:
spawned_bird = Bird("bird_{}".format(self.bird_count), self.x_max, self.x_min, self.y_max, self.y_min)
self.bird_count += 1
bird_y = random.randrange(self.y_min, self.y_max)
spawned_bird.set_position(self.x_max, bird_y)
self.elements.append(spawned_bird)
if random.random() < 0.05 and self.fuel_count<self.maxfuelnum:
spawned_fuel = Fuel("fuel_{}".format(self.bird_count), self.x_max, self.x_min, self.y_max, self.y_min)
self.fuel_count += 1
fuel_x = random.randrange(self.x_min, self.x_max)
fuel_y = self.y_max
spawned_fuel.set_position(fuel_x, fuel_y)
self.elements.append(spawned_fuel)
for elem in self.elements:
if isinstance(elem, Bird):
if elem.get_position()[0] <= self.x_min:
self.elements.remove(elem)
self.bird_count -= 1
else:
elem.move(-5,0)
if self.has_collided(self.chopper, elem):
done = True
reward = -100000.0*(1.0/self.ep_return+1)
if isinstance(elem, Fuel):
flag1 = False
flag2 = False
if self.has_collided(self.chopper, elem):
self.fuel_left = self.maxfuel
flag1 = True
reward += 2
# time.sleep(0.5)
if elem.get_position()[1] <= self.y_min:
flag2 = True
self.fuel_count -= 1
else:
elem.move(0, -5)
if flag1 == True or flag2 == True:
self.elements.remove(elem)
self.fuel_left -= 1
if self.fuel_left == 0:
done = True
self.draw_elements_on_canvas()
self.ep_return += 1
birdnum = 0
fuelnum = 0
x_, y_ = self.chopper.get_position()
dis = 0.0
for elem in self.elements:
x,y = elem.get_position()
if isinstance(elem,Bird):
self.obs[2*birdnum] = x
self.obs[2*birdnum+1] = y
birdnum += 1
dis += math.hypot(x_-x,y_-y)
if isinstance(elem,Fuel):
base = self.maxbirdnum*2
self.obs[base+2*fuelnum] = x
self.obs[base+2*fuelnum+1] = y
fuelnum += 1
self.obs[24] = x_
self.obs[25] = y_
self.obs[26] = self.fuel_left
self.obs[27] = self.ep_return
if x_ == self.x_min or x_ == self.x_max or y_ == self.y_max or y_ == self.y_min:
reward -= random.random()
for i in range(26):
if i%2 == 0:
self.obs[i]/=800.0
else:
self.obs[i]/=600.0
self.obs[26]/=1000.0
self.obs[27]/=100.0
# print('reward:',reward)
# if done == True:
# time.sleep(1)
return self.obs, reward, done, {}
def render(self, mode = "human"):
assert mode in ["human", "rgb_array"], "Invalid mode, must be either \"human\" or \"rgb_array\""
if mode == "human":
cv2.imshow("Game", self.canvas)
cv2.waitKey(10)
elif mode == "rgb_array":
return self.canvas
def close(self):
cv2.destroyAllWindows()
class Point(object):
def __init__(self, name, x_max, x_min, y_max, y_min):
self.x = 0
self.y = 0
self.x_min = x_min
self.x_max = x_max
self.y_min = y_min
self.y_max = y_max
self.name = name
def set_position(self, x, y):
self.x = self.clamp(x, self.x_min, self.x_max - self.icon_w)
self.y = self.clamp(y, self.y_min, self.y_max - self.icon_h)
def get_position(self):
return (self.x, self.y)
def move(self, del_x, del_y):
self.x += del_x
self.y += del_y
self.x = self.clamp(self.x, self.x_min, self.x_max - self.icon_w)
self.y = self.clamp(self.y, self.y_min, self.y_max - self.icon_h)
def clamp(self, n, minn, maxn):
return max(min(maxn, n), minn)
class Chopper(Point):
def __init__(self, name, x_max, x_min, y_max, y_min):
super(Chopper, self).__init__(name, x_max, x_min, y_max, y_min)
self.icon = cv2.imread("chopper1.jpg") / 255.0
self.icon_w = 64
self.icon_h = 64
self.icon = cv2.resize(self.icon, (self.icon_h, self.icon_w))
class Bird(Point):
def __init__(self, name, x_max, x_min, y_max, y_min):
super(Bird, self).__init__(name, x_max, x_min, y_max, y_min)
self.icon = cv2.imread("bird1.jpg") / 255.0
self.icon_w = 32
self.icon_h = 32
self.icon = cv2.resize(self.icon, (self.icon_h, self.icon_w))
class Fuel(Point):
def __init__(self, name, x_max, x_min, y_max, y_min):
super(Fuel, self).__init__(name, x_max, x_min, y_max, y_min)
self.icon = cv2.imread("fuel1.jpg") / 255.0
self.icon_w = 32
self.icon_h = 32
self.icon = cv2.resize(self.icon, (self.icon_h, self.icon_w))
if __name__ == '__main__':
from IPython import display
env = ChopperScape()
obs = env.reset()
while True:
# random agent
action = random.randrange(-1,1)
obs, reward, done, info = env.step(action)
# Render the game
env.render()
if done == True:
break
env.close()
the ddpg algorithm to train the agent is as follows (ddpg.py):
from custom import ChopperScape
import random
import collections
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
#袅参数
lr_mu = 0.005
lr_q = 0.01
gamma = 0.99
batch_size = 32
buffer_limit = 50000
tau = 0.005 # for target network soft update
class ReplayBuffer():
def __init__(self):
self.buffer = collections.deque(maxlen=buffer_limit)
def put(self, transition):
self.buffer.append(transition)
def sample(self, n):
mini_batch = random.sample(self.buffer, n)
s_lst, a_lst, r_lst, s_prime_lst, done_mask_lst = [], [], [], [], []
for transition in mini_batch:
s, a, r, s_prime, done = transition
s_lst.append(s)
a_lst.append([a])
r_lst.append(r)
s_prime_lst.append(s_prime)
done_mask = 0.0 if done else 1.0
done_mask_lst.append(done_mask)
return torch.tensor(s_lst, dtype=torch.float), torch.tensor(a_lst, dtype=torch.float), \
torch.tensor(r_lst, dtype=torch.float), torch.tensor(s_prime_lst, dtype=torch.float), \
torch.tensor(done_mask_lst, dtype=torch.float)
def size(self):
return len(self.buffer)
class MuNet(nn.Module):
def __init__(self):
super(MuNet, self).__init__()
self.fc1 = nn.Linear(28, 128)
self.fc2 = nn.Linear(128, 64)
self.fc_mu = nn.Linear(64, 1)
def forward(self, x):
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
mu = torch.tanh(self.fc_mu(x))
return mu
class QNet(nn.Module):
def __init__(self):
super(QNet, self).__init__()
self.fc_s = nn.Linear(28, 64)
self.fc_a = nn.Linear(1,64)
self.fc_q = nn.Linear(128, 32)
self.fc_out = nn.Linear(32,1)
def forward(self, x, a):
h1 = F.relu(self.fc_s(x))
h2 = F.relu(self.fc_a(a))
cat = torch.cat([h1,h2], dim=1)
q = F.relu(self.fc_q(cat))
q = self.fc_out(q)
return q
class OrnsteinUhlenbeckNoise:
def __init__(self, mu):
self.theta, self.dt, self.sigma = 0.1, 0.01, 0.1
self.mu = mu
self.x_prev = np.zeros_like(self.mu)
def __call__(self):
x = self.x_prev + self.theta * (self.mu - self.x_prev) * self.dt + \
self.sigma * np.sqrt(self.dt) * np.random.normal(size=self.mu.shape)
self.x_prev = x
return x
def train(mu, mu_target, q, q_target, memory, q_optimizer, mu_optimizer):
s,a,r,s_prime,done_mask = memory.sample(batch_size)
core = q_target(s_prime, mu_target(s_prime)) * done_mask
target = r + gamma * core
q_loss = F.smooth_l1_loss(q(s,a), target.detach())
q_optimizer.zero_grad()
q_loss.backward()
q_optimizer.step()
mu_loss = -q(s,mu(s)).mean() # That's all for the policy loss.
mu_optimizer.zero_grad()
mu_loss.backward()
mu_optimizer.step()
def soft_update(net, net_target):
for param_target, param in zip(net_target.parameters(), net.parameters()):
param_target.data.copy_(param_target.data * (1.0 - tau) + param.data * tau)
def main():
env = ChopperScape()
memory = ReplayBuffer()
q, q_target = QNet(), QNet()
q_target.load_state_dict(q.state_dict())
mu, mu_target = MuNet(), MuNet()
mu_target.load_state_dict(mu.state_dict())
score = 0.0
print_interval = 20
mu_optimizer = optim.Adam(mu.parameters(), lr=lr_mu)
q_optimizer = optim.Adam(q.parameters(), lr=lr_q)
ou_noise = OrnsteinUhlenbeckNoise(mu=np.zeros(1))
for n_epi in range(10000):
s = env.reset()
done = False
while not done:
a = mu(torch.from_numpy(s).float())
a = a.item() + ou_noise()[0]
print('action:',a)
s_prime, r, done, info = env.step(a)
env.render()
memory.put((s,a,r/100.0,s_prime,done))
score += r
s = s_prime
if memory.size()>20000:
for _ in range(10):
train(mu, mu_target, q, q_target, memory, q_optimizer, mu_optimizer)
soft_update(mu, mu_target)
soft_update(q, q_target)
if n_epi%print_interval==0 and n_epi!=0:
print("# of episode :{}, avg score : {:.1f}".format(n_epi, score/print_interval))
score = 0.0
env.close()
if __name__ == '__main__':
main()
and the dqn algorithm is as follows(dqn.py):
import gym
import collections
import random
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from custom import ChopperScape
#Hyperparameters
learning_rate = 0.0005
gamma = 0.98
buffer_limit = 50000
batch_size = 32
class ReplayBuffer():
def __init__(self):
self.buffer = collections.deque(maxlen=buffer_limit)
def put(self, transition):
self.buffer.append(transition)
def sample(self, n):
mini_batch = random.sample(self.buffer, n)
s_lst, a_lst, r_lst, s_prime_lst, done_mask_lst = [], [], [], [], []
for transition in mini_batch:
s, a, r, s_prime, done_mask = transition
s_lst.append(s)
a_lst.append([a])
r_lst.append([r])
s_prime_lst.append(s_prime)
done_mask_lst.append([done_mask])
return torch.tensor(s_lst, dtype=torch.float), torch.tensor(a_lst), \
torch.tensor(r_lst), torch.tensor(s_prime_lst, dtype=torch.float), \
torch.tensor(done_mask_lst)
def size(self):
return len(self.buffer)
class Qnet(nn.Module):
def __init__(self):
super(Qnet, self).__init__()
self.fc1 = nn.Linear(28, 128)
self.fc2 = nn.Linear(128, 128)
self.fc3 = nn.Linear(128, 5)
def forward(self, x):
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
def sample_action(self, obs, epsilon):
out = self.forward(obs)
# coin = random.random()
# if coin < epsilon:
# return random.randint(0,1)
# else :
# return out.argmax().item()
return out.argmax().item()
def train(q, q_target, memory, optimizer):
for _ in range(10):
s,a,r,s_prime,done_mask = memory.sample(batch_size)
q_out = q(s)
q_a = q_out.gather(1,a)
max_q_prime = q_target(s_prime).max(1)[0].unsqueeze(1)
target = r + gamma * max_q_prime * done_mask
loss = F.smooth_l1_loss(q_a, target)
optimizer.zero_grad()
loss.backward()
optimizer.step()
def main():
env = ChopperScape()
q = torch.load('10000_dqn_3.pt')
q_target = torch.load('10000_dqn_3_qtarget.pt')
# q_target.load_state_dict(q.state_dict())
memory = ReplayBuffer()
print_interval = 20
score = 0.0
optimizer = optim.Adam(q.parameters(), lr=learning_rate)
for n_epi in range(10000):
epsilon = max(0.01, 0.08 - 0.01*(n_epi/200)) #Linear annealing from 8% to 1%
s = env.reset()
done = False
while not done:
a = q.sample_action(torch.from_numpy(s).float(), epsilon)
s_prime, r, done, info = env.step(a)
env.render()
done_mask = 0.0 if done else 1.0
memory.put((s,a,r,s_prime, done_mask))
s = s_prime
if done:
break
score += r
if memory.size()>20000:
train(q, q_target, memory, optimizer)
if n_epi%print_interval==0 and n_epi!=0:
q_target.load_state_dict(q.state_dict())
print("n_episode :{}, score : {:.1f}, n_buffer : {}, eps : {:.1f}%".format(n_epi, score/print_interval, memory.size(), epsilon*100))
score = 0.0
env.close()
def test():
env = ChopperScape()
q = torch.load('10000_dqn_q.pt')
done = False
s = env.reset()
while not done:
a = q.sample_action(torch.from_numpy(s).float(), 1)
s_prime, r, done, info = env.step(a)
env.render()
s = s_prime
if done:
break
if __name__ == '__main__':
main()
when perform dqn, please annotate the action convert part in custom.py/class ChoperScape/step
after 10000 episode in ddpg/dqn, the agent still can not play more than 15 seconds, could you point out where the problem is?

U-Net with Pre-Trained ResNet throws dimension error must match

I have an RGB image of mask for Segmentation of dimensions 900x600 (width, height)
My U-Net code is the ff. I do not really want to resize the output too much it is fine if it is resized without losing much of the aspect ratio.
import torch
import torch.nn as nn
from torchvision import models
def convrelu(in_channels, out_channels, kernel, padding):
return nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel, padding=padding),
nn.ReLU(inplace=True)
)
class ResNetUNet(nn.Module):
def __init__(self, n_class=1):
super().__init__()
self.base_model = models.resnet18(pretrained=True)
self.base_layers = list(self.base_model.children())
self.layer0 = nn.Sequential(*self.base_layers[:3]) # size=(N, 64, x.H/2, x.W/2)
self.layer0_1x1 = convrelu(64, 64, 1, 0)
self.layer1 = nn.Sequential(*self.base_layers[3:5]) # size=(N, 64, x.H/4, x.W/4)
self.layer1_1x1 = convrelu(64, 64, 1, 0)
self.layer2 = self.base_layers[5] # size=(N, 128, x.H/8, x.W/8)
self.layer2_1x1 = convrelu(128, 128, 1, 0)
self.layer3 = self.base_layers[6] # size=(N, 256, x.H/16, x.W/16)
self.layer3_1x1 = convrelu(256, 256, 1, 0)
self.layer4 = self.base_layers[7] # size=(N, 512, x.H/32, x.W/32)
self.layer4_1x1 = convrelu(512, 512, 1, 0)
self.upsample = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
self.conv_up3 = convrelu(256 + 512, 512, 3, 1)
self.conv_up2 = convrelu(128 + 512, 256, 3, 1)
self.conv_up1 = convrelu(64 + 256, 256, 3, 1)
self.conv_up0 = convrelu(64 + 256, 128, 3, 1)
self.conv_original_size0 = convrelu(3, 64, 3, 1)
self.conv_original_size1 = convrelu(64, 64, 3, 1)
self.conv_original_size2 = convrelu(64 + 128, 64, 3, 1)
self.conv_last = nn.Conv2d(64, n_class, 1)
def forward(self, input):
x_original = self.conv_original_size0(input)
x_original = self.conv_original_size1(x_original)
layer0 = self.layer0(input)
layer1 = self.layer1(layer0)
layer2 = self.layer2(layer1)
layer3 = self.layer3(layer2)
layer4 = self.layer4(layer3)
layer4 = self.layer4_1x1(layer4)
x = self.upsample(layer4)
layer3 = self.layer3_1x1(layer3)
x = torch.cat([x, layer3], dim=1)
x = self.conv_up3(x)
x = self.upsample(x)
layer2 = self.layer2_1x1(layer2)
x = torch.cat([x, layer2], dim=1)
x = self.conv_up2(x)
x = self.upsample(x)
layer1 = self.layer1_1x1(layer1)
x = torch.cat([x, layer1], dim=1)
x = self.conv_up1(x)
x = self.upsample(x)
layer0 = self.layer0_1x1(layer0)
x = torch.cat([x, layer0], dim=1)
x = self.conv_up0(x)
x = self.upsample(x)
x = torch.cat([x, x_original], dim=1)
x = self.conv_original_size2(x)
out = self.conv_last(x)
return out
for this command
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = ResNetUNet()
model = model.to(device)
# check keras-like model summary using torchsummary
from torchsummary import summary
summary(model, input_size=(3, 600, 900))
it throws the error:
54 x = self.upsample(layer4)
55 layer3 = self.layer3_1x1(layer3)
---> 56 x = torch.cat([x, layer3], dim=1)
57 x = self.conv_up3(x)
58
RuntimeError: Sizes of tensors must match except in dimension 3. Got 57 and 58
Not sure what to do here. Could someone help me how to solve this?
Try this. You just need to match tensor shapes before torch.cat.
import torch
import torch.nn as nn
from torchvision import models
import torch.nn.functional as F
def match_shapes(x, y):
if x.shape[-2:] != y.shape[-2:]:
x = F.interpolate(x, y.shape[-2:], mode='nearest')
return x
def convrelu(in_channels, out_channels, kernel, padding):
return nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel, padding=padding),
nn.ReLU(inplace=True)
)
class ResNetUNet(nn.Module):
def __init__(self, n_class=1):
super().__init__()
self.base_model = models.resnet18(pretrained=True)
self.base_layers = list(self.base_model.children())
self.layer0 = nn.Sequential(*self.base_layers[:3]) # size=(N, 64, x.H/2, x.W/2)
self.layer0_1x1 = convrelu(64, 64, 1, 0)
self.layer1 = nn.Sequential(*self.base_layers[3:5]) # size=(N, 64, x.H/4, x.W/4)
self.layer1_1x1 = convrelu(64, 64, 1, 0)
self.layer2 = self.base_layers[5] # size=(N, 128, x.H/8, x.W/8)
self.layer2_1x1 = convrelu(128, 128, 1, 0)
self.layer3 = self.base_layers[6] # size=(N, 256, x.H/16, x.W/16)
self.layer3_1x1 = convrelu(256, 256, 1, 0)
self.layer4 = self.base_layers[7] # size=(N, 512, x.H/32, x.W/32)
self.layer4_1x1 = convrelu(512, 512, 1, 0)
self.upsample = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
self.conv_up3 = convrelu(256 + 512, 512, 3, 1)
self.conv_up2 = convrelu(128 + 512, 256, 3, 1)
self.conv_up1 = convrelu(64 + 256, 256, 3, 1)
self.conv_up0 = convrelu(64 + 256, 128, 3, 1)
self.conv_original_size0 = convrelu(3, 64, 3, 1)
self.conv_original_size1 = convrelu(64, 64, 3, 1)
self.conv_original_size2 = convrelu(64 + 128, 64, 3, 1)
self.conv_last = nn.Conv2d(64, n_class, 1)
def forward(self, input):
x_original = self.conv_original_size0(input)
x_original = self.conv_original_size1(x_original)
layer0 = self.layer0(input)
layer1 = self.layer1(layer0)
layer2 = self.layer2(layer1)
layer3 = self.layer3(layer2)
layer4 = self.layer4(layer3)
layer4 = self.layer4_1x1(layer4)
x = self.upsample(layer4)
layer3 = self.layer3_1x1(layer3)
x = match_shapes(x, layer3)
x = torch.cat([x, layer3], dim=1)
x = self.conv_up3(x)
x = self.upsample(x)
layer2 = self.layer2_1x1(layer2)
x = match_shapes(x, layer2)
x = torch.cat([x, layer2], dim=1)
x = self.conv_up2(x)
x = self.upsample(x)
layer1 = self.layer1_1x1(layer1)
x = match_shapes(x, layer1)
x = torch.cat([x, layer1], dim=1)
x = self.conv_up1(x)
x = self.upsample(x)
layer0 = self.layer0_1x1(layer0)
x = torch.cat([x, layer0], dim=1)
x = self.conv_up0(x)
x = self.upsample(x)
x = torch.cat([x, x_original], dim=1)
x = self.conv_original_size2(x)
out = self.conv_last(x)
return out
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = ResNetUNet()
model = model.to(device)
# check keras-like model summary using torchsummary
from torchsummary import summary
summary(model, input_size=(3, 600, 900))

Pytorch-Optimzer doesn't update parameters

I made my custom model, AlexNetQIL (Alexnet with QIL layer)
'QIL' means quantization intervals learning
I trained my model and loss value didn't decrease at all and I found out parameters in my model were not updated at all because of QIL layer I added
I attached my codes AlexNetQil and qil
please someone let me know what's the problem in my codes
AlexNetQIL
import torch
import torch.nn as nn
from qil import *
class AlexNetQIL(nn.Module):
#def __init__(self, num_classes=1000): for imagenet
def __init__(self, num_classes=10): # for cifar-10
super(AlexNetQIL, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=2, padding=1)
self.bn1 = nn.BatchNorm2d(64)
self.relu2 = nn.ReLU(inplace=True)
self.maxpool1 = nn.MaxPool2d(kernel_size=2)
self.qil2 = Qil()
self.conv2 = nn.Conv2d(64, 192, kernel_size=3, padding=1)
self.bn2 = nn.BatchNorm2d(192)
self.relu2 = nn.ReLU(inplace=True)
self.maxpool2 = nn.MaxPool2d(kernel_size=2)
self.qil3 = Qil()
self.conv3 = nn.Conv2d(192, 384, kernel_size=3, padding=1)
self.bn3 = nn.BatchNorm2d(384)
self.relu3 = nn.ReLU(inplace=True)
self.qil4 = Qil()
self.conv4 = nn.Conv2d(384, 256, kernel_size=3, padding=1)
self.bn4 = nn.BatchNorm2d(256)
self.relu4 = nn.ReLU(inplace=True)
self.qil5 = Qil()
self.conv5 = nn.Conv2d(256, 256, kernel_size=3, padding=1)
self.bn5 = nn.BatchNorm2d(256)
self.relu5 = nn.ReLU(inplace=True)
self.maxpool5 = nn.MaxPool2d(kernel_size=2)
self.classifier = nn.Sequential(
nn.Linear(256 * 2 * 2, 4096),
nn.ReLU(inplace=True),
nn.Linear(4096, 4096),
nn.ReLU(inplace=True),
nn.Linear(4096, num_classes),
)
def forward(self,x,inference = False):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu2(x)
x = self.maxpool1(x)
x,self.conv2.weight = self.qil2(x,self.conv2.weight,inference ) # if I remove this line, No problem
x = self.conv2(x)
x = self.bn2(x)
x = self.relu2(x)
x = self.maxpool2(x)
x,self.conv3.weight = self.qil3(x,self.conv3.weight,inference ) # if I remove this line, No problem
x = self.conv3(x)
x = self.bn3(x)
x = self.relu3(x)
x,self.conv4.weight = self.qil4(x,self.conv4.weight,inference ) # if I remove this line, No problem
x = self.conv4(x)
x = self.bn4(x)
x = self.relu4(x)
x,self.conv5.weight = self.qil5(x,self.conv5.weight,inference ) # if I remove this line, No problem
x = self.conv5(x)
x = self.bn5(x)
x = self.relu5(x)
x = self.maxpool5(x)
x = x.view(x.size(0),256 * 2 * 2)
x = self.classifier(x)
return x
QIL
forward
quantize weights and input activation with 2 steps
transformer(params) -> discretizer(params)
import torch
import torch.nn as nn
import numpy as np
import copy
#Qil (Quantize intervals learning)
class Qil(nn.Module):
discretization_level = 32
def __init__(self):
super(Qil,self).__init__()
self.cw = nn.Parameter(torch.rand(1)) # I have to train this interval parameter
self.dw = nn.Parameter(torch.rand(1)) # I have to train this interval parameter
self.cx = nn.Parameter(torch.rand(1)) # I have to train this interval parameter
self.dx = nn.Parameter(torch.rand(1)) # I have to train this interval parameter
self.gamma = nn.Parameter(torch.tensor(1.0)) # I have to train this transformer parameter
self.a = Qil.discretization_level
def forward(self,x,weights,Inference = False):
if not Inference:
weights = self.transfomer_weights(weights)
weights = self.discretizer(weights)
x = self.transfomer_activation(x)
x = self.discretizer(x)
return torch.nn.Parameter(x), torch.nn.Parameter(weights)
def transfomer_weights(self,weights):
device = weights.device
aw,bw = (0.5 / self.dw) , (-0.5*self.cw / self.dw + 0.5)
weights = torch.where( abs(weights) < self.cw - self.dw,
torch.tensor(0.).to(device),weights)
weights = torch.where( abs(weights) > self.cw + self.dw,
weights.sign(), weights)
weights = torch.where( (abs(weights) >= self.cw - self.dw) & (abs(weights) <= self.cw + self.dw),
(aw*abs(weights) + bw)**self.gamma * weights.sign() , weights)
return weights
def transfomer_activation(self,x):
device = x.device
ax,bx = (0.5 / self.dx) , (-0.5*self.cx / self.dx + 0.5)
x = torch.where(x < self.cx - self.dx,
torch.tensor(0.).to(device),x)
x = torch.where(x > self.cx + self.dx,
torch.tensor(1.0).to(device),x)
x = torch.where( (abs(x) >= self.cx - self.dx) & (abs(x) <= self.cx + self.dx),
ax*abs(x) + bx, x)
return x
def discretizer(self,tensor):
q_D = pow(2, Qil.discretization_level)
tensor = torch.round(tensor * q_D) / q_D
return tensor

Training Accuracy is Very Low in A Simple CNN using Theano

I'm trying to implement a CNN using Theano and tried to test my code with a small sample-set of my bigger dataset. I'm trying to categorize a set of 8280 pictures(of 250*250 sizes) into 115 classes and my sample set is a set of 32 pictures of the first two classes(16 pictures from each). The problem I'm experiencing is that from the first epoch, the training loss in NaN and It will not change in the further epochs.
from __future__ import print_function
import sys
import os
import time
import numpy as np
import theano
import theano.tensor as T
import lasagne
import re
import cv2
from lasagne.layers import Conv2DLayer, MaxPool2DLayer , DropoutLayer
from lasagne.layers import InputLayer, DenseLayer, batch_norm
def split_list(a_list):
half = len(a_list)/2
return a_list[:half], a_list[half:]
def load_dataset(path=''):
cat_list = []
filelist = sorted(os.listdir(path))
trainlist = []
testlist = []
tmptrain = []
tmptest = []
max_id = 0
for f in filelist:
match = re.match(r'C(\d+)([F|G])(\d+)\.PNG', f)
id = int(match.group(1)) - 1
max_id = max(max_id,id)
fg_class = match.group(2)
fg_id = int(match.group(3))
if id not in [p[0] for p in cat_list]:
cat_list.append([id, [], []])
if fg_class == 'G':
cat_list[-1][1].append(f)
else:
cat_list[-1][2].append(f)
for f in cat_list:
id = f[0]
trainG, testG = split_list(f[1])
trainF, testF = split_list(f[2])
tmptrain = tmptrain + [(id, 1, F) for F in trainF] + [(id, 0, G) for G in trainG] # (Class_id,Forgery,Img)
tmptest = tmptest + [(id, 1, F) for F in testF] + [(id, 0, F) for F in testG]
X_train = np.array([cv2.imread(path+f[2],0) for f in tmptrain]).astype(np.int32)
y_train = np.array([f[0] for f in tmptrain]).astype(np.int32)
X_test = np.array([cv2.imread(path+f[2],0) for f in tmptest]).astype(np.int32)
y_test = np.array([f[0] for f in tmptest]).astype(np.int32)
fg_train = np.array([f[1] for f in tmptrain]).astype(np.int32)
fg_test = np.array([f[1] for f in tmptest]).astype(np.int32)
X_train = np.expand_dims(X_train,axis=1).astype(np.int32)
X_test = np.expand_dims(X_test, axis=1).astype(np.int32)
return X_train, y_train, X_test, y_test, fg_train , fg_test
def ExplicitNegativeCorrelation(net,layer='fc2',lr=0.00001):
for param in lasagne.layers.get_all_params(net[layer]):
if param.name.startswith('W'):
W = param
mean = T.mean(W,0) * lr
W = W - mean#T.mean(T.mean(W,0))
def ImplicitNegativeCorrelation(MSE,Cross,Hinge):
mean = T.mean((MSE+Cross+Hinge),axis=0)
return ((MSE-mean)**2+(Cross-mean)**2+(Hinge-mean)**2)/3
def build_cnn(inputvar,input_shape, trained_weights=None):
net = {}
net['input'] = InputLayer(input_shape,input_var=inputvar)
net['drop_input'] = DropoutLayer(net['input'],p=0.2)
net['conv1'] = batch_norm(Conv2DLayer(net['input'], num_filters=96, filter_size=11, stride=4, flip_filters=False))#,W=lasagne.init.HeNormal()))
net['pool1'] = MaxPool2DLayer(net['conv1'], pool_size=3, stride=2)
net['conv2'] = batch_norm(Conv2DLayer(net['pool1'], num_filters=256, filter_size=5, pad=2, flip_filters=False))#, W=lasagne.init.HeNormal()))
net['pool2'] = MaxPool2DLayer(net['conv2'], pool_size=3, stride=2)
net['conv3'] = batch_norm(Conv2DLayer(net['pool2'], num_filters=384, filter_size=3, pad=1, flip_filters=False))#, W=lasagne.init.HeNormal()))
net['conv4'] = batch_norm(Conv2DLayer(net['conv3'], num_filters=384, filter_size=3, pad=1, flip_filters=False))#, W=lasagne.init.HeNormal()))
net['conv5'] = batch_norm(Conv2DLayer(net['conv4'], num_filters=256, filter_size=3, pad=1, flip_filters=False))#, W=lasagne.init.HeNormal()))
net['pool5'] = MaxPool2DLayer(net['conv5'], pool_size=3, stride=2)
net['fc1'] = batch_norm(DenseLayer(net['pool5'], num_units=2048))
net['drop_fc1'] = DropoutLayer(net['fc1'])
net['fc2'] = batch_norm(DenseLayer(net['drop_fc1'], num_units=2048))
net['fc_class'] = batch_norm(DenseLayer(net['fc2'],num_units=115))
return net
def iterate_minibatches(inputs, targets_class,targets_verif, batchsize, shuffle=False):
assert len(inputs) == len(targets_class)
assert len(inputs) == len(targets_verif)
if shuffle:
indices = np.arange(len(inputs))
np.random.shuffle(indices)
for start_idx in range(0, len(inputs) - batchsize + 1, batchsize):
if shuffle:
excerpt = indices[start_idx:start_idx + batchsize]
else:
excerpt = slice(start_idx, start_idx + batchsize)
yield inputs[excerpt], targets_class[excerpt], targets_verif[excerpt]
def main(num_epochs=500):
print("Loading data...")
X_train, y_train, X_test, y_test, fg_train, fg_test = load_dataset('./signatures/tmp4/')
X_val, y_val, fg_val = X_train, y_train, fg_train
print(y_train.shape)
input_var = T.tensor4('inputs')
target_var_class = T.ivector('targets')
network = build_cnn(input_var, (None, 1, 250, 250))
class_prediction = lasagne.layers.get_output(network['fc_class']) # ,inputs={network['input']:input_var})
loss_class = lasagne.objectives.categorical_crossentropy(class_prediction, target_var_class)
loss = loss_class.mean()
params = lasagne.layers.get_all_params([network['fc_class']], trainable=True)
lr = 0.01
updates = lasagne.updates.nesterov_momentum(
loss, params, learning_rate=lr, momentum=0.9)
test_prediction_class = lasagne.layers.get_output(network['fc_class'], deterministic=True)
test_loss_class = lasagne.objectives.categorical_crossentropy(test_prediction_class,
target_var_class)
test_loss_class = test_loss_class.mean()
test_acc_class = T.mean(T.eq(T.argmax(test_prediction_class, axis=1), target_var_class),
dtype=theano.config.floatX)
predict_class = theano.function([input_var], T.argmax(test_prediction_class,axis=1))
train_fn = theano.function([input_var, target_var_class], loss, updates=updates)
val_fn_class = theano.function([input_var, target_var_class], [test_loss_class, test_acc_class])
print("Starting training...")
BatchSize = 2
for epoch in range(num_epochs):
train_err = 0
train_batches = 0
start_time = time.time()
for batch in iterate_minibatches(X_train, y_train,fg_train, BatchSize, shuffle=True):
inputs, targets_class, targets_verif = batch
train_err += train_fn(inputs, targets_class)
#ExplicitNegativeCorrelation(network, layer='fc2',lr=lr/10)
print(targets_class,predict_class(inputs))
train_batches += 1
val_err_class = 0
val_acc_class = 0
val_batches = 0
for batch in iterate_minibatches(X_val, y_val, fg_val, BatchSize, shuffle=False):
inputs, targets_class, targets_verif = batch
err_class, acc_class = val_fn_class(inputs, targets_class)
val_err_class += err_class
val_acc_class += acc_class
val_batches += 1
print("Epoch {} of {} took {:.3f}s".format(
epoch + 1, num_epochs, time.time() - start_time))
print(" training loss:\t\t{:.6f}".format(train_err / train_batches))
print(" Classification loss:\t\t{:.6f}".format(val_err_class / val_batches))
print(" Classification accuracy:\t\t{:.2f} %".format(
val_acc_class / val_batches * 100))
test_err_class = 0
test_acc_class = 0
test_err_verif = 0
test_acc_verif = 0
test_batches = 0
for batch in iterate_minibatches(X_test, y_test, fg_test, BatchSize, shuffle=False):
inputs, targets_class, targets_verif = batch
err_class, acc_class = val_fn_class(inputs, targets_class)
test_err_class += err_class
test_acc_class += acc_class
test_batches += 1
print("Final results:")
print(" test loss (Classification):\t\t\t{:.6f}".format(test_err_class / test_batches))
print(" test accuracy (Classification):\t\t{:.2f} %".format(
test_acc_class / test_batches * 100))
if __name__ == '__main__':
main()
I've tried to put lasagne.nonlinearities.softmax in the DenseLayers but it does fix the NaN issue but the accuracy of the Training model will not be any good, it will be fluctuating between 0 to 25%.(after 50 epochs!).
I have implemented a load_dataset function which I think that works correctly (I've tested the function multiple times), and I'm giving the class id of each picture as the target in the loss function. So my inputs and Targets would be like this:
Input Shape: (BatchSize, 1, 250, 250)
Target Shape: (BatchSize, 1) : vector of class ids
I've uploaded my sample-set here in this link.
It looks like we have 4 classes, according to the data, so I changed loading code to reflect it:
y_train = np.array([f[0] * 2 + f[1] for f in tmptrain]).astype(np.int32)
y_test = np.array([f[0] * 2 + f[1] for f in tmptest]).astype(np.int32)
Number of units in output layer should be equal to the number of classes, so I added an output layer with SoftMax:
net['fo_class'] = DenseLayer(net['fc_class'],num_units=4,
nonlinearity=lasagne.nonlinearities.softmax)
I suggest removing dropout layer just after inputs – you can compare outcomes with it and without it to make sure of that
Batch size = 2 is too small and learning rate is too high
Here is an example of code with those changes:
from __future__ import print_function
import sys
import os
import time
import numpy as np
import theano
import theano.tensor as T
import lasagne
import re
import cv2
from lasagne.layers import Conv2DLayer, MaxPool2DLayer , DropoutLayer
from lasagne.layers import InputLayer, DenseLayer
def split_list(a_list):
half = len(a_list)/2
return a_list[:half], a_list[half:]
def load_dataset(path=''):
cat_list = []
filelist = sorted(os.listdir(path))
tmptrain = []
tmptest = []
max_id = 0
for f in filelist:
match = re.match(r'C(\d+)([F|G])(\d+)\.PNG', f)
id = int(match.group(1)) - 1
max_id = max(max_id,id)
fg_class = match.group(2)
if id not in [p[0] for p in cat_list]:
cat_list.append([id, [], []])
if fg_class == 'G':
cat_list[-1][1].append(f)
else:
cat_list[-1][2].append(f)
for f in cat_list:
id = f[0]
trainG, testG = split_list(f[1])
trainF, testF = split_list(f[2])
tmptrain = tmptrain + [(id, 1, F) for F in trainF] + [(id, 0, G) for G in trainG]
tmptest = tmptest + [(id, 1, F) for F in testF] + [(id, 0, F) for F in testG]
X_train = np.array([cv2.imread(path+f[2],0) for f in tmptrain]).astype(np.float32)
y_train = np.array([f[0] * 2 + f[1] for f in tmptrain]).astype(np.int32)
X_test = np.array([cv2.imread(path+f[2],0) for f in tmptest]).astype(np.float32)
y_test = np.array([f[0] * 2 + f[1] for f in tmptest]).astype(np.int32)
fg_train = np.array([f[1] for f in tmptrain]).astype(np.float32)
fg_test = np.array([f[1] for f in tmptest]).astype(np.float32)
X_train = np.expand_dims(X_train,axis=1).astype(np.float32)
X_test = np.expand_dims(X_test, axis=1).astype(np.float32)
return X_train, y_train, X_test, y_test, fg_train , fg_test
def ExplicitNegativeCorrelation(net,layer='fc2',lr=0.00001):
for param in lasagne.layers.get_all_params(net[layer]):
if param.name.startswith('W'):
W = param
mean = T.mean(W,0) * lr
W = W - mean
def ImplicitNegativeCorrelation(MSE,Cross,Hinge):
mean = T.mean((MSE+Cross+Hinge),axis=0)
return ((MSE-mean)**2+(Cross-mean)**2+(Hinge-mean)**2)/3
def build_cnn(inputvar,input_shape, trained_weights=None):
net = {}
net['input'] = InputLayer(input_shape,input_var=inputvar)
net['conv1'] = Conv2DLayer(net['input'], num_filters=96, filter_size=11, stride=4)
net['pool1'] = MaxPool2DLayer(net['conv1'], pool_size=3, stride=2)
net['conv2'] = Conv2DLayer(net['pool1'], num_filters=256, filter_size=5, pad=2)
net['pool2'] = MaxPool2DLayer(net['conv2'], pool_size=3, stride=2)
net['conv3'] = Conv2DLayer(net['pool2'], num_filters=384, filter_size=3, pad=1)
net['conv4'] = Conv2DLayer(net['conv3'], num_filters=384, filter_size=3, pad=1)
net['conv5'] = Conv2DLayer(net['conv4'], num_filters=256, filter_size=3, pad=1)
net['pool5'] = MaxPool2DLayer(net['conv5'], pool_size=3, stride=2)
net['fc1'] = DenseLayer(net['pool5'], num_units=2048)
net['drop_fc1'] = DropoutLayer(net['fc1'])
net['fc2'] = DenseLayer(net['drop_fc1'], num_units=2048)
net['fc_class'] = DenseLayer(net['fc2'],num_units=115)
net['fo_class'] = DenseLayer(net['fc_class'],num_units=4,
nonlinearity=lasagne.nonlinearities.softmax)
return net
def iterate_minibatches(inputs, targets_class,targets_verif, batchsize, shuffle=False):
assert len(inputs) == len(targets_class)
assert len(inputs) == len(targets_verif)
if shuffle:
indices = np.arange(len(inputs))
np.random.shuffle(indices)
for start_idx in range(0, len(inputs) - batchsize + 1, batchsize):
if shuffle:
excerpt = indices[start_idx:start_idx + batchsize]
else:
excerpt = slice(start_idx, start_idx + batchsize)
yield inputs[excerpt], targets_class[excerpt], targets_verif[excerpt]
def main(num_epochs=500):
print("Loading data...")
X_train, y_train, X_test, y_test, fg_train, fg_test = load_dataset('./signatures/tmp4/')
X_train /= 255
X_val, y_val, fg_val = X_train, y_train, fg_train
print(y_train.shape)
check = X_train[0][0]
print(check)
input_var = T.tensor4('inputs')
target_var_class = T.ivector('targets')
network = build_cnn(input_var, (None, 1, 250, 250))
class_prediction = lasagne.layers.get_output(network['fo_class'])
loss_class = lasagne.objectives.categorical_crossentropy(class_prediction, target_var_class)
loss = loss_class.mean()
params = lasagne.layers.get_all_params([network['fo_class']], trainable=True)
lr = 0.0007
updates = lasagne.updates.nesterov_momentum(
loss, params, learning_rate=lr, momentum=0.9)
test_prediction_class = lasagne.layers.get_output(network['fo_class'], deterministic=True)
test_loss_class = lasagne.objectives.categorical_crossentropy(test_prediction_class,
target_var_class)
test_loss_class = test_loss_class.mean()
test_acc_class = T.mean(T.eq(T.argmax(test_prediction_class, axis=1), target_var_class),
dtype=theano.config.floatX)
predict_class = theano.function([input_var], T.argmax(test_prediction_class,axis=1))
train_fn = theano.function([input_var, target_var_class], loss, updates=updates)
val_fn_class = theano.function([input_var, target_var_class], [test_loss_class, test_acc_class])
print("Starting training...")
BatchSize = 16
for epoch in range(num_epochs):
train_err = 0
train_batches = 0
start_time = time.time()
for batch in iterate_minibatches(X_train, y_train,fg_train, BatchSize, shuffle=True):
inputs, targets_class, targets_verif = batch
train_err += train_fn(inputs, targets_class)
print(targets_class,predict_class(inputs))
train_batches += 1
val_err_class = 0
val_acc_class = 0
val_batches = 0
for batch in iterate_minibatches(X_val, y_val, fg_val, BatchSize, shuffle=False):
inputs, targets_class, targets_verif = batch
err_class, acc_class = val_fn_class(inputs, targets_class)
val_err_class += err_class
val_acc_class += acc_class
val_batches += 1
print("Epoch {} of {} took {:.3f}s".format(
epoch + 1, num_epochs, time.time() - start_time))
print(" training loss:\t\t{:.6f}".format(train_err / train_batches))
print(" Classification loss:\t\t{:.6f}".format(val_err_class / val_batches))
print(" Classification accuracy:\t\t{:.2f} %".format(
val_acc_class / val_batches * 100))
test_err_class = 0
test_acc_class = 0
test_batches = 0
for batch in iterate_minibatches(X_test, y_test, fg_test, BatchSize, shuffle=False):
inputs, targets_class, targets_verif = batch
err_class, acc_class = val_fn_class(inputs, targets_class)
test_err_class += err_class
test_acc_class += acc_class
test_batches += 1
print("Final results:")
print(" test loss (Classification):\t\t\t{:.6f}".format(test_err_class / test_batches))
print(" test accuracy (Classification):\t\t{:.2f} %".format(
test_acc_class / test_batches * 100))
if __name__ == '__main__':
main()