Related
If I have a query like:
Select EmployeeId
From Employee
Where EmployeeTypeId IN (1,2,3)
and I have an index on the EmployeeTypeId field, does SQL server still use that index?
Yeah, that's right. If your Employee table has 10,000 records, and only 5 records have EmployeeTypeId in (1,2,3), then it will most likely use the index to fetch the records. However, if it finds that 9,000 records have the EmployeeTypeId in (1,2,3), then it would most likely just do a table scan to get the corresponding EmployeeIds, as it's faster just to run through the whole table than to go to each branch of the index tree and look at the records individually.
SQL Server does a lot of stuff to try and optimize how the queries run. However, sometimes it doesn't get the right answer. If you know that SQL Server isn't using the index, by looking at the execution plan in query analyzer, you can tell the query engine to use a specific index with the following change to your query.
SELECT EmployeeId FROM Employee WITH (Index(Index_EmployeeTypeId )) WHERE EmployeeTypeId IN (1,2,3)
Assuming the index you have on the EmployeeTypeId field is named Index_EmployeeTypeId.
Usually it would, unless the IN clause covers too much of the table, and then it will do a table scan. Best way to find out in your specific case would be to run it in the query analyzer, and check out the execution plan.
Unless technology has improved in ways I can't imagine of late, the "IN" query shown will produce a result that's effectively the OR-ing of three result sets, one for each of the values in the "IN" list. The IN clause becomes an equality condition for each of the list and will use an index if appropriate. In the case of unique IDs and a large enough table then I'd expect the optimiser to use an index.
If the items in the list were to be non-unique however, and I guess in the example that a "TypeId" is a foreign key, then I'm more interested in the distribution. I'm wondering if the optimiser will check the stats for each value in the list? Say it checks the first value and finds it's in 20% of the rows (of a large enough table to matter). It'll probably table scan. But will the same query plan be used for the other two, even if they're unique?
It's probably moot - something like an Employee table is likely to be small enough that it will stay cached in memory and you probably wouldn't notice a difference between that and indexed retrieval anyway.
And lastly, while I'm preaching, beware the query in the IN clause: it's often a quick way to get something working and (for me at least) can be a good way to express the requirement, but it's almost always better restated as a join. Your optimiser may be smart enough to spot this, but then again it may not. If you don't currently performance-check against production data volumes, do so - in these days of cost-based optimisation you can't be certain of the query plan until you have a full load and representative statistics. If you can't, then be prepared for surprises in production...
So there's the potential for an "IN" clause to run a table scan, but the optimizer will
try and work out the best way to deal with it?
Whether an index is used doesn't so much vary on the type of query as much of the type and distribution of data in the table(s), how up-to-date your table statistics are, and the actual datatype of the column.
The other posters are correct that an index will be used over a table scan if:
The query won't access more than a certain percent of the rows indexed (say ~10% but should vary between DBMS's).
Alternatively, if there are a lot of rows, but relatively few unique values in the column, it also may be faster to do a table scan.
The other variable that might not be that obvious is making sure that the datatypes of the values being compared are the same. In PostgreSQL, I don't think that indexes will be used if you're filtering on a float but your column is made up of ints. There are also some operators that don't support index use (again, in PostgreSQL, the ILIKE operator is like this).
As noted though, always check the query analyser when in doubt and your DBMS's documentation is your friend.
#Mike: Thanks for the detailed analysis. There are definately some interesting points you make there. The example I posted is somewhat trivial but the basis of the question came from using NHibernate.
With NHibernate, you can write a clause like this:
int[] employeeIds = new int[]{1, 5, 23463, 32523};
NHibernateSession.CreateCriteria(typeof(Employee))
.Add(Restrictions.InG("EmployeeId",employeeIds))
NHibernate then generates a query which looks like
select * from employee where employeeid in (1, 5, 23463, 32523)
So as you and others have pointed out, it looks like there are going to be times where an index will be used or a table scan will happen, but you can't really determine that until runtime.
Select EmployeeId From Employee USE(INDEX(EmployeeTypeId))
This query will search using the index you have created. It works for me. Please do a try..
I've been using indexes on my MySQL databases for a while now but never properly learnt about them. Generally I put an index on any fields that I will be searching or selecting using a WHERE clause but sometimes it doesn't seem so black and white.
What are the best practices for MySQL indexes?
Example situations/dilemmas:
If a table has six columns and all of them are searchable, should I index all of them or none of them?
What are the negative performance impacts of indexing?
If I have a VARCHAR 2500 column which is searchable from parts of my site, should I index it?
You should definitely spend some time reading up on indexing, there's a lot written about it, and it's important to understand what's going on.
Broadly speaking, an index imposes an ordering on the rows of a table.
For simplicity's sake, imagine a table is just a big CSV file. Whenever a row is inserted, it's inserted at the end. So the "natural" ordering of the table is just the order in which rows were inserted.
Imagine you've got that CSV file loaded up in a very rudimentary spreadsheet application. All this spreadsheet does is display the data, and numbers the rows in sequential order.
Now imagine that you need to find all the rows that have some value "M" in the third column. Given what you have available, you have only one option. You scan the table checking the value of the third column for each row. If you've got a lot of rows, this method (a "table scan") can take a long time!
Now imagine that in addition to this table, you've got an index. This particular index is the index of values in the third column. The index lists all of the values from the third column, in some meaningful order (say, alphabetically) and for each of them, provides a list of row numbers where that value appears.
Now you have a good strategy for finding all the rows where the value of the third column is "M". For instance, you can perform a binary search! Whereas the table scan requires you to look N rows (where N is the number of rows), the binary search only requires that you look at log-n index entries, in the very worst case. Wow, that's sure a lot easier!
Of course, if you have this index, and you're adding rows to the table (at the end, since that's how our conceptual table works), you need to update the index each and every time. So you do a little more work while you're writing new rows, but you save a ton of time when you're searching for something.
So, in general, indexing creates a tradeoff between read efficiency and write efficiency. With no indexes, inserts can be very fast -- the database engine just adds a row to the table. As you add indexes, the engine must update each index while performing the insert.
On the other hand, reads become a lot faster.
Hopefully that covers your first two questions (as others have answered -- you need to find the right balance).
Your third scenario is a little more complicated. If you're using LIKE, indexing engines will typically help with your read speed up to the first "%". In other words, if you're SELECTing WHERE column LIKE 'foo%bar%', the database will use the index to find all the rows where column starts with "foo", and then need to scan that intermediate rowset to find the subset that contains "bar". SELECT ... WHERE column LIKE '%bar%' can't use the index. I hope you can see why.
Finally, you need to start thinking about indexes on more than one column. The concept is the same, and behaves similarly to the LIKE stuff -- essentially, if you have an index on (a,b,c), the engine will continue using the index from left to right as best it can. So a search on column a might use the (a,b,c) index, as would one on (a,b). However, the engine would need to do a full table scan if you were searching WHERE b=5 AND c=1)
Hopefully this helps shed a little light, but I must reiterate that you're best off spending a few hours digging around for good articles that explain these things in depth. It's also a good idea to read your particular database server's documentation. The way indices are implemented and used by query planners can vary pretty widely.
Check out presentations like More Mastering the Art of Indexing.
Update 12/2012: I have posted a new presentation of mine: How to Design Indexes, Really. I presented this in October 2012 at ZendCon in Santa Clara, and in December 2012 at Percona Live London.
Designing the best indexes is a process that has to match the queries you run in your app.
It's hard to recommend any general-purpose rules about which columns are best to index, or whether you should index all columns, no columns, which indexes should span multiple columns, etc. It depends on the queries you need to run.
Yes, there is some overhead so you shouldn't create indexes needlessly. But you should create the indexes that give benefit to the queries you need to run quickly. The overhead of an index is usually far outweighed by its benefit.
For a column that is VARCHAR(2500), you probably want to use a FULLTEXT index or a prefix index:
CREATE INDEX i ON SomeTable(longVarchar(100));
Note that a conventional index can't help if you're searching for words that may be in the middle of that long varchar. For that, use a fulltext index.
I won't repeat some of the good advice in other answers, but will add:
Compound Indices
You can create compound indices - an index that includes multiple columns. MySQL can use these from left to right. So if you have:
Table A
Id
Name
Category
Age
Description
if you have a compound index that includes Name/Category/Age in that order, these WHERE clauses would use the index:
WHERE Name='Eric' and Category='A'
WHERE Name='Eric' and Category='A' and Age > 18
but
WHERE Category='A' and Age > 18
would not use that index because everything has to be used from left to right.
Explain
Use Explain / Explain Extended to understand what indices are available to MySQL and which one it actually selects. MySQL will only use ONE key per query.
EXPLAIN EXTENDED SELECT * from Table WHERE Something='ABC'
Slow Query Log
Turn on the slow query log to see which queries are running slow.
Wide Columns
If you have a wide column where MOST of the distinction happens in the first several characters, you can use only the first N characters in your index. Example: We have a ReferenceNumber column defined as varchar(255) but 97% of the cases, the reference number is 10 characters or less. I changed the index to only look at the first 10 characters and improved performance quite a bit.
If a table has six columns and all of them are searchable, should i index all of them or none of them
Are you searching on a field by field basis or are some searches using multiple fields?
Which fields are most being searched on?
What are the field types? (Index works better on INTs than on VARCHARs for example)
Have you tried using EXPLAIN on the queries that are being run?
What are the negetive performance impacts of indexing
UPDATEs and INSERTs will be slower. There's also the extra storage space requirments, but that's usual unimportant these days.
If i have a VARCHAR 2500 column which is searchable from parts of my site, should i index it
No, unless it's UNIQUE (which means it's already indexed) or you only search for exact matches on that field (not using LIKE or mySQL's fulltext search).
Generally I put an index on any fields that i will be searching or selecting using a WHERE clause
I'd normally index the fields that are the most queried, and then INTs/BOOLEANs/ENUMs rather that fields that are VARCHARS. Don't forget, often you need to create an index on combined fields, rather than an index on an individual field. Use EXPLAIN, and check the slow log.
Load Data Efficiently: Indexes speed up retrievals but slow down inserts and deletes, as well as updates of values in indexed columns. That is, indexes slow down most operations that involve writing. This occurs because writing a row requires writing not only the data row, it requires changes to any indexes as well. The more indexes a table has, the more changes need to be made, and the greater the average performance degradation. Most tables receive many reads and few writes, but for a table with a high percentage of writes, the cost of index updating might be significant.
Avoid Indexes: If you don’t need a particular index to help queries perform better, don’t create it.
Disk Space: An index takes up disk space, and multiple indexes take up correspondingly more space. This might cause you to reach a table size limit more quickly than if there are no indexes. Avoid indexes wherever possible.
Takeaway: Don't over index
In general, indices help speedup database search, having the disadvantage of using extra disk space and slowing INSERT / UPDATE / DELETE queries. Use EXPLAIN and read the results to find out when MySQL uses your indices.
If a table has six columns and all of them are searchable, should i index all of them or none of them?
Indexing all six columns isn't always the best practice.
(a) Are you going to use any of those columns when searching for specific information?
(b) What is the selectivity of those columns (how many distinct values are there stored, in comparison to the total amount of records on the table)?
MySQL uses a cost-based optimizer, which tries to find the "cheapest" path when performing a query. And fields with low selectivity aren't good candidates.
What are the negetive performance impacts of indexing?
Already answered: extra disk space, lower performance during insert - update - delete.
If i have a VARCHAR 2500 column which is searchable from parts of my site, should i index it?
Try the FULLTEXT Index.
1/2) Indexes speed up certain select operations but they slow down other operations like insert, update and deletes. It can be a fine balance.
3) use a full text index or perhaps sphinx
I have a table called data in mysql database. The table is quite large and has about 500k records and this number will grow up to 1 million. Each record consists of about 50 columns and most of them contain varchars.
The data table is being used very frequently. Actually, most queries access this table. The data is being read from and written to it by ~50 users simultaneously. The system is highly loaded with the users uploading and checking their data so it can be stopped maximum for an hour or two.
After some research. I found out that almost all the select queries that have 'where' clause use one of four fields in the table. That fields are: isActive, country, state, city - all are in the int format. The where can be either
where isActive = {0|1}
or
where isActive = {0|1} and {country|state|city} = {someIntValue}
or
where {country|state|city} = {someIntValue}
And the last thing is that the table does not have any indexes except for the primary id one.
After the table has grown to current sizes i faced some performance issues.
So, my question is if i create the indexes on the columns isActive, country, state and city will the performance increase?
UPD: I've just created an index on one of that fields and WOW! the queries are being executed immediately. Thank you, guys.
I don't think it's a good idea to index the isActive field because it'll cause the indexing overhead when adding/updating/deleting, but it'll only split data in two chunks (1 and 0) when reading so it'll not really help.
Edit: found this to explain the point above:
Is there any performance gain in indexing a boolean field?
For the other tree columns, I recommend you to do a benchmark when most user are offline (in the night, or lunch time) and see how it affect performance, but I think it'll really help without many downsides.
Edit: ypercube has signaled some interesting use cases where my answer about indexing boolean field isn't relevant, check comments.
Yes creating an index on each of these columns will help you.
Consider and underline the word each.
A separate index for each one is what I suggest. The reason being coexistence of different combinations of the columns.
Yes, definately.
you may see even better results if you include selected additional fields to each index too. Just take careful notice of the column order...
But before all else, make sure you dont use myisam engine for a big table with many writes! Switch to innodb for example.
Okay, mysql indexing. Is indexing nothing more than having a unique ID for each row that will be used in the WHERE clause?
When indexing a table does the process add any information to the table? For instance, another column or value somewhere.
Does indexing happen on the fly when retrieving values or are values placed into the table much like an insert or update function?
Any more information to clearly explain mysql indexing would be appreciated. And please dont just place a link to the mysql documentation, it is confusing and it is always better to get a personal response from a professional.
Lastly, why is indexing different from telling mysql to look for values between two values. For Example: WHERE create_time >= 'AweekAgo'
I'm asking because one of my tables is 220,000+ rows and it takes more than a minute to return values with a very simple mysql select statement and I'm hoping indexing will speed this up.
Thanks in advanced.
You were down voted because you didn't make effort to read or search for what you are asking for. A simple search in google could have shown you the benefits and drawbacks of Database Index. Here is a related question on StackOverflow. I am sure there are numerous questions like that.
To simplify the jargons, it would be easier to locate books in a library if you arrange the in shelves numbered according to their area of specialization. You can easily tell somebody to go to a specific location and pick the book - that is what index does
Another example: imagine an alphabetically ordered admission list. If your name start with Z, you will just skip A to Y and get to Z - faster? If otherwise, you will have to search and search and may not even find it if you didn't look carefully
A database index is a data structure that improves the speed of operations in a table. Indexes can be created using one or more columns, providing the basis for both rapid random lookups and efficient ordering of access to records.
You can create an index like this way :
CREATE INDEX index_name
ON table_name ( column1, column2,...);
You might be working on a more complex database, so it's good to remember a few simple rules.
Indexes slow down inserts and updates, so you want to use them carefully on columns that are FREQUENTLY updated.
Indexes speed up where clauses and order by.
For further detail, you can read :
http://dev.mysql.com/doc/refman/5.0/en/mysql-indexes.html
http://www.tutorialspoint.com/mysql/mysql-indexes.htm
There are a lot of indexing, for example a hash, a trie, a spatial index. It depends on the value. Most likely it's a hash and a binary search tree. Nothing really fancy because most likely the fancy thing is expensive.
I've been using indexes on my MySQL databases for a while now but never properly learnt about them. Generally I put an index on any fields that I will be searching or selecting using a WHERE clause but sometimes it doesn't seem so black and white.
What are the best practices for MySQL indexes?
Example situations/dilemmas:
If a table has six columns and all of them are searchable, should I index all of them or none of them?
What are the negative performance impacts of indexing?
If I have a VARCHAR 2500 column which is searchable from parts of my site, should I index it?
You should definitely spend some time reading up on indexing, there's a lot written about it, and it's important to understand what's going on.
Broadly speaking, an index imposes an ordering on the rows of a table.
For simplicity's sake, imagine a table is just a big CSV file. Whenever a row is inserted, it's inserted at the end. So the "natural" ordering of the table is just the order in which rows were inserted.
Imagine you've got that CSV file loaded up in a very rudimentary spreadsheet application. All this spreadsheet does is display the data, and numbers the rows in sequential order.
Now imagine that you need to find all the rows that have some value "M" in the third column. Given what you have available, you have only one option. You scan the table checking the value of the third column for each row. If you've got a lot of rows, this method (a "table scan") can take a long time!
Now imagine that in addition to this table, you've got an index. This particular index is the index of values in the third column. The index lists all of the values from the third column, in some meaningful order (say, alphabetically) and for each of them, provides a list of row numbers where that value appears.
Now you have a good strategy for finding all the rows where the value of the third column is "M". For instance, you can perform a binary search! Whereas the table scan requires you to look N rows (where N is the number of rows), the binary search only requires that you look at log-n index entries, in the very worst case. Wow, that's sure a lot easier!
Of course, if you have this index, and you're adding rows to the table (at the end, since that's how our conceptual table works), you need to update the index each and every time. So you do a little more work while you're writing new rows, but you save a ton of time when you're searching for something.
So, in general, indexing creates a tradeoff between read efficiency and write efficiency. With no indexes, inserts can be very fast -- the database engine just adds a row to the table. As you add indexes, the engine must update each index while performing the insert.
On the other hand, reads become a lot faster.
Hopefully that covers your first two questions (as others have answered -- you need to find the right balance).
Your third scenario is a little more complicated. If you're using LIKE, indexing engines will typically help with your read speed up to the first "%". In other words, if you're SELECTing WHERE column LIKE 'foo%bar%', the database will use the index to find all the rows where column starts with "foo", and then need to scan that intermediate rowset to find the subset that contains "bar". SELECT ... WHERE column LIKE '%bar%' can't use the index. I hope you can see why.
Finally, you need to start thinking about indexes on more than one column. The concept is the same, and behaves similarly to the LIKE stuff -- essentially, if you have an index on (a,b,c), the engine will continue using the index from left to right as best it can. So a search on column a might use the (a,b,c) index, as would one on (a,b). However, the engine would need to do a full table scan if you were searching WHERE b=5 AND c=1)
Hopefully this helps shed a little light, but I must reiterate that you're best off spending a few hours digging around for good articles that explain these things in depth. It's also a good idea to read your particular database server's documentation. The way indices are implemented and used by query planners can vary pretty widely.
Check out presentations like More Mastering the Art of Indexing.
Update 12/2012: I have posted a new presentation of mine: How to Design Indexes, Really. I presented this in October 2012 at ZendCon in Santa Clara, and in December 2012 at Percona Live London.
Designing the best indexes is a process that has to match the queries you run in your app.
It's hard to recommend any general-purpose rules about which columns are best to index, or whether you should index all columns, no columns, which indexes should span multiple columns, etc. It depends on the queries you need to run.
Yes, there is some overhead so you shouldn't create indexes needlessly. But you should create the indexes that give benefit to the queries you need to run quickly. The overhead of an index is usually far outweighed by its benefit.
For a column that is VARCHAR(2500), you probably want to use a FULLTEXT index or a prefix index:
CREATE INDEX i ON SomeTable(longVarchar(100));
Note that a conventional index can't help if you're searching for words that may be in the middle of that long varchar. For that, use a fulltext index.
I won't repeat some of the good advice in other answers, but will add:
Compound Indices
You can create compound indices - an index that includes multiple columns. MySQL can use these from left to right. So if you have:
Table A
Id
Name
Category
Age
Description
if you have a compound index that includes Name/Category/Age in that order, these WHERE clauses would use the index:
WHERE Name='Eric' and Category='A'
WHERE Name='Eric' and Category='A' and Age > 18
but
WHERE Category='A' and Age > 18
would not use that index because everything has to be used from left to right.
Explain
Use Explain / Explain Extended to understand what indices are available to MySQL and which one it actually selects. MySQL will only use ONE key per query.
EXPLAIN EXTENDED SELECT * from Table WHERE Something='ABC'
Slow Query Log
Turn on the slow query log to see which queries are running slow.
Wide Columns
If you have a wide column where MOST of the distinction happens in the first several characters, you can use only the first N characters in your index. Example: We have a ReferenceNumber column defined as varchar(255) but 97% of the cases, the reference number is 10 characters or less. I changed the index to only look at the first 10 characters and improved performance quite a bit.
If a table has six columns and all of them are searchable, should i index all of them or none of them
Are you searching on a field by field basis or are some searches using multiple fields?
Which fields are most being searched on?
What are the field types? (Index works better on INTs than on VARCHARs for example)
Have you tried using EXPLAIN on the queries that are being run?
What are the negetive performance impacts of indexing
UPDATEs and INSERTs will be slower. There's also the extra storage space requirments, but that's usual unimportant these days.
If i have a VARCHAR 2500 column which is searchable from parts of my site, should i index it
No, unless it's UNIQUE (which means it's already indexed) or you only search for exact matches on that field (not using LIKE or mySQL's fulltext search).
Generally I put an index on any fields that i will be searching or selecting using a WHERE clause
I'd normally index the fields that are the most queried, and then INTs/BOOLEANs/ENUMs rather that fields that are VARCHARS. Don't forget, often you need to create an index on combined fields, rather than an index on an individual field. Use EXPLAIN, and check the slow log.
Load Data Efficiently: Indexes speed up retrievals but slow down inserts and deletes, as well as updates of values in indexed columns. That is, indexes slow down most operations that involve writing. This occurs because writing a row requires writing not only the data row, it requires changes to any indexes as well. The more indexes a table has, the more changes need to be made, and the greater the average performance degradation. Most tables receive many reads and few writes, but for a table with a high percentage of writes, the cost of index updating might be significant.
Avoid Indexes: If you don’t need a particular index to help queries perform better, don’t create it.
Disk Space: An index takes up disk space, and multiple indexes take up correspondingly more space. This might cause you to reach a table size limit more quickly than if there are no indexes. Avoid indexes wherever possible.
Takeaway: Don't over index
In general, indices help speedup database search, having the disadvantage of using extra disk space and slowing INSERT / UPDATE / DELETE queries. Use EXPLAIN and read the results to find out when MySQL uses your indices.
If a table has six columns and all of them are searchable, should i index all of them or none of them?
Indexing all six columns isn't always the best practice.
(a) Are you going to use any of those columns when searching for specific information?
(b) What is the selectivity of those columns (how many distinct values are there stored, in comparison to the total amount of records on the table)?
MySQL uses a cost-based optimizer, which tries to find the "cheapest" path when performing a query. And fields with low selectivity aren't good candidates.
What are the negetive performance impacts of indexing?
Already answered: extra disk space, lower performance during insert - update - delete.
If i have a VARCHAR 2500 column which is searchable from parts of my site, should i index it?
Try the FULLTEXT Index.
1/2) Indexes speed up certain select operations but they slow down other operations like insert, update and deletes. It can be a fine balance.
3) use a full text index or perhaps sphinx