I am new to the leaflet package.
I am trying to draw two types of polygons and let the user select them and see the borders. These polygons have labels and I want to display them by default. At the moment the labels are displayed only on mouse hover.
Basically what I want is to let the user search for the polygon label on the map.
Given below is my code.
shp <- readOGR(dsn = 'shapes'
,layer = 'SAB')
postcode <- readOGR(dsn = 'shapes'
,layer = 'Postcode')
CRS_WGS84 <- '+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0'
t_shp <- spTransform(shp, CRS(CRS_WGS84))
sab_shp <- raster::aggregate(t_shp, by='SMALL_AREA')
dat <- data.table(shp#data)
sabLabels <- sprintf('<strong>SAB: %s', t_shp$SMALL_AREA) %>% lapply(HTML)
postcode <- readOGR(dsn = 'shapes'
,layer = 'Postcode')
CRS_WGS84 <- '+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0'
t_shp2 <- spTransform(postcode, CRS(CRS_WGS84))
postcode_shp <- raster::aggregate(t_shp2, by='RoutingKey')
dat2 <- data.table(postcode#data)
postcodeLabels <- sprintf('<strong>SAB: %s', t_shp2$RoutingKey) %>% lapply(HTML)
leaflet() %>%
addTiles() %>% #using default does not allow html export to include the underlying
#OSM layer
addProviderTiles('OpenStreetMap.Mapnik') %>%
addPolygons( data = t_shp
,stroke = T
,fillColor = 'grey'
,fillOpacity = 0.2
,color = 'blue'
,weight = 0.5
,label = sabLabels
,group = 'SABS'
,highlightOptions = highlightOptions(color = "blue", weight = 7,
bringToFront = TRUE)
#,labelOptions = labelOptions(noHide = TRUE, textOnly = TRUE, opacity = 0.5 , textsize='15px')
) %>%
addPolygons( data = t_shp2
,stroke = T
,fillOpacity = 0
,color = 'black'
,weight = 1.5
,label = postcodeLabels
,group = 'PostCodes'
) %>%
addLayersControl(
overlayGroups = c(
'SABS'
,'PostCodes'
)
,options = layersControlOptions((collapsed = F))
)
Related
I have a flextable and control the height of the rows with https://davidgohel.github.io/flextable/reference/height.html
df = data.frame(col1 = c("row1", "row2"),
col2 = c("row1", "row2"),
col3 = c("row1", "row2"),
col4 = c("row1", "row2"),
col5 = c("row1", "row2"),
col6 = c("row1", "row2"))
ft = df %>%
flextable() %>%
width(1:6,rep(9/6,6)) %>%
height(height = .1) %>%
hrule(rule = "exact") %>%
fontsize(size = 7, part = "all")
but when I adjust the height from 0.1 to 1.0 I get and save the image
save_as_image(ft,
path = "file.png",
zoom = 1,
webshot = "webshot2")
I get the same image 0.97" high and 9.21" wide
If possible, I would like to get the lines to be more compact as with excel where I get each row to be 24pixels (0.125")
Any suggestions?
it appears I can use the line_spacing() argument as well
ft = df %>%
flextable() %>%
width(1:6,rep(9/6,6)) %>%
height(height = .1) %>%
hrule(rule = "exact") %>%
fontsize(size = 7, part = "all") %>%
line_spacing(space = 0.25, part = "all")
I started to learn how to use the search features in leaflet maps - below is a leaflet map which allows you to search for a city (i.e. single search term):
library(leaflet)
library(leaflet.extras)
library(dplyr)
# using the same reproducible data from the question/example
cities <- na.omit(read.csv(
textConnection("City,Lat,Long,Pop, term1, term2
Boston,42.3601,-71.0589,645966, AAA, BBB
Hartford,41.7627,-72.6743,125017, CCC, DDD
New York City,40.7127,-74.0059,8406000, EEE, FFF
Philadelphia,39.9500,-75.1667,1553000, GGG, HHH
Pittsburgh,40.4397,-79.9764,305841, III, JJJ
Providence,41.8236,-71.4222,177994, JJJ, LLL
")))
# CODE 1
leaflet(cities) %>%
addProviderTiles(providers$OpenStreetMap) %>%
addMarkers( clusterOptions = markerClusterOptions()) %>%
addResetMapButton() %>%
# these markers will be "invisible" on the map:
addMarkers(
data = cities, lng = ~Long, lat = ~Lat, label = cities$City,
group = 'cities', # this is the group to use in addSearchFeatures()
# make custom icon that is so small you can't see it:
icon = makeIcon(
iconUrl = "https://leafletjs.com/examples/custom-icons/leaf-green.png",
iconWidth = 1, iconHeight = 1
)
) %>%
addSearchFeatures(
targetGroups = 'cities', # group should match addMarkers() group
options = searchFeaturesOptions(
zoom=12, openPopup = TRUE, firstTipSubmit = TRUE,
autoCollapse = TRUE, hideMarkerOnCollapse = TRUE
)
)
In a previous question (Correctly Specifying Vectors in R), I learned how to make a leaflet map that allows for multiple search terms:
# CODE 2
leaflet(cities) %>%
addProviderTiles(providers$OpenStreetMap) %>%
addMarkers(clusterOptions = markerClusterOptions()) %>%
addResetMapButton() %>%
# these markers will be "invisible" on the map:
addMarkers(
data = cities, lng = ~Long, lat = ~Lat, label = cities$City,
group = 'cities',# this is the group to use in addSearchFeatures()
# make custom icon that is so small you can't see it:
icon = makeIcon(
iconUrl = "https://leafletjs.com/examples/custom-icons/leaf-green.png",
iconWidth = 1, iconHeight = 1
)) %>%
addMarkers(data = cities, lng = ~Long, lat = ~Lat,
label = cities$term1, group = 'term1') %>%
addMarkers(data = cities, lng = ~Long, lat = ~Lat,
label = cities$term2, group = 'term2') %>%
addSearchFeatures(
targetGroups = c('cities', 'term1', 'term2'), # group should match addMarkers() group
options = searchFeaturesOptions(
zoom=12, openPopup = TRUE, firstTipSubmit = TRUE,
autoCollapse = TRUE, hideMarkerOnCollapse = TRUE
)
)
The one thing I would like to change about CODE 2 :
In CODE 1, when you zoom in and zoom out, the "blue pins" will "collapse" into the "green circles".
In CODE 2, the blue pins and the green circles wont collapse into each other. Is there a way to change this?
Thank you!
You have to make sure that all of the markers have the same icon in order for them to cluster.
leaflet(cities) %>%
addProviderTiles(providers$OpenStreetMap) %>%
addMarkers(clusterOptions = markerClusterOptions()) %>%
addResetMapButton() %>%
# these markers will be "invisible" on the map:
addMarkers(
data = cities, lng = ~Long, lat = ~Lat, label = cities$City,
group = 'cities',# this is the group to use in addSearchFeatures()
# make custom icon that is so small you can't see it:
icon = makeIcon(
iconUrl = "https://leafletjs.com/examples/custom-icons/leaf-green.png",
iconWidth = 1, iconHeight = 1
)) %>%
addMarkers(data = cities, lng = ~Long, lat = ~Lat,
label = ~term1, group = 'term1',
icon = makeIcon( # <----- I'm new!
iconUrl = "https://leafletjs.com/examples/custom-icons/leaf-green.png",
iconWidth = 1, iconHeight = 1
)) %>%
addMarkers(data = cities, lng = ~Long, lat = ~Lat,
label = ~term2, group = 'term2',
icon = makeIcon( # <----- I'm new!
iconUrl = "https://leafletjs.com/examples/custom-icons/leaf-green.png",
iconWidth = 1, iconHeight = 1
)) %>%
addSearchFeatures(
targetGroups = c('cities', 'term1', 'term2'), # group match addMarkers() group
options = searchFeaturesOptions(
zoom=12, openPopup = TRUE, firstTipSubmit = TRUE,
autoCollapse = TRUE, hideMarkerOnCollapse = TRUE
)
)
I looked at this for quite a while, and in retrospect...why? It seems so simple now that I know the answer. Sigh. You and me both, right? Let me know if you have questions.
I'm working in Rbookdown and I want to place a plot and a table in one figure, how can I achieve that? Below is the code i used so far. Can you help?
```{r echo=FALSE, message=FALSE, warning=FALSE, fig.height = 3.5, out.width = '70%', fig.align = "center"}
library(knitr)
library(kableExtra)
library(tidyverse)
library(latex2exp)
options(scipen=999)
mu = 0
sigma = 1
x = 1
# draw normal distribution
range = seq(mu - 4*sigma, mu + 4*sigma, 0.01)
y = dnorm(range, mu, sigma)
plot(range, y,
main = "Standard Normal Distribution", xlab = "Z-score", ylab = " ",
type = 'l', ylim = c(0, max(y) + 0.01), axes = FALSE)
axis(1, at = seq(mu - 4*sigma, mu + 4*sigma, sigma))
# Add area to the left of x
cord.a = c(0, seq(min(range), x, 0.01))
cord.b = c(dnorm(seq(min(range), x, 0.01), mu, sigma), 0)
polygon(cord.a, cord.b, col = "#61a5ff")
text(x = 1.1, y = -.06, TeX('$z = 1.00$'), cex = .8, xpd=NA)
text(x = 0, y = .15, TeX('$p = .8413$'), cex = .8, xpd=NA)
# Create standard normal table
options(digits = 4)
u=seq(0,3.09,by=0.01)
p=pnorm(u)
m=matrix(p,ncol=10,byrow=TRUE)
df.m = as.data.frame(m)
z.values = c("**0.0**", "**0.1**", "**0.2**", "**0.3**", "**0.4**", "**0.5**", "**0.6**",
"**0.7**", "**0.8**", "**0.9**", "**1.0**", "**1.1**", "**1.2**", "**1.3**",
"**1.4**", "**1.5**", "**1.6**", "**1.7**", "**1.8**", "**1.9**","**2.0**",
"**2.1**", "**2.2**", "**2.3**", "**2.4**", "**2.5**", "**2.6**", "**2.7**",
"**2.8**", "**2.9**", "**3.0**")
df.z.values = as.data.frame(z.values)
new.m = df.z.values %>%
bind_cols(df.m)
kable(new.m,
booktabs = TRUE,
col.names = c("$Z$", "0.00","0.01", "0.02", "0.03", "0.04",
"0.05", "0.06", "0.07", "0.08", "0.09"),
escape = FALSE,
caption = "Standaard Normaalverdeling",
linesep = "",
align = c('r')) %>%
kable_styling(font_size = 10)
Try this solution:
```{r echo=FALSE, message=FALSE, warning=FALSE, include = FALSE}
library(kableExtra)
#make and save our table into working directory
table1 <- head(mtcars[1:5]) %>%
kbl() %>%
kable_styling(full_width = F) %>%
save_kable("tab_kbl.png")
#make and save our plot into working directory
png('norm_pl.png')
plot(rnorm(10))
dev.off()
```
```{r,echo=FALSE, message=FALSE, warning=FALSE, fig.cap="My image", fig.align = "center"}
library(cowplot)
#combine our images in the one
img1 <- ggdraw() + draw_image("norm_pl.png", scale = 1)
img2 <- ggdraw() + draw_image("tab_kbl.png", scale = 1)
plot_grid(img1, img2)
```
An another variant
```{r, fig.align='center', fig.cap="My beautiful image"}
library(gridExtra)
library(grid)
library(cowplot)
t1 <- tableGrob(head(mtcars[1:5]), theme = ttheme_minimal())
p2 <- ggplot(mtcars, aes(cyl, mpg)) +
geom_point()
plot_grid(t1, p2, ncol = 2, rel_widths = c(2,1))
```
I don't get similar results when I use the same data and models using mlr and mlr3. Also I find mlr runs at least 20-fold faster. I used lung data from survival and I was able to replicate the difference in computation speed and results since I can't share my data.
mlr was completed in 1 min with C-index generally low compared to mlr3 that took 21 min to complete with C-index being much higher despite using same data, same preprocessing, same model and setting seed.
library(tidyverse)
library(tidymodels)
library(PKPDmisc)
library(mlr)
library(parallelMap)
library(survival)
# Data and Data Splitting
data = as_tibble(lung) %>%
mutate(status = if_else(status==1, 0, 1),
sex = factor(sex, levels = c(1:2), labels = c("male", "female")),
ph.ecog = factor(ph.ecog))
na <- sample(1:228, 228*0.1)
data$sex[na] <- NA
data$ph.ecog[na]<- NA
set.seed(123)
split <- data %>% initial_split(prop = 0.8, strata = status)
train <- split %>% training()
test <- split %>% testing()
# Task
task = makeSurvTask(id = "Survival", data = train, target = c("time", "status"))
# Resample
# For model assessment before external validation on test data
set.seed(123)
outer_cv = makeResampleDesc("CV", iter=4, stratify.cols = c("status")) %>%
makeResampleInstance(task)
# For feature selection and parameter tuning
set.seed(123)
inner_cv = makeResampleDesc("CV", iter=4, stratify.cols = c("status"))
# Learners
cox1 = makeLearner(id = "COX1", "surv.coxph") %>%
makeImputeWrapper(classes = list(factor = imputeMode(), numeric = imputeMedian()),
# Create dummy variable for factor features
dummy.classes = "factor") %>%
makePreprocWrapperCaret(ppc.center = TRUE, ppc.scale = TRUE) %>%
makeFeatSelWrapper(resampling = inner_cv, show.info = TRUE,
control = makeFeatSelControlSequential(method = "sfs"))
cox_lasso = makeLearner(id = "COX LASSO", "surv.glmnet") %>%
makeImputeWrapper(classes = list(factor = imputeMode(), numeric = imputeMedian()),
# Create dummy variable for factor features
dummy.classes = "factor") %>%
# Normalize numeric features
makePreprocWrapperCaret(ppc.center = TRUE, ppc.scale = TRUE) %>%
makeTuneWrapper(resampling = inner_cv, show.info = TRUE,
par.set = makeParamSet(makeNumericParam("lambda",lower = -3, upper = 0,
trafo = function(x) 10^x)),
control = makeTuneControlGrid(resolution = 10L))
cox_net = makeLearner(id = "COX NET", "surv.glmnet") %>%
makeImputeWrapper(classes = list(factor = imputeMode(), numeric = imputeMedian()),
# Create dummy variable for factor features
dummy.classes = "factor") %>%
# Normalize numeric features
makePreprocWrapperCaret(ppc.center = TRUE, ppc.scale = TRUE) %>%
makeTuneWrapper(resampling = inner_cv, show.info = TRUE,
par.set = makeParamSet(makeNumericParam("alpha", lower = 0, upper = 1,
trafo = function(x) round(x,2)),
makeNumericParam("lambda",lower = -3, upper = 1,
trafo = function(x) 10^x)),
control = makeTuneControlGrid(resolution = 10L))
# Benchmark
# parallelStartSocket(4)
start_time <- Sys.time()
set.seed(123)
mlr_bmr = benchmark(learners = list(cox1, cox_lasso, cox_net),
tasks = task,
resamplings = outer_cv,
keep.extract= TRUE,
models = TRUE)
end_time <- Sys.time()
mlr_time = end_time - start_time
# parallelStop()
mlr_res <- getBMRPerformances(mlr_bmr, as.df = TRUE) %>%
select(Learner = learner.id, Task = task.id, Cindex = cindex) %>%
mutate(Color_Package = "mlr",
Learner = word(str_replace(Learner, "\\.", " "), 1, -2))
##################################################################
library(mlr3verse)
# Task
task2 = TaskSurv$new(id = "Survival2", backend = train, time = "time", event = "status")
task2$col_roles$stratum = c("status")
# Resmaple
set.seed(123)
outer_cv2 = rsmp("cv", folds = 4)$instantiate(task2)
# For feature selection and parameter tuning
set.seed(123)
inner_cv2 = rsmp("cv", folds = 4)
# Learners
preproc = po("imputemedian", affect_columns = selector_type("numeric")) %>>%
po("imputemode", affect_columns = selector_type("factor")) %>>%
po("scale") %>>%
po("encode")
cox2 = AutoFSelector$new(learner = as_learner(preproc %>>%
lrn("surv.coxph")),
resampling = inner_cv2,
measure = msr("surv.cindex"),
terminator = trm("none"), # need to increase later
fselector = fs("sequential", strategy = "sfs")) # sfs is the default
cox2$id = "COX1"
cox_lasso2 = AutoTuner$new(learner = as_learner(preproc %>>%
lrn("surv.glmnet",
lambda = to_tune(p_dbl(lower = -3, upper = 0,
trafo = function(x) 10^x)))),
resampling = inner_cv2,
measure = msr("surv.cindex"),
terminator = trm("none"),
tuner = tnr("grid_search", resolution = 10))
cox_lasso2$id = "COX LASSO"
cox_net2 = AutoTuner$new(learner = as_learner(preproc %>>%
lrn("surv.glmnet",
alpha = to_tune(p_dbl(lower = 0, upper = 1)),
lambda = to_tune(p_dbl(lower = -3, upper = 1,
trafo = function(x) 10^x)))),
resampling = inner_cv2,
measure = msr("surv.cindex"),
terminator = trm("none"),
tuner = tnr("grid_search", resolution = 10))
cox_net2$id = "COX NET"
# Benchmark
desgin = benchmark_grid(tasks = task2,
learners = c(cox2, cox_lasso2, cox_net2),
resamplings = outer_cv2)
# future::plan("multisession")
# Error: Output type of PipeOp select during training (Task) incompatible with input type of PipeOp surv.coxph (TaskSurv)
start_time <- Sys.time()
set.seed(123)
mlr3_bmr = mlr3::benchmark(desgin)
end_time <- Sys.time()
mlr3_time = end_time - start_time
mlr3_res <- as.data.table(mlr3_bmr$score()) %>%
select(Task=task_id, Learner=learner_id, Cindex=surv.harrell_c) %>%
mutate(Color_Package = "mlr3")
mlr_res %>%
bind_rows(mlr3_res) %>%
ggplot(aes(Learner, Cindex, fill= Color_Package )) +
geom_boxplot(position=position_dodge(.8)) +
stat_summary(fun= mean, geom = "point", aes(group = Color_Package ),
position=position_dodge(.8), size = 3) +
labs(x="", y = " C-Index") +
theme_bw() + base_theme() + theme(legend.position = "top")
I am using the following rmarkdown code, using xelatex engine:
access <- function(x, ...) {
x <- delete_part(x)
x <- colformat_double(x, big.mark = "'", decimal.mark = ",")
x <- set_table_properties(x, layout = "autofit")
x <- border_remove(x)
std_border <- fp_border_default(width = 1, color = "black")
x <- border_outer(x, part="all", border = std_border )
x <- border_inner_h(x, border = std_border, part="all")
x <- border_inner_v(x, border = std_border, part="all")
autofit(x)
}
firstc <- c("Field:","Table:","Sort:","Show:","Criteria:","Or:")
secondc <- c("Field:","Table:","Sort:","Show:","Criteria:","Or:")
```
```{r echo=FALSE}
tabela <- data.frame(firstc,secondc)
ft <- flextable(tabela)
ft <- access(ft)
ft <- hline_top(ft)
ft <- fit_to_width(ft, max_width = 4)
ft <- set_table_properties(ft, layout = "autofit", width = 1)
ft
```
However, the top hline does not show up in the PDF output.
Any ideas?