I'm simulating rope to rope collision in Bullet and I'd like it to be as accurate as possible. I don't need the simulation to be real-time. Rope consists of rigid bodies connected using constraints(e.g. btConeTwistConstraint).
Which settings do I need to tweak for simulation to become more realistic and accurate?
From my experiments decreasing the 3rd parameter to 1/300 gives additional accuracy.
gDynamicsWorld->stepSimulation(SIMULATION_STEP_TIME, 1, 1.0f/60.0f);
Also increasing solver iterations count helps a bit:
btContactSolverInfo& info = dynamicsWorld->getSolverInfo();
info.m_numIterations = 50;
There are videos where people simulate thousands of bodies in Blender. I'd like to achieve similar effect in a C++ app.
Related
I am making a VR animation using A-Frame (HTML). My animation has many 3D models. But problem is that when I run the animation it gives low fps (15-20) and high draw calls (230-240). Due to this both animation and camera control are lagging. So, how to increase fps and reduce draw calls?
The number of draw calls sounds high, but not so high as to cause a frame rate drop as low as 15-20 FPS (though it depends a bit what spec system you are running on).
As well as looking at ways to reduce draw calls, you might also want to reduce the complexity of the models you are using, or the resolution of the textures, and look into other possible causes of performance problems.
Some options:
reducing texture resolutions - just open in a picture editor like Paint or GIMP and reduce the resolution. Keep textures to power of two resolutions where possible, e.g. 512 x 512 or 1024 x 1024.
reducing model complexity. Look at decimation. Best done outside the browser as a pre-processing step, with a 3D modelling tool such a blender. Also, worth checking how many meshes are in each model, and whether those can be combined in a single mesh.
reducing calls. You need to either merge geometries or (if you are using the same model multiple times) use instancing. Some suggestions for instancing here: Is there an instancing component available for A-Frame to optimize my scene with many repeated objects?. Merging geometries will involve writing some Javascript code yourself, but might be a better option if you don't have repeated geometries.
If you haven't already done this, also worth reviewing this list of performance tips here: https://aframe.io/docs/1.2.0/introduction/best-practices.html#performance
It could be something else on that list, e.g. raycasting, garbage collection issues etc. that's causing the problem.
Using the browser debuger to profile your code may give some further clues as to what's going on with performance.
I have a small dataset collect from imagenet(7 classes each class with 1000 training data). I try to train it with alexnet model. But somehow the accuracy just cant go any higher(about 68% maximum). I remove conv4 and conv5 layer to prevent model overfitting also decrease the number of neuron in each layer(conv and fc). here is my setup.
Did i do anything wrong so that the accuracy is so low?
I want to sort out a few terms:
(1) A perceptron is an individual cell in a neural net.
(2) In a CNN, we generally focus on the kernel (filter) as a unit; this is the square matrix of perceptrons that forms a psuedo-visual unit.
(3) The only place it usually makes sense to focus on an individual perceptron is in the FC layers. When you talk about removing some of the perceptrons, I think you mean kernels.
The most important part of training a model is to make sure that your model is properly fitted to the problem at hand. AlexNet (and CaffeNet, the BVLC implementation) is fitted to the full ImageNet data set. Alex Krizhevsky and his colleagues spent a lot of research effort in tuning their network to the problem. You are not going to get similar accuracy -- on a severely reduced data set -- by simply removing layers and kernels at random.
I suggested that you start from CONVNET (the CIFAR-10 net) because it's much better tuned to this scale of problem. Most of all, I strongly recommend that you make constant use of your visualization tools, so that you can detect when the various kernel layers begin to learn their patterns, and to see the effects of small changes in the topology.
You need to run some experiments to tune and understand your topology. Record the kernel visualizations at chosen times during the training -- perhaps at intervals of 10% of expected convergence -- and compare the visual acuity as you remove a few kernels, or delete an entire layer, or whatever else you choose.
For instance, I expect that if you do this with your current amputated CaffeNet, you'll find that the severe losses in depth and breadth greatly change the feature recognition it's learning. The current depth of building blocks is not enough to recognize edges, then shapes, then full body parts. However, I could be wrong -- you do have three remaining layers. That's why I asked you to post the visualizations you got, to compare with published AlexNet features.
edit: CIFAR VISUALIZATION
CIFAR is much better differentiated between classes than is ILSVRC-2012. Thus, the training requires less detail per layer and fewer layers. Training is faster, and the filters are not nearly as interesting to the human eye. This is not a problem with the Gabor (not Garbor) filter; it's just that the model doesn't have to learn so many details.
For instance, for CONVNET to discriminate between a jonquil and a jet, we just need a smudge of yellow inside a smudge of white (the flower). For AlexNet to tell a jonquil from a cymbidium orchid, the network needs to learn about petal count or shape.
what is the difference between R-CNN, fast R-CNN, faster R-CNN and YOLO in terms of the following:
(1) Precision on same image set
(2) Given SAME IMAGE SIZE, the run time
(3) Support for android porting
Considering these three criteria which is the best object localization technique?
R-CNN is the daddy-algorithm for all the mentioned algos, it really provided the path for researchers to build more complex and better algorithm on top of it.
R-CNN, or Region-based Convolutional Neural Network
R-CNN consist of 3 simple steps:
Scan the input image for possible objects using an algorithm called Selective Search, generating ~2000 region proposals
Run a convolutional neural net (CNN) on top of each of these region proposals
Take the output of each CNN and feed it into a) an SVM to classify the region and b) a linear regressor to tighten the bounding box of the object, if such an object exists.
Fast R-CNN:
Fast R-CNN was immediately followed R-CNN. Fast R-CNN is faster and better by the virtue of following points:
Performing feature extraction over the image before proposing regions, thus only running one CNN over the entire image instead of 2000 CNN’s over 2000 overlapping regions
Replacing the SVM with a softmax layer, thus extending the neural network for predictions instead of creating a new model
Intuitively it makes a lot of sense to remove 2000 conv layers and instead take once Convolution and make boxes on top of that.
Faster R-CNN:
One of the drawbacks of Fast R-CNN was the slow selective search algorithm and Faster R-CNN introduced something called Region Proposal network(RPN).
Here’s is the working of the RPN:
At the last layer of an initial CNN, a 3x3 sliding window moves across the feature map and maps it to a lower dimension (e.g. 256-d)
For each sliding-window location, it generates multiple possible regions based on k fixed-ratio anchor boxes (default bounding boxes)
Each region proposal consists of:
an “objectness” score for that region and
4 coordinates representing the bounding box of the region
In other words, we look at each location in our last feature map and consider k different boxes centered around it: a tall box, a wide box, a large box, etc. For each of those boxes, we output whether or not we think it contains an object, and what the coordinates for that box are. This is what it looks like at one sliding window location:
The 2k scores represent the softmax probability of each of the k bounding boxes being on “object.” Notice that although the RPN outputs bounding box coordinates, it does not try to classify any potential objects: its sole job is still proposing object regions. If an anchor box has an “objectness” score above a certain threshold, that box’s coordinates get passed forward as a region proposal.
Once we have our region proposals, we feed them straight into what is essentially a Fast R-CNN. We add a pooling layer, some fully-connected layers, and finally a softmax classification layer and bounding box regressor. In a sense, Faster R-CNN = RPN + Fast R-CNN.
YOLO:
YOLO uses a single CNN network for both classification and localising the object using bounding boxes. This is the architecture of YOLO :
In the end you will have a tensor of shape 1470 i.e 7*7*30 and the structure of the CNN output will be:
The 1470 vector output is divided into three parts, giving the probability, confidence and box coordinates. Each of these three parts is also further divided into 49 small regions, corresponding to the predictions at the 49 cells that form the original image.
In postprocessing steps, we take this 1470 vector output from the network to generate the boxes that with a probability higher than a certain threshold.
I hope you get the understanding of these networks, to answer your question on how the performance of these network differs:
On the same dataset: 'You can be sure that the performance of these networks are in the order they are mentioned, with YOLO being the best and R-CNN being the worst'
Given SAME IMAGE SIZE, the run time: Faster R-CNN achieved much better speeds and a state-of-the-art accuracy. It is worth noting that although future models did a lot to increase detection speeds, few models managed to outperform Faster R-CNN by a significant margin. Faster R-CNN may not be the simplest or fastest method for object detection, but it is still one of the best performing. However researchers have used YOLO for video segmentation and by far its the best and fastest when it comes to video segmentation.
Support for android porting: As far as my knowledge goes, Tensorflow has some android APIs to port to android but I am not sure how these network will perform or even will you be able to port it or not. That again is subjected to hardware and data_size. Can you please provide the hardware and the size so that I will be able to answer it clearly.
The youtube video tagged by #A_Piro gives a nice explanation too.
P.S. I borrowed a lot of material from Joyce Xu Medium blog.
If your are interested in these algorithms you should take a look into this lesson which go through the algoritmhs you named : https://www.youtube.com/watch?v=GxZrEKZfW2o.
PS: There is also a Fast YOLO if I remember well haha !
I have been working with YOLO and FRCNN a lot. To me the YOLO has the best accuracy and speed but if you want to do research on image processing, I will suggest FRCNN as many previous works are done with it, and to do research you really want to be consistent.
For Object detection, I am trying SSD+ Mobilenet. It has a balance of accuracy and speed So it can also be ported to android devices easily with good fps.
It has less accuracy compared to faster rcnn but more speed than other algorithms.
It also has good support for android porting.
I am trying to build a 11 class image classifier with 13000 training images and 3000 validation images. I am using deep neural network which is being trained using mxnet. Training accuracy is increasing and reached above 80% but validation accuracy is coming in range of 54-57% and its not increasing.
What can be the issue here? Should I increase the no of images?
The issue here is that your network stop learning useful general features at some point and start adapting to peculiarities of your training set (overfitting it in result). You want to 'force' your network to keep learning useful features and you have few options here:
Use weight regularization. It tries to keep weights low which very often leads to better generalization. Experiment with different regularization coefficients. Try 0.1, 0.01, 0.001 and see what impact they have on accuracy.
Corrupt your input (e.g., randomly substitute some pixels with black or white). This way you remove information from your input and 'force' the network to pick up on important general features. Experiment with noising coefficients which determines how much of your input should be corrupted. Research shows that anything in the range of 15% - 45% works well.
Expand your training set. Since you're dealing with images you can expand your set by rotating / scaling etc. your existing images (as suggested). You could also experiment with pre-processing your images (e.g., mapping them to black and white, grayscale etc. but the effectiveness of this technique will depend on your exact images and classes)
Pre-train your layers with denoising critera. Here you pre-train each layer of your network individually before fine tuning the entire network. Pre-training 'forces' layers to pick up on important general features that are useful for reconstructing the input signal. Look into auto-encoders for example (they've been applied to image classification in the past).
Experiment with network architecture. Your network might not have sufficient learning capacity. Experiment with different neuron types, number of layers, and number of hidden neurons. Make sure to try compressing architectures (less neurons than inputs) and sparse architectures (more neurons than inputs).
Unfortunately the process of training network that generalizes well involves a lot of experimentation and almost brute force exploration of parameter space with a bit of human supervision (you'll see many research works employing this approach). It's good to try 3-5 values for each parameter and see if it leads you somewhere.
When you experiment plot accuracy / cost / f1 as a function of number of iterations and see how it behaves. Often you'll notice a peak in accuracy for your test set, and after that a continuous drop. So apart from good architecture, regularization, corruption etc. you're also looking for a good number of iterations that yields best results.
One more hint: make sure each training epochs randomize the order of images.
This clearly looks like a case where the model is overfitting the Training set, as the validation accuracy was improving step by step till it got fixed at a particular value. If the learning rate was a bit more high, you would have ended up seeing validation accuracy decreasing, with increasing accuracy for training set.
Increasing the number of training set is the best solution to this problem. You could also try applying different transformations (flipping, cropping random portions from a slightly bigger image)to the existing image set and see if the model is learning better.
So I have been making a simple HTML5 tuner using the Web Audio API. I have it all set up to respond to the correct frequencies, the problem seems to be with getting the actual frequencies. Using the input, I create an array of the spectrum where I look for the highest value and use that frequency as the one to feed into the tuner. The problem is that when creating an analyser in Web Audio it can not become more specific than an FFT value of 2048. When using this if i play a 440hz note, the closest note in the array is something like 430hz and the next value seems to be higher than 440. Therefor the tuner will think I am playing these notes when infact the loudest frequency should be 440hz and not 430hz. Since this frequency does not exist in the analyser array I am trying to figure out a way around this or if I am missing something very obvious.
I am very new at this so any help would be very appreciated.
Thanks
There are a number of approaches to implementing pitch detection. This paper provides a review of them. Their conclusion is that using FFTs may not be the best way to go - however, it's unclear quite what their FFT-based algorithm actually did.
If you're simply tuning guitar strings to fixed frequencies, much simpler approaches exist. Building a fully chromatic tuner that does not know a-priori the frequency to expect is hard.
The FFT approach you're using is entirely possible (I've built a robust musical instrument tuner using this approach that is being used white-label by a number of 3rd parties). However you need a significant amount of post-processing of the FFT data.
To start, you solve the resolution problem using the Short Timer FFT (STFT) - or more precisely - a succession of them. The process is described nicely in this article.
If you intend building a tuner for guitar and bass guitar (and let's face it, everyone who asks the question here is), you'll need t least a 4092-point DFT with overlapping windows in order not to violate the nyquist rate on the bottom E1 string at ~41Hz.
You have a bunch of other algorithmic and usability hurdles to overcome. Not least, perceived pitch and the spectral peak aren't always the same. Taking the spectral peak from the STFT doesn't work reliably (this is also why the basic auto-correlation approach is also broken).