How do generators (yield) work on the low-level? - generator

I know the concept of generators (usually yield) that most scripting languages provide (like PHP or Python), so how to use them, how they work and what benefits (less clutter, more performance, less memory) they usually have within the scope of the language itself.
My question targets an explanation of how they work under the hood. Somehow a state must be stored somewhere outside the scope of the language itself. And this "somehow" must be a very generic concept, because I can use generators like any normal function that would return an array otherwise.
For example, if I call functions from binary libraries--like querying MySQL inside a PHP generator--somehow the state of the database connection has to be kept alive. So a generator has to interfere somehow with an external application (MySQL server in this case) which normal code execution within the language does not allow directly, usually. Normal functions would only allow to use the provided API functions from the library, but using generators seem to have some automagic concepts to soften this restriction and provide the initially named benefits that generators often yield (pun intended).
So, what are the basic concepts of how to provide a generator from the POV of a language/interpreter designer?
(How are generators and coroutines implemented in CPython? is not a duplicate, IMHO, because I'm not asking for a specific implementation of CPython, but the general ideas behind them.)

Related

How to represent standalone functions calling other standalone functions

I'm documenting the current state of a javascript package which is comprised of several modules predominantly consisting of standalone functions. As the result of using callbacks extensively, the package includes nested calls between standalone functions from multiple packages.
With this in mind, does anyone know what is the best way to represent calls between standalone functions in a sequence diagram?
Are the details of the standalone function worth it?
A common wisdom recommend to avoid the trap of UML as graphical programming language. Things that are easier expressed in code and easy to understand by readers better stay as code. Prefer to use UML to give the big picture, and explain complex relationships that are less obvious to spot in the code.
Automate obvious documentation?
Manually modelling a very precise sequence diagram is time consuming. Moreover, such diagram is quickly outdated with the next version of code.
Therefore, if your interest is to give an overview on how the function relate to each other, you may be interested to provide instead a visual overview using a simpler call graph. The reader can grasp the overall structure easily and look for more details in the code:
The advantage is that this task can be automated, using one of the many call graph generators available on the market (just google for javascript call graph generator to find some). There's by the way an excellent book on further automating documentation, that I can only recommend with enthousiasm: "Living Documentation: Continuous Knowledge Sharing by Design, First Edition"
If you have to set the focus on the detailed chronological sequencing of the calls a call graph would however not be sufficient. In this case, the sequence diagrams may then indeed be more relevant.
UML sequence diagrams with standalone functions?
A sequence diagram shows interactions between lifelines within an enclosing classifier. Usually a lifeline is used to represent an object, i.e. an instance of a class, but its definition is flexible enough to accommodate with any participant in an interaction.
Individual standalone functions can moreover be considered as individual objects that instantiate a more general class of functions (that's the concept behind a functor, like C++ std::function). This is particularly relevant in javascript where functions can be assigned to variables or used as parameters. So you may just use a lifeline that clarifies this. Up to you to decide how you will name the call message (e.g. operator()(a,b,c) or using its real name for readability ? ):
You can also group a bunch of related standalone functions into a pseudo-class that would represent in your model a module, compilation unit or namespace. Although a module is not stricto sensu an object, you may in your modeling deal with it as if it was a class with only one (anonymous) instance (i.e. its state would be the global variables defined in the module scope. The related standalone functions could be seen as operations of this imaginary class). The lifeline would correspond to a module, and function calls would be represented as synchronous messages either to another module or a message to itself with nested activation to visualise the “nested” calls.

tcl - when to use package+namespace vs interp?

I'm just starting with TCL and trying to get my head around how to best define and integrate modules. There seem to be much effort put into the package+namespace concept, but from what I can tell interp is more powerful and lean for every thinkable scenario. In particular when it comes to hiding and renaming procedures, but also the lack of creep in the global namespace. The only reason to use package+namespaces seem to be because "once upon a time Sun said so".
When should I ever use package+namespace instead of interp?
Namespaces and packages work together. Interpreters are something else.
A namespace is a small scale naming context in Tcl. It can contain commands, variables and other namespaces. You can refer to entities in a namespace via either local names (foo) or via qualified names (bar::foo); if a qualified name starts with ::, it is relative to the (interpreter-)global namespace, and can be used to refer to its command or variable from anywhere in the interpreter. (FWIW, the TclOO object system builds extensively on top of namespaces; there is one namespace per object.)
A package is a high-level concept for a bunch of code supplied by some sort of library. Packages have abstract names (the name do not have to correspond to how the library's implementation is stored on disk) and a distinct version; you can ask for a particular version if necessary, though most of the time you don't bother. Packages can be implemented by multiple mechanisms, but they almost all come down to sourceing some number of Tcl scripts and loading some number of DLLs. Almost all packages declare commands, and they conventionally are encouraged to put those commands in a namespace with the same general name as the package. However, quite a few older packages do not do this for various reasons, mostly to do with compatibility with existing code.
An interpreter is a security context in Tcl. By default, Tcl creates one interpreter (plus another if it sets up the console window in wish). Named entities in one interpreter are completely distinct from named entities in another interpreter with a few key exceptions:
Channels have common names across all interpreters. This means that an interpreter can talk about channels owned by another interpreter, but merely being able to mention its name doesn't give permission to access the channel. (The stdin, stdout and stderr channels are shared by default.)
The interp alias command can be used to make alias commands, which are such that invoking a command (the alias) in one interpreter can cause a command (the implementation) in another interpreter to be called, with all arguments safely passed over. This allows one interpreter to expose whatever special calls it wants another interpreter to access without losing control, but it is up to the implementation of those commands to act safely on those arguments.
A safe interpreter is one with the unsafe commands of Tcl profiled out by default. (That's things like open, socket, source, load, cd, etc.) The parent interpreter that created the safe child interpreter can use the alias mechanism to add in exactly the functionality desired; it's very much analogous to an OS system call except you can easily make your own application-specific ones.
Tcl's threading package is designed to create one interpreter per thread (and the aliasing mechanism does not work across threads). That means that there's very little in the way of shared resources by default, and inter-thread communication is done via queued message passing.
In general, packages are required at most once per interpreter and are how you are recommended to access most third-party functionality. Namespaces are fairly lightweight and are used for all sorts of things, and interpreters are considered to be expensive; lots of quite thoroughly production-grade Tcl scripts only ever work with a single interpreter. (Threads are even more expensive than interpreters; it's good practice to match the number of threads you create to the hardware load that you wish to impose, probably through the use of suitable thread pools.)
The purpose of a module is to provide modular code, i.e. code that can easily be used by applications beyond the module writer's knowledge and control, and that encapsulates their own internals.
Package-namespace- and interpreter-based modules are probably equally good at encapsulation, but it's not as easy to make interpreter-based modules that play well with arbitrary applications (it is of course possible).
My own opinion is that interpreters are application level (I mostly use them for user input and for controlled evaluation), not module level. Both namespaces and packages have their warts, but in most cases they do what is expected of them with a minimum of fuss.
My recommendation is that if you are writing modules for your own benefit and interpreters serve you well, by all means use them. If you write modules that other people are to use, possibly including yourself in 18 months, you should stick with namespaces and packages.

Why can't programming language turn off select "features"

As programming evolved over the years (from assembler to high level languages), more and more features (garbage collection, exceptions, dynamic typing) have been added as standard to some languages. Is it possible to create a high level language that starts of with all features on by default, and once a program runs as well, then to be able to selectively turn features of in code, or have sections of code which a quarantined off so that they do not use these features. Perhaps modifying branches in the Abstract Syntax Tree to be statically typed, instead of dynamic; compiled, instead of interpreted.
Is there any programming language which can be used as dynamic and static, and also selectively turn of garbage collection, by releasing used objects, even up to disabling exception handling, all the way to the point where the run-time consist of only c like constructs, or any the above mentioned?
For a language to do what you're asking, it would have to be built to support both alternatives: garbage collection and manual memory management or static and dynamic typing and make the two worlds interoperate.
In other words, what you're saying to be just "turn off A", is actually "design A, design B, design transitioning between A and B". So, doing this would be a significant amount of additional design and implementation work, it would make the language more complicated and the language might end up as "worst of both worlds".
Now, languages that support both combinations of the features you mentioned do exist, in a limited form:
C# is normally a statically typed language, but it also has the dynamic keyword, which allows you to switch to dynamic typing for certain variables. This was primarily meant for interoperation with dynamic languages, and is not used much in practice.
C++/CLI is a language that supports both manually managed memory, (* pointers, new to allocate and delete to deallocate) and garbage collected memory (^ pointers, gcnew to allocate). It is primarily meant for interoperation between C++ code and .Net code and is not widely used in practice.
You might have noticed a theme here: in both cases, the feature/language were created to bridge the two worlds, but didn't gain much traction.

Framework vs. Toolkit vs. Library [duplicate]

This question already has answers here:
What is the difference between a framework and a library? [closed]
(22 answers)
Closed 6 years ago.
What is the difference between a Framework, a Toolkit and a Library?
The most important difference, and in fact the defining difference between a library and a framework is Inversion of Control.
What does this mean? Well, it means that when you call a library, you are in control. But with a framework, the control is inverted: the framework calls you. (This is called the Hollywood Principle: Don't call Us, We'll call You.) This is pretty much the definition of a framework. If it doesn't have Inversion of Control, it's not a framework. (I'm looking at you, .NET!)
Basically, all the control flow is already in the framework, and there's just a bunch of predefined white spots that you can fill out with your code.
A library on the other hand is a collection of functionality that you can call.
I don't know if the term toolkit is really well defined. Just the word "kit" seems to suggest some kind of modularity, i.e. a set of independent libraries that you can pick and choose from. What, then, makes a toolkit different from just a bunch of independent libraries? Integration: if you just have a bunch of independent libraries, there is no guarantee that they will work well together, whereas the libraries in a toolkit have been designed to work well together – you just don't have to use all of them.
But that's really just my interpretation of the term. Unlike library and framework, which are well-defined, I don't think that there is a widely accepted definition of toolkit.
Martin Fowler discusses the difference between a library and a framework in his article on Inversion of Control:
Inversion of Control is a key part of
what makes a framework different to a
library. A library is essentially a
set of functions that you can call,
these days usually organized into
classes. Each call does some work and
returns control to the client.
A framework embodies some abstract
design, with more behavior built in.
In order to use it you need to insert
your behavior into various places in
the framework either by subclassing or
by plugging in your own classes. The
framework's code then calls your code
at these points.
To summarize: your code calls a library but a framework calls your code.
Diagram
If you are a more visual learner, here is a diagram that makes it clearer:
(Credits: http://tom.lokhorst.eu/2010/09/why-libraries-are-better-than-frameworks)
The answer provided by Barrass is probably the most complete. However, the explanation could easily be stated more clearly. Most people miss the fact that these are all nested concepts. So let me lay it out for you.
When writing code:
eventually you discover sections of code that you're repeating in your program, so you refactor those into Functions/Methods.
eventually, after having written a few programs, you find yourself copying functions you already made into new programs. To save yourself time you bundle those functions into Libraries.
eventually you find yourself creating the same kind of user interfaces every time you make use of certain libraries. So you refactor your work and create a Toolkit that allows you to create your UIs more easily from generic method calls.
eventually, you've written so many apps that use the same toolkits and libraries that you create a Framework that has a generic version of this boilerplate code already provided so all you need to do is design the look of the UI and handle the events that result from user interaction.
Generally speaking, this completely explains the differences between the terms.
Introduction
There are various terms relating to collections of related code, which have both historical (pre-1994/5 for the purposes of this answer) and current implications, and the reader should be aware of both, particularly when reading classic texts on computing/programming from the historic era.
Library
Both historically, and currently, a library is a collection of code relating to a specific task, or set of closely related tasks which operate at roughly the same level of abstraction. It generally lacks any purpose or intent of its own, and is intended to be used by (consumed) and integrated with client code to assist client code in executing its tasks.
Toolkit
Historically, a toolkit is a more focused library, with a defined and specific purpose. Currently, this term has fallen out of favour, and is used almost exclusively (to this author's knowledge) for graphical widgets, and GUI components in the current era. A toolkit will most often operate at a higher layer of abstraction than a library, and will often consume and use libraries itself. Unlike libraries, toolkit code will often be used to execute the task of the client code, such as building a window, resizing a window, etc. The lower levels of abstraction within a toolkit are either fixed, or can themselves be operated on by client code in a proscribed manner. (Think Window style, which can either be fixed, or which could be altered in advance by client code.)
Framework
Historically, a framework was a suite of inter-related libraries and modules which were separated into either 'General' or 'Specific' categories. General frameworks were intended to offer a comprehensive and integrated platform for building applications by offering general functionality, such as cross platform memory management, multi-threading abstractions, dynamic structures (and generic structures in general). Historical general frameworks (Without dependency injection, see below) have almost universally been superseded by polymorphic templated (parameterised) packaged language offerings in OO languages, such as the STL for C++, or in packaged libraries for non-OO languages (guaranteed Solaris C headers). General frameworks operated at differing layers of abstraction, but universally low level, and like libraries relied on the client code carrying out it's specific tasks with their assistance.
'Specific' frameworks were historically developed for single (but often sprawling) tasks, such as "Command and Control" systems for industrial systems, and early networking stacks, and operated at a high level of abstraction and like toolkits were used to carry out execution of the client codes tasks.
Currently, the definition of a framework has become more focused and taken on the "Inversion of Control" principle as mentioned elsewhere as a guiding principle, so program flow, as well as execution is carried out by the framework. Frameworks are still however targeted either towards a specific output; an application for a specific OS for example (MFC for MS Windows for example), or for more general purpose work (Spring framework for example).
SDK: "Software Development Kit"
An SDK is a collection of tools to assist the programmer to create and deploy code/content which is very specifically targeted to either run on a very particular platform or in a very particular manner. An SDK can consist of simply a set of libraries which must be used in a specific way only by the client code and which can be compiled as normal, up to a set of binary tools which create or adapt binary assets to produce its (the SDK's) output.
Engine
An Engine (In code collection terms) is a binary which will run bespoke content or process input data in some way. Game and Graphics engines are perhaps the most prevalent users of this term, and are almost universally used with an SDK to target the engine itself, such as the UDK (Unreal Development Kit) but other engines also exist, such as Search engines and RDBMS engines.
An engine will often, but not always, allow only a few of its internals to be accessible to its clients. Most often to either target a different architecture, change the presentation of the output of the engine, or for tuning purposes. Open Source Engines are by definition open to clients to change and alter as required, and some propriety engines are fixed completely. The most often used engines in the world however, are almost certainly JavaScript Engines. Embedded into every browser everywhere, there are a whole host of JavaScript engines which will take JavaScript as an input, process it, and then output to render.
API: "Application Programming Interface"
The final term I am answering is a personal bugbear of mine: API, was historically used to describe the external interface of an application or environment which, itself was capable of running independently, or at least of carrying out its tasks without any necessary client intervention after initial execution. Applications such as Databases, Word Processors and Windows systems would expose a fixed set of internal hooks or objects to the external interface which a client could then call/modify/use, etc to carry out capabilities which the original application could carry out. API's varied between how much functionality was available through the API, and also, how much of the core application was (re)used by the client code. (For example, a word processing API may require the full application to be background loaded when each instance of the client code runs, or perhaps just one of its linked libraries; whereas a running windowing system would create internal objects to be managed by itself and pass back handles to the client code to be utilised instead.
Currently, the term API has a much broader range, and is often used to describe almost every other term within this answer. Indeed, the most common definition applied to this term is that an API offers up a contracted external interface to another piece of software (Client code to the API). In practice this means that an API is language dependent, and has a concrete implementation which is provided by one of the above code collections, such as a library, toolkit, or framework.
To look at a specific area, protocols, for example, an API is different to a protocol which is a more generic term representing a set of rules, however an individual implementation of a specific protocol/protocol suite that exposes an external interface to other software would most often be called an API.
Remark
As noted above, historic and current definitions of the above terms have shifted, and this can be seen to be down to advances in scientific understanding of the underlying computing principles and paradigms, and also down to the emergence of particular patterns of software. In particular, the GUI and Windowing systems of the early nineties helped to define many of these terms, but since the effective hybridisation of OS Kernel and Windowing system for mass consumer operating systems (bar perhaps Linux), and the mass adoption of dependency injection/inversion of control as a mechanism to consume libraries and frameworks, these terms have had to change their respective meanings.
P.S. (A year later)
After thinking carefully about this subject for over a year I reject the IoC principle as the defining difference between a framework and a library. There ARE a large number of popular authors who say that it is, but there are an almost equal number of people who say that it isn't. There are simply too many 'Frameworks' out there which DO NOT use IoC to say that it is the defining principle. A search for embedded or micro controller frameworks reveals a whole plethora which do NOT use IoC and I now believe that the .NET language and CLR is an acceptable descendant of the "general" framework. To say that IoC is the defining characteristic is simply too rigid for me to accept I'm afraid, and rejects out of hand anything putting itself forward as a framework which matches the historical representation as mentioned above.
For details of non-IoC frameworks, see, as mentioned above, many embedded and micro frameworks, as well as any historical framework in a language that does not provide callback through the language (OK. Callbacks can be hacked for any device with a modern register system, but not by the average programmer), and obviously, the .NET framework.
A library is simply a collection of methods/functions wrapped up into a package that can be imported into a code project and re-used.
A framework is a robust library or collection of libraries that provides a "foundation" for your code. A framework follows the Inversion of Control pattern. For example, the .NET framework is a large collection of cohesive libraries in which you build your application on top of. You can argue there isn't a big difference between a framework and a library, but when people say "framework" it typically implies a larger, more robust suite of libraries which will play an integral part of an application.
I think of a toolkit the same way I think of an SDK. It comes with documentation, examples, libraries, wrappers, etc. Again, you can say this is the same as a framework and you would probably be right to do so.
They can almost all be used interchangeably.
very, very similar, a framework is usually a bit more developed and complete then a library, and a toolkit can simply be a collection of similar librarys and frameworks.
a really good question that is maybe even the slightest bit subjective in nature, but I believe that is about the best answer I could give.
Library
I think it's unanimous that a library is code already coded that you can use so as not to have to code it again. The code must be organized in a way that allows you to look up the functionality you want and use it from your own code.
Most programming languages come with standard libraries, especially some code that implements some kind of collection. This is always for the convenience that you don't have to code these things yourself. Similarly, most programming languages have construct to allow you to look up functionality from libraries, with things like dynamic linking, namespaces, etc.
So code that finds itself often needed to be re-used is great code to be put inside a library.
Toolkit
A set of tools used for a particular purpose. This is unanimous. The question is, what is considered a tool and what isn't. I'd say there's no fixed definition, it depends on the context of the thing calling itself a toolkit. Example of tools could be libraries, widgets, scripts, programs, editors, documentation, servers, debuggers, etc.
Another thing to note is the "particular purpose". This is always true, but the scope of the purpose can easily change based on who made the toolkit. So it can easily be a programmer's toolkit, or it can be a string parsing toolkit. One is so broad, it could have tool touching everything programming related, while the other is more precise.
SDKs are generally toolkits, in that they try and bundle a set of tools (often of multiple kind) into a single package.
I think the common thread is that a tool does something for you, either completely, or it helps you do it. And a toolkit is simply a set of tools which all perform or help you perform a particular set of activities.
Framework
Frameworks aren't quite as unanimously defined. It seems to be a bit of a blanket term for anything that can frame your code. Which would mean: any structure that underlies or supports your code.
This implies that you build your code against a framework, whereas you build a library against your code.
But, it seems that sometimes the word framework is used in the same sense as toolkit or even library. The .Net Framework is mostly a toolkit, because it's composed of the FCL which is a library, and the CLR, which is a virtual machine. So you would consider it a toolkit to C# development on Windows. Mono being a toolkit for C# development on Linux. Yet they called it a framework. It makes sense to think of it this way too, since it kinds of frame your code, but a frame should more support and hold things together, then do any kind of work, so my opinion is this is not the way you should use the word.
And I think the industry is trying to move into having framework mean an already written program with missing pieces that you must provide or customize. Which I think is a good thing, since toolkit and library are great precise terms for other usages of "framework".
Framework: installed on you machine and allowing you to interact with it. without the framework you can't send programming commands to your machine
Library: aims to solve a certain problem (or several problems related to the same category)
Toolkit: a collection of many pieces of code that can solve multiple problems on multiple issues (just like a toolbox)
It's a little bit subjective I think. The toolkit is the easiest. It's just a bunch of methods, classes that can be use.
The library vs the framework question I make difference by the way to use them. I read somewhere the perfect answer a long time ago. The framework calls your code, but on the other hand your code calls the library.
In relation with the correct answer from Mittag:
a simple example. Let's say you implement the ISerializable interface (.Net) in one of your classes. You make use of the framework qualities of .Net then, rather than it's library qualities. You fill in the "white spots" (as mittag said) and you have the skeleton completed. You must know in advance how the framework is going to "react" with your code. Actually .net IS a framework, and here is where i disagree with the view of Mittag.
The full, complete answer to your question is given very lucidly in Chapter 19 (the whole chapter devoted to just this theme) of this book, which is a very good book by the way (not at all "just for Smalltalk").
Others have noted that .net may be both a framework and a library and a toolkit depending on which part you use but perhaps an example helps. Entity Framework for dealing with databases is a part of .net that does use the inversion of control pattern. You let it know your models it figures out what to do with them. As a programmer it requires you to understand "the mind of the framework", or more realistically the mind of the designer and what they are going to do with your inputs. datareader and related calls, on the other hand, are simply a tool to go get or put data to and from table/view and make it available to you. It would never understand how to take a parent child relationship and translate it from object to relational, you'd use multiple tools to do that. But you would have much more control on how that data was stored, when, transactions, etc.

What's the difference between a "script" and an "application"?

I'm referring to distinctions such as in this answer:
...bash isn't for writing applications it's for, well, scripting. So sure, your application might have some housekeeping scripts but don't go writing critical-business-logic.sh because another language is probably better for stuff like that.
As programmer who's worked in many languages, this seems to be C, Java and other compiled language snobbery. I'm not looking for reenforcement of my opinion or hand-wavy answers. Rather, I genuinely want to know what technical differences are being referred to.
(And I use C in my day job, so I'm not just being defensive.)
Traditionally a program is compiled and a script is interpreted, but that is not really important anymore. You can generate a compiled version of most scripts if you really want to, and other 'compiled' languages like Java are in fact interpreted (at the byte code level.)
A more modern definition might be that a program is intended to be used by a customer (perhaps an internal one) and thus should include documentation and support, while a script is primarily intended for the use of the author.
The web is an interesting counter example. We all enjoy looking things up with the Google search engine. The bulk of the code that goes into creating the 'database' it references is used only by its authors and maintainers. Does that make it a script?
I would say that an application tends to be used interactively, where a script would run its course, suitable for batch work. I don't think it's a concrete distinction.
Usually, it is "script" versus "program".
I am with you that this distinction is mostly "compiled language snobbery", or to quote Larry Wall and take the other side of the fence, "a script is what the actors have, a programme is given to the audience".
This is an interesting topic, and I don't think there are very good guidelines for the differentiating a "script" and a "application."
Let's take a look at some Wikipedia articles to get a feel of the distinction.
Script (Wikipedia -> Scripting language):
A scripting language, script language or extension language, is a programming language that controls a software application. "Scripts" are often treated as distinct from "programs", which execute independently from any other application. At the same time they are distinct from the core code of the application, which is usually written in a different language, and by being accessible to the end user they enable the behavior of the application to be adapted to the user's needs.
Application (Wikipedia -> Application software -> Terminology)
In computer science, an application is a computer program designed to help people perform a certain type of work. An application thus differs from an operating system (which runs a computer), a utility (which performs maintenance or general-purpose chores), and a programming language (with which computer programs are created). Depending on the work for which it was designed, an application can manipulate text, numbers, graphics, or a combination of these elements.
Reading the above entries seems to suggest that the distinction is that a script is "hosted" by another piece of software, while an application is not. I suppose that can be argued, such as shell scripts controlling the behavior of the shell, and perl scripts controlling the behavior of the interpreter to perform desired operations. (I feel this may be a little bit of a stretch, so I may not completely agree with it.)
When it comes down to it, it is in my opinion that the colloquial distinction can be made in terms of the scale of the program. Scripts are generally smaller in scale when compared to applications.
Also, in terms of the purpose, a script generally performs tasks that needs taken care of, say for example, build scripts that produce multiple release versions for a certain piece of software. On the otherhand, applications are geared toward providing functionality that is more refined and geared toward an end user. For example, Notepad or Firefox.
John Ousterhout (the inventor of TCL) has a good article at http://www.tcl.tk/doc/scripting.html where he proposes a distinction between system programming languages (for implementing building blocks, emphasis on correctness, type safety) vs scripting languages (for combining building blocks, emphasis on responsiveness to changing environments and requirements, easy conversion in and out of textual representations). If you go with that categorisation system, then 99% of programmers are doing jobs that are more appropriate to scripting languages than to system programming languages.
A script tends to be a series of commands that starts, runs, and terminates. It often requires no/little human interaction. An application is a "program"... it often requires human interaction, it tends to be larger.
Script to me implies line-by-line interpretation of the code. You can open a script and view its programmer-readable contents. An application implies a stand-alone compiled executable.
It's often just a semantic argument, or even a way of denigrating certain programming languages. As far as I'm concerned, a "script" is a type of program, and the exact definition is somewhat vague and varies with context.
I might use the term "script" to mean a program that primarily executes linearly, rather than with lots of sequential logic or subroutines, much like a "script" in Hollywood is a linear sequence of instructions for an actor to execute. I might use it to mean a program that is written in a language embedded inside a larger program, for the purpose of driving that program. For example, automating tasks under the old Mac OS with AppleScript, or driving a program that exposes itself in some way with an embedded TCL interface.
But in all those cases, a script is a type of program.
The term "scripting language" has been used for dynamically interpreted (sometimes compiled) languages, usually these have a lot of common features such as very high level instructions, built in hashes and arbitrary-length lists and other high level data structures, etc. But those languages are capable of very large, complicated, modular, well-designed programs, so if you think of a "script" as something other than a program, that term might confuse you.
See also Is it a Perl program or a Perl script? in perlfaq1.
A script generally runs as part of a larger application inside a scripting engine
eg. JavaScript -> Browser
This is in contrast to both traditional static typed compiled languages and to dynamic languages, where the code is intended to form the main part of the application.
An application is a collection of scripts geared toward a common set of problems.
A script is a bit of code for performing one fairly specific task.
IMO, the difference has nothing whatsoever to do with the language that's used. It's possible to write a complex application with bash, and it's possible to write a simple script with C++.
Personally, I think the separation is a step back from the actual implementation.
In my estimation, an application is planned. It has multiple goals, it has multiple deliverables. There are tasks set aside at design time in advance of coding that the application must meet.
A script however, is just thrown together as suits, and little planning is involved.
Lack of proper planning does not however downgrade you to a script. Possibly, it makes your application a poorly organized collection of poorly planned scripts.
Further more, an application can contain scripts that aggregated comprise the whole. But a script can only reference an application.
Taking perl as an example, you can write perl scripts or perl applications.
A script would imply a single file or a single namespace. (e.g. updateFile.pl).
An application would be something made up of a collection of files or namespaces/classes (e.g. an OO-designed perl application with many .pm module files).
An application is big and will be used over and over by people and maybe sold to a customer.
A script starts out small, stays small if you're lucky, is rarely sold to a customer, and might either be run automatically or fall into disuse.
What about:
Script:
A script is text file (or collection of text files) of programming statements written in a language which allows individual statements written in it to be interpreted to machine executable code directly before each is executed and with the intention of this occurring.
Application:
An application is any computer program whose primary functionality involves providing service to a human Actor.
A script-based program written in a scripting language can therefore, theoretically, have its textual statements altered while the script is being executed (at great risk of , of course). The analogous situation for compiled programs is flipping bits in memory.
Any takers? :)
First of all, I would like to make it crystal clear that a script is a program. In other words, a script is a set of instructions.
Program:
A set of instructions which is going to be compiled is known as a Program.
Script:
A set of instructions which is going to be interpreted is known as a Script.
#Jeff's answer is good. My favorite explanation is
Many (most?) scripting languages are interpreted, and few compiled
languages are considered to be scripting languages, but the question
of compiled vs. interpreted is only loosely connected to the question
of "scripting" vs. "serious" languages.
A lot of the problem here is that "scripting" is a pretty vague
designation -- it means a language that's convenient for writing
scripts in, as opposed to writing "full-blown programs" (or
applications). But how does one distinguish a complex script from a
simple application? That's an essentially unanswerable question.
Generally, a script is a series of commands applied to some set of
data, possibly in a user-defined order... but then, one could stretch
that description to apply to Photoshop, which is clearly a major
application. Scripts are generally smaller than applications, do
some well-defined thing and are "simpler" to use, and typically can
be decomposed into a clear series of sub-operations, but all of these
things are subjective.
Referenced from here.
I think that there is no matter at all whether code is compiled or interpreted.
The true difference is in core logic of code:
If code makes new functionality that is not implemented in other programs in system - it's a program. It even can be manipulated by a script.
If code is MAINLY manipulates by actions of other programs and total result is MAINLY the results of work of manipulated programs - it's a script. Literally a script of actions for some programs.
Actually the difference between a script ( or a scripting language) and an application is that a script don't require it to be compiled into machine language.. You run the source of the script with an interpreter.. A application compiles the source into machine code so that you can run it as a stand alone application.
I would say a script is usually a set of commands or instructions written in plain text that are executed by a hosting application (browser, command interpreter or shell,...).
It does not mean it's not powerfull or not compiled in some way when it's actually executed. But a script cannot do anything by itself, it's just plain text.
By nature it can be a fragment only, needing to be combined to build a program or an application, but extended and fully developed scripts or set of scripts can be considered programs or applications when executed by the host, just like a bunch of source files can become an application once compiled.
A scripting language doesn't have a standard library or platform (or not much of one). It's small and light, designed to be embedded into a larger application. Bash and Javascript are great examples of scripting languages because they rely absolutely on other programs for their functionality.
Using this definition, a script is code designed to drive a larger application (suite). A Javascript might call on Firefox to open windows or manipulate the DOM. A Bash script executes existing programs or other scripts and connects them together with pipes.
You also ask why not scripting languages, so:
Are there even any unit-testing tools for scripting languages? That seems a very important tool for "real" applications that is completely missing. And there's rarely any real library bindings for scripting languages.
Most of the times, scripts could be replaced with a real, light language like Python or Ruby anyway.