How do I conver to binary if I have fewer bits? - binary

I'm given a 6 bit exponent range and a 4 bit mantissa range (MMMM|EEEEEE). I want to convert the number 171.125 to this form.
Converting both parts to binary I get 10101011.11111101 and normalising I have
1.0101011 11111101 x 2^7.
I found that the bias in this case is not 127 but it's given by a formula which gives the bias as 31. So for the 6-bit exponential part : exp-31=7=>exp=38=100110
However, my mantissa range is too small. What do I do with the fractional part?

Related

Convert from format with 5 exponent bits to format with 4 exponent bits

Consider the following two 9-bit floating-point representations based on the IEEE floating-point
format.
Format A:
There is 1 sign bit.
There are k = 5 exponent bits. The exponent bias is 15.
There are n = 3 fraction bits.
Format B:
There is 1 sign bit.
There are k = 4 exponent bits. The exponent bias is 7.
There are n = 4 fraction bits.
In the following table, you are given some bit patterns in format A, and your task is to convert
them to the closest value in format B. In
addition, give the values of numbers given by the format A and format B bit patterns
I'm currently stuck on 3 cases:
Format A
Value
Format B
Value
1 00111 010
-5/1024
0 00000 111
7/131072
1 11100 000
-8192
I am able to convert to decimal value for all 3 cases, but I am struggling to convert format B.
The first case if I change to format B, the exponent with bias will be -8 + bias = -8 + 7 = -1, so is it correct if I make the exponent all 0 (denormalized value)? And how will be the frac part?
The second case I think it is right to make the exp all 0 (denormalized value), but what is the correct frac part?
The last case, the exponent overflows (since 13 + 7 = 20 which exceeds 4-bit), so what should it be?
I really need to understand how this works, not only the answer. Thank you for any help!
The exponent field encodes an exponent. The code 0 means subnormal. The code 1 is the minimum normal exponent. With a bias of 7, the code of 1 encodes an exponent of 1−7 = −6. Therefore, the minimum exponent is −6. To encode a subnormal number, you need to adjust its exponent to be −6.
The value −5/1024 equals −1012•2−10. Shifting to make its exponent −6 gives −1012•2−10 = −0.01012•2−6. So the leading bit of the significand is 0 (confirming it is subnormal), and the trailing bits are 0101.
For 7/131,072, shifting to make the exponent −6 gives 1112•2−13 = 0.00001112•2−6. The significand does not fit into five bits (one leading plus four trailing), so this number cannot be represented in the format. Rounding to the nearest representable value gives 0.00012•2−6.
For −8192, shifting to make the exponent the largest representable value, 7, gives −12•213 = −10000002•27. So this number cannot be represented in the format. Rounding is implemented by choosing the rounding direction as if the exponent range were unbounded. So this should be rounded upward in magnitude (downward when the sign is conisdered). Rounding upward in magnitude from the largest finite value produces infinity. So this number is rounded to −∞, which is represented with the sign bit set, all ones in the exponent field, and all zeros in the primary significand field.

Why offset is calculated as `2^{n-1} - 1` instead of `2^{n-1}` for floating point exponent representation

I'm trying to understand why offset K in binary offset notation is calculated as
2^{n-1}-1 instead of 2^{n-1} for floating point exponent representation. Here is my reasoning for 2^{n-1}.
Four bits can represent values in the range [-8;7], so 0000 represents -8. An offset from zero here is 8 and can be calculated as 2^{n-1}. Using this offset we can define representation of any number, for example, the number 3.
What number do we need to add to -8 to get 3? It's 11, so 3 in offset binary is represented as 1011. And the formula seems to be number to represent + offset.
However, the real formula is number to represent + offset - 1, and so the correct representation is 1010. Can someone please explain why we also subtract additional one?
I am posting this as an answer to better explain my thougths, but even though I'll quote the standard a few times, I haven't found an explicitly stated reason.
In the following, I'll refer to the IEEE 754 standard (and succesive revisions) for floating point representation, even if OP doesn't mention it (if I'm wrong, please, let me know).
The question is about the particular representation of the exponent in a floating point number.
In subclause 3.3 Sets of floating-point data is said (emphasis mine):
The set of finite floating-point numbers representable within a
particular format is determined by the following integer parameters:
― b = the radix, 2 or 10
― p = the number of digits in the significand (precision)
― emax = the maximum exponent e
― emin = the minimum exponent e
emin shall be 1 − emax for all formats.
Later it specifies:
The smallest positive normal floating-point number is bemin and
the largest is bemax×(b − b1 − p). The non-zero floating-point numbers for a format with magnitude less than bemin
are called subnormal because their magnitudes lie between
zero and the smallest normal magnitude.
In 3.4 Binary interchange format encodings:
Representations of floating-point data in the binary interchange formats are encoded in k bits in the following three fields (...):
a) 1-bit sign S
b) w-bit biased exponent E = e + bias
c) (t=p−1)-bit trailing significand field digit string T=d1 d2 ... dp − 1 ; the leading bit of the significand, d0, is implicitly encoded in the biased exponent E
(...)
The range of the encoding’s biased exponent E shall include:
― every integer between 1 and 2w − 2, inclusive, to encode normal numbers
― the reserved value 0 to encode ±0 and subnormal numbers
― the reserved value 2w − 1 to encode ± ∞ and NaNs.
For example a 32-bit floating point number has those parameters:
k, storage width in bits 32
p, precision in bits 24
emax, maximum exponent e 127
emin, minimum exponent e -126
bias, E − e 127
w, exponent field width in bits 8
t, trailing significand field width in bits 23
In this Q&A is pointed out that: "The purpose of the bias is so that the exponent is stored in unsigned form, making it easier to do comparisons."
Considering the above mentioned 32-bit floating point representation a normal (not subnormal) number has an encoded biased exponent E in the range between 1 and 254.
The reason behind the particular choice of the range -126, 127 for the exponent could be, in my opinion, to extend the range of representable numbers: very low numbers are represented by subnormals so a bigger (even if only by one) maximum exponent can take care of the big ones.

Is the most significant decimal digits precision that can be converted to binary and back to decimal without loss of significance 6 or 7.225?

I've come across two different precision formulas for floating-point numbers.
⌊(N-1) log10(2)⌋ = 6 decimal digits (Single-precision)
and
N log10(2) ≈ 7.225 decimal digits (Single-precision)
Where N = 24 Significant bits (Single-precision)
The first formula is found at the top of page 4 of "IEEE Standard 754 for Binary Floating-Point Arithmetic" written by, Professor W. Kahan.
The second formula is found on the Wikipedia article "Single-precision floating-point format" under section IEEE 754 single-precision binary floating-point format: binary32.
For the first formula, Professor W. Kahan says
If a decimal string with at most 6 sig. dec. is converted to Single and then converted back to the same number of sig. dec.,
then the final string should match the original.
For the second formula, Wikipedia says
...the total precision is 24 bits (equivalent to log10(224) ≈ 7.225 decimal digits).
The results of both formulas (6 and 7.225 decimal digits) are different, and I expected them to be the same because I assumed they both were meant to represent the most significant decimal digits which can be converted to floating-point binary and then converted back to decimal with the same number of significant decimal digits that it started with.
Why do these two numbers differ, and what is the most significant decimal digits precision that can be converted to binary and back to decimal without loss of significance?
These are talking about two slightly different things.
The 7.2251 digits is the precision with which a number can be stored internally. For one example, if you did a computation with a double precision number (so you were starting with something like 15 digits of precision), then rounded it to a single precision number, the precision you'd have left at that point would be approximately 7 digits.
The 6 digits is talking about the precision that can be maintained through a round-trip conversion from a string of decimal digits, into a floating point number, then back to another string of decimal digits.
So, let's assume I start with a number like 1.23456789 as a string, then convert that to a float32, then convert the result back to a string. When I've done this, I can expect 6 digits to match exactly. The seventh digit might be rounded though, so I can't necessarily expect it to match (though it probably will be +/- 1 of the original string.
For example, consider the following code:
#include <iostream>
#include <iomanip>
int main() {
double init = 987.23456789;
for (int i = 0; i < 100; i++) {
float f = init + i / 100.0;
std::cout << std::setprecision(10) << std::setw(20) << f;
}
}
This produces a table like the following:
987.2345581 987.2445679 987.2545776 987.2645874
987.2745972 987.2845459 987.2945557 987.3045654
987.3145752 987.324585 987.3345947 987.3445435
987.3545532 987.364563 987.3745728 987.3845825
987.3945923 987.404541 987.4145508 987.4245605
987.4345703 987.4445801 987.4545898 987.4645386
987.4745483 987.4845581 987.4945679 987.5045776
987.5145874 987.5245972 987.5345459 987.5445557
987.5545654 987.5645752 987.574585 987.5845947
987.5945435 987.6045532 987.614563 987.6245728
987.6345825 987.6445923 987.654541 987.6645508
987.6745605 987.6845703 987.6945801 987.7045898
987.7145386 987.7245483 987.7345581 987.7445679
987.7545776 987.7645874 987.7745972 987.7845459
987.7945557 987.8045654 987.8145752 987.824585
987.8345947 987.8445435 987.8545532 987.864563
987.8745728 987.8845825 987.8945923 987.904541
987.9145508 987.9245605 987.9345703 987.9445801
987.9545898 987.9645386 987.9745483 987.9845581
987.9945679 988.0045776 988.0145874 988.0245972
988.0345459 988.0445557 988.0545654 988.0645752
988.074585 988.0845947 988.0945435 988.1045532
988.114563 988.1245728 988.1345825 988.1445923
988.154541 988.1645508 988.1745605 988.1845703
988.1945801 988.2045898 988.2145386 988.2245483
If we look through this, we can see that the first six significant digits always follow the pattern precisely (i.e., each result is exactly 0.01 greater than its predecessor). As we can see in the original double, the value is actually 98x.xx456--but when we convert the single-precision float to decimal, we can see that the 7th digit frequently would not be read back in correctly--since the subsequent digit is greater than 5, it should round up to 98x.xx46, but some of the values won't (e.g,. the second to last item in the first column is 988.154541, which would be round down instead of up, so we'd end up with 98x.xx45 instead of 46. So, even though the value (as stored) is precise to 7 digits (plus a little), by the time we round-trip the value through a conversion to decimal and back, we can't depend on that seventh digit matching precisely any more (even though there's enough precision that it will a lot more often than not).
1. That basically means 7 digits, and the 8th digit will be a little more accurate than nothing, but not a whole lot--for example, if we were converting from a double of 1.2345678, the .225 digits of precision mean that the last digit would be with about +/- .775 of the what started out there (whereas without the .225 digits of precision, it would be basically +/- 1 of what started out there).
what is the most significant decimal digits precision that can be
converted to binary and back to decimal without loss of significance?
The most significant decimal digits precision that can be converted to binary and back to decimal without loss of significance (for single-precision floating-point numbers or 24-bits) is 6 decimal digits.
Why do these two numbers differ...
The numbers 6 and 7.225 differ, because they define two different things. 6 is the most decimal digits that can be round-tripped. 7.225 is the approximate number of decimal digits precision for a 24-bit binary integer because a 24-bit binary integer can have 7 or 8 decimal digits depending on its specific value.
7.225 was found using the specific binary integer formula.
dspec = b·log10(2) (dspec
= specific decimal digits, b = bits)
However, what you normally need to know, are the minimum and maximum decimal digits for a b-bit integer. The following formulas are used to find the min and max decimal digits (7 and 8 respectively for 24-bits) of a specific binary integer.
dmin = ⌈(b-1)·log10(2)⌉ (dmin
= min decimal digits, b = bits, ⌈x⌉ = smallest integer ≥ x)
dmax = ⌈b·log10(2)⌉ (dmax
= max decimal digits, b = bits, ⌈x⌉ = smallest integer ≥ x)
To learn more about how these formulas are derived, read Number of Decimal Digits In a Binary Integer, written by Rick Regan.
This is all well and good, but you may ask, why is 6 the most decimal digits for a round-trip conversion if you say that the span of decimal digits for a 24-bit number is 7 to 8?
The answer is — because the above formulas only work for integers and not floating-point numbers!
Every decimal integer has an exact value in binary. However, the same cannot be said for every decimal floating-point number. Take .1 for example. .1 in binary is the number 0.000110011001100..., which is a repeating or recurring binary. This can produce rounding error.
Moreover, it takes one more bit to represent a decimal floating-point number than it does to represent a decimal integer of equal significance. This is because floating-point numbers are more precise the closer they are to 0, and less precise the further they are from 0. Because of this, many floating-point numbers near the minimum and maximum value ranges (emin = -126 and emax = +127 for single-precision) lose 1 bit of precision due to rounding error. To see this visually, look at What every computer programmer should know about floating point, part 1, written by Josh Haberman.
Furthermore, there are at least 784,757 positive seven-digit decimal numbers that cannot retain their original value after a round-trip conversion. An example of such a number that cannot survive the round-trip is 8.589973e9. This is the smallest positive number that does not retain its original value.
Here's the formula that you should be using for floating-point number precision that will give you 6 decimal digits for round-trip conversion.
dmax = ⌊(b-1)·log10(2)⌋ (dmax
= max decimal digits, b = bits, ⌊x⌋ = largest integer ≤ x)
To learn more about how this formula is derived, read Number of Digits Required For Round-Trip Conversions, also written by Rick Regan. Rick does an excellent job showing the formulas derivation with references to rigorous proofs.
As a result, you can utilize the above formulas in a constructive way; if you understand how they work, you can apply them to any programming language that uses floating-point data types. All you have to know is the number of significant bits that your floating-point data type has, and you can find their respective number of decimal digits that you can count on to have no loss of significance after a round-trip conversion.
June 18, 2017 Update: I want to include a link to Rick Regan's new article which goes into more detail and in my opinion better answers this question than any answer provided here. His article is "Decimal Precision of Binary Floating-Point Numbers" and can be found on his website www.exploringbinary.com.
Do keep in mind that they are the exact same formulas. Remember your high-school math book identity:
Log(x^y) == y * Log(x)
It helps to actually calculate the values for N = 24 with your calculator:
Kahan's: 23 * Log(2) = 6.924
Wikipedia's: Log(2^24) = 7.225
Kahan was forced to truncate 6.924 down to 6 digits because of floor(), bummer. The only actual difference is that Kahan used 1 less bit of precision.
Pretty hard to guess why, the professor might have relied on old notes. Written before IEEE-754 and not taking into account that the 24th bit of precision is for free. The format uses a trick, the most significant bit of a floating point value that isn't 0 is always 1. So it doesn't need to be stored. The processor adds it back before it performs a calculation. Turning 23 bits of stored precision into 24 of effective precision.
Or he took into account that the conversion from a decimal string to a binary floating point value itself generates an error. Many nice round decimal values, like 0.1, cannot be perfectly converted to binary. It has an endless number of digits, just like 1/3 in decimal. That however generates a result that is off by +/- 0.5 bits, achieved by simple rounding. So the result is accurate to 23.5 * Log(2) = 7.074 decimal digits. If he assumed that the conversion routine is clumsy and doesn't properly round then the result can be off by +/-1 bit and N-1 is appropriate. They are not clumsy.
Or he thought like a typical scientist or (heaven forbid) accountant and wants the result of a calculation converted back to decimal as well. Such as you'd get when you trivially look for a 7 digit decimal number whose conversion back-and-forth does not produce the same number. Yes, that adds another +/- 0.5 bit error, summing up to 1 bit error total.
But never, never make that mistake, you always have to include any errors you get from manipulating the number in a calculation. Some of them lose significant digits very quickly, subtraction in particular is very dangerous.

Given the following, how do I find the number of normalized floating-point numbers and why?

I'm trying to understand how floating point number arithmetic plays a role in computer science when using the binary system. I came across an excerpt from What Every Computer Scientist Should Know About Floating-Point Arithmetic which defines normalized numbers as unique floating-point numbers with the leading significand being non-zero. It goes on to say...
When β
= 2, p = 3, e min = -1 and e max = 2 there are 16 normalized floating-point numbers, as shown in Figure D-1.
Where β is the base, p is the precision, e min is the minimum exponent, and e max is the maximum exponent.
My attempt at understanding how he came to the conclusion of there being 16 normalized floating-point numbers was to multiply together the possible number of significands β^p and the possible number of exponents e max - e min + 1. My result was 32 possible normalized floating-point values. I am unsure of how to get the correct result of 16 normalized floating-point values as was declared in the paper above. I assumed negative floating-point values were excluded, however, I did not include them in my calculations.
This question is more geared toward mathematical formulae. But it will help me to better understand how floating-point arithmetic works in computer science.
I would like to know how to get the correct result of 16 normalized floating-point numbers and why.
Since the first bit is always 1, with 3 bits for the mantissa you have only two bits to vary, yielding 4 different mantissa values. Combined with 4 different exponent values that's 16. I haven't looked at the paper though.
My attempt at understanding how he came to the conclusion of there being 16 normalized floating-point numbers was to multiply together the possible number of significands β^p and the possible number of exponents e max - e min + 1
This is correct except that the number of possible significands is not βp in binary with an implicit leading 1. In these conditions, the number of possible significands is βp-1, encoded over p-1 bits.
In other words, the missing values for the possible significands have already been taken advantage of when the encoding reserved, say, 52 bits to encode a precision of 53 binary digits.

How to convert 2+(2/7) to IEEE 754 floating point

Can someone explain to me the steps to convert a number in decimal format (such as 2+(2/7)) into IEEE 754 Floating Point representation? Thanks!
First, 2 + 2/7 isn't in what most people would call "decimal format". "Decimal format" would more commonly be used to indicate a number like:
2.285714285714285714285714285714285714285714...
Even the ... is a little bit fast and loose. More commonly, the number would be truncated or rounded to some number of decimal digits:
2.2857142857142857
Of course, at this point, it is no longer exactly equal to 2 + 2/7, but is "close enough" for most uses.
We do something similar to convert a number to a IEEE-754 format; instead of base 10, we begin by writing the number in base 2:
10.010010010010010010010010010010010010010010010010010010010010...
Next we "normalize" the number, by writing it in the form 2^e * 1.xxx... for some exponent e (specifically, the digit position of the leading bit of our number):
2^1 * 1.0010010010010010010010010010010010010010010010010010010010010...
At this point, we have to choose a specific IEEE-754 format, because we need to know how many digits to keep around. Let's choose "single-precision", which has a 24-bit significand. We round the repeating binary number to 24 bits:
2^1 * 1.00100100100100100100100 10010010010010010010010010010010010010...
24 leading bits bits to be rounded away
Because the trailing bits to be rounded off are larger than 1000..., the number rounds up to:
2^1 * 1.00100100100100100100101
Now, how does this value actually get encoded in IEEE-754 format? The single-precision format has a leading signbit (zero, because the number is positive), followed by eight bits that contain the value 127 + e in binary, followed by the fractional part of the significand:
0 10000000 00100100100100100100101
s exponent fraction of significand
In hexadecimal, this gives 0x40124925.