Why does this binary classification accuracy calculation work? - deep-learning

I have began to play around with Keras, and have noticed that many of the examples do not use the built in Keras accuracy metrics but rather their own accuracy function which they run the y_pred values through in relation to y_true.
The function is used for computing the accuracy of binary classification [0,1] but I do not understand why it works, as even on a small example I can see it is incorrect.
The function in the Keras example code is:
def compute_accuracy(predictions, labels):
return labels[predictions.ravel()<0.5].mean()
However, if we use the example of
labels = [0,1,1,1]
predictions = [0.2, 0.6, 0.7, 0.3]
we can see that the classifier only got one of the predictions incorrect (0.3 was labelled as 1 instead of 0). However in this case the above accuracy function says that the accuracy is 0.5 and not 0.75. Furthermore, if using the binary accuracy metric within Keras, I get completely different accuracy results. I think I am misunderstanding something.

Related

PyTorch find keypoints: output nodes to be in a range and negative loss

I am beginner in deep learning.
I am using this dataset and I want my network to detect keypoints of a hand.
How can I make my output layer's nodes to be in range [-1, 1] (range of normalized 2D points)?
Another problem is when I train for more than 1 epoch the loss gets negative values
criterion: torch.nn.MultiLabelSoftMarginLoss() and optimizer: torch.optim.SGD()
Here u can find my repo
net = nnModel.Net()
net = net.to(device)
criterion = nn.MultiLabelSoftMarginLoss()
optimizer = optim.SGD(net.parameters(), lr=learning_rate)
lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer=optimizer, gamma=decay_rate)
You can use the Tanh activation function, since the image of the function lies in [-1, 1].
The problem of predicting key-points in an image is more of a regression problem than a classification problem (especially if you're making your model outputs + targets fall within a continuous interval). Therefore, I suggest you use the L2 Loss.
In fact, it could be a good exercise for you to determine which loss function that is appropriate for regression problems provides the lowest expected generalization error using cross-validation. There's several such functions available in PyTorch.
One way I can think of is to use torch.nn.Sigmoid which produces outputs in [0,1] range and scale outputs to [-1,1] using 2*x-1 transformation.

Using Softmax Activation function after calculating loss from BCEWithLogitLoss (Binary Cross Entropy + Sigmoid activation)

I am going through a Binary Classification tutorial using PyTorch and here, the last layer of the network is torch.Linear() with just one neuron. (Makes Sense) which will give us a single neuron. as pred=network(input_batch)
After that the choice of Loss function is loss_fn=BCEWithLogitsLoss() (which is numerically stable than using the softmax first and then calculating loss) which will apply Softmax function to the output of last layer to give us a probability. so after that, it'll calculate the binary cross entropy to minimize the loss.
loss=loss_fn(pred,true)
My concern is that after all this, the author used torch.round(torch.sigmoid(pred))
Why would that be? I mean I know it'll get the prediction probabilities in the range [0,1] and then round of the values with default threshold of 0.5.
Isn't it better to use the sigmoid once after the last layer within the network rather using a softmax and a sigmoid at 2 different places given it's a binary classification??
Wouldn't it be better to just
out = self.linear(batch_tensor)
return self.sigmoid(out)
and then calculate the BCE loss and use the argmax() for checking accuracy??
I am just curious that can it be a valid strategy?
You seem to be thinking of the binary classification as a multi-class classification with two classes, but that is not quite correct when using the binary cross-entropy approach. Let's start by clarifying the goal of the binary classification before looking at any implementation details.
Technically, there are two classes, 0 and 1, but instead of considering them as two separate classes, you can see them as opposites of each other. For example, you want to classify whether a StackOverflow answer was helpful or not. The two classes would be "helpful" and "not helpful". Naturally, you would simply ask "Was the answer helpful?", the negative aspect is left off, and if that wasn't the case, you could deduce that it was "not helpful". (Remember, it's a binary case, there is no middle ground).
Therefore, your model only needs to predict a single class, but to avoid confusion with the actual two classes, that can be expressed as: The model predicts the probability that the positive case occurs. In context of the previous example: What is the probability that the StackOverflow answer was helpful?
Sigmoid gives you values in the range [0, 1], which are the probabilities. Now you need to decide when the model is confident enough for it to be positive by defining a threshold. To make it balanced, the threshold is 0.5, therefore as long as the probability is greater than 0.5 it is positive (class 1: "helpful") otherwise it's negative (class 0: "not helpful"), which is achieved by rounding (i.e. torch.round(torch.sigmoid(pred))).
After that the choice of Loss function is loss_fn=BCEWithLogitsLoss() (which is numerically stable than using the softmax first and then calculating loss) which will apply Softmax function to the output of last layer to give us a probability.
Isn't it better to use the sigmoid once after the last layer within the network rather using a softmax and a sigmoid at 2 different places given it's a binary classification??
BCEWithLogitsLoss applies Sigmoid not Softmax, there is no Softmax involved at all. From the nn.BCEWithLogitsLoss documentation:
This loss combines a Sigmoid layer and the BCELoss in one single class. This version is more numerically stable than using a plain Sigmoid followed by a BCELoss as, by combining the operations into one layer, we take advantage of the log-sum-exp trick for numerical stability.
By not applying Sigmoid in the model you get a more numerically stable version of the binary cross-entropy, but that means you have to apply the Sigmoid manually if you want to make an actual prediction outside of training.
[...] and use the argmax() for checking accuracy??
Again, you're thinking of the multi-class scenario. You only have a single output class, i.e. output has size [batch_size, 1]. Taking argmax of that, will always give you 0, because that is the only available class.

Binary classification with Softmax

I am training a binary classifier using Sigmoid activation function with Binary crossentropy which gives good accuracy around 98%.
The same when I train using softmax with categorical_crossentropy gives very low accuracy (< 40%).
I am passing the targets for binary_crossentropy as list of 0s and 1s eg; [0,1,1,1,0].
Any idea why this is happening?
This is the model I am using for the second classifier:
Right now, your second model always answers "Class 0" as it can choose between only one class (number of outputs of your last layer).
As you have two classes, you need to compute the softmax + categorical_crossentropy on two outputs to pick the most probable one.
Hence, your last layer should be:
model.add(Dense(2, activation='softmax')
model.compile(...)
Your sigmoid + binary_crossentropy model, which computes the probability of "Class 0" being True by analyzing just a single output number, is already correct.
EDIT: Here is a small explanation about the Sigmoid function
Sigmoid can be viewed as a mapping between the real numbers space and a probability space.
Notice that:
Sigmoid(-infinity) = 0
Sigmoid(0) = 0.5
Sigmoid(+infinity) = 1
So if the real number, output of your network, is very low, the sigmoid will decide the probability of "Class 0" is close to 0, and decide "Class 1"
On the contrary, if the output of your network is very high, the sigmoid will decide the probability of "Class 0" is close to 1, and decide "Class 0"
Its decision is similar to deciding the Class only by looking at the sign of your output. However, this would not allow your model to learn! Indeed, the gradient of this binary loss is null nearly everywhere, making impossible for your model to learn from error, as it is not quantified properly.
That's why sigmoid and "binary_crossentropy" are used:
They are a surrogate to the binary loss, which has nice smooth properties, and enables learning.
Also, please find more info about Softmax Function and Cross Entropy

Hard to understand Caffe MNIST example

After going through the Caffe tutorial here: http://caffe.berkeleyvision.org/gathered/examples/mnist.html
I am really confused about the different (and efficient) model using in this tutorial, which is defined here: https://github.com/BVLC/caffe/blob/master/examples/mnist/lenet_train_test.prototxt
As I understand, Convolutional layer in Caffe simply calculate the sum of Wx+b for each input, without applying any activation function. If we would like to add the activation function, we should add another layer immediately below that convolutional layer, like Sigmoid, Tanh, or Relu layer. Any paper/tutorial I read on the internet applies the activation function to the neuron units.
It leaves me a big question mark as we only can see the Convolutional layers and Pooling layers interleaving in the model. I hope someone can give me an explanation.
As a site note, another doubt for me is the max_iter in this solver:
https://github.com/BVLC/caffe/blob/master/examples/mnist/lenet_solver.prototxt
We have 60.000 images for training, 10.000 images for testing. So why does the max_iter here only 10.000 (and it still can get > 99% accuracy rate)? What does Caffe do in each iteration?
Actually, I'm not so sure if the accuracy rate is the total correct prediction/test size.
I'm very amazed of this example, as I haven't found any example, framework that can achieve this high accuracy rate in that very short time (only 5 mins to get >99% accuracy rate). Hence, I doubt there should be something I misunderstood.
Thanks.
Caffe uses batch processing. The max_iter is 10,000 because the batch_size is 64. No of epochs = (batch_size x max_iter)/No of train samples. So the number of epochs is nearly 10. The accuracy is calculated on the test data. And yes, the accuracy of the model is indeed >99% as the dataset is not very complicated.
For your question about the missing activation layers, you are correct. The model in the tutorial is missing activation layers. This seems to be an oversight of the tutorial. For the real LeNet-5 model, there should be activation functions following the convolution layers. For MNIST, the model still works surprisingly well without the additional activation layers.
For reference, in Le Cun's 2001 paper, it states:
As in classical neural networks, units in layers up to F6 compute a dot product between their input vector and their weight vector, to which a bias is added. This weighted sum, denoted a_i, for unit i, is then passed through a sigmoid squashing function to produce the state of unit i ...
F6 is the "blob" between the two fully connected layers. Hence the first fully connected layers should have an activation function applied (the tutorial uses ReLU activation functions instead of sigmoid).
MNIST is the hello world example for neural networks. It is very simple to today's standard. A single fully connected layer can solve the problem with accuracy of about 92%. Lenet-5 is a big improvement over this example.

Loss function for ordinal target on SoftMax over Logistic Regression

I am using Pylearn2 OR Caffe to build a deep network. My target is ordered nominal. I am trying to find a proper loss function but cannot find any in Pylearn2 or Caffe.
I read a paper "Loss Functions for Preference Levels: Regression with Discrete Ordered Labels" . I get the general idea - but I am not sure I understand what will the thresholds be, if my final layer is a SoftMax over Logistic Regression (outputting probabilities).
Can some help me by pointing to any implementation of such a loss function ?
Thanks
Regards
For both pylearn2 and caffe, your labels will need to be 0-4 instead of 1-5...it's just the way they work. The output layer will be 5 units, each is a essentially a logistic unit...and the softmax can be thought of as an adaptor that normalizes the final outputs. But "softmax" is commonly used as an output type. When training, the value of any individual unit is rarely ever exactly 0.0 or 1.0...it's always a distribution across your units - which log-loss can be calculated on. This loss is used to compare against the "perfect" case and the error is back-propped to update your network weights. Note that a raw output from PL2 or Caffe is not a specific digit 0,1,2,3, or 5...it's 5 number, each associated to the likelihood of each of the 5 classes. When classifying, one just takes the class with the highest value as the 'winner'.
I'll try to give an example...
say I have a 3 class problem, I train a network with a 3 unit softmax.
the first unit represents the first class, second the second and third, third.
Say I feed a test case through and get...
0.25, 0.5, 0.25 ...0.5 is the highest, so a classifier would say "2". this is the softmax output...it makes sure the sum of the output units is one.
You should have a look at ordinal (logistic) regression. This is the formal solution to the problem setup you describe ( do not use plain regression as the distance measures of errors are wrong).
https://stats.stackexchange.com/questions/140061/how-to-set-up-neural-network-to-output-ordinal-data
In particular I recommend looking at Coral ordinal regression implementation at
https://github.com/ck37/coral-ordinal/issues.