Does MySQL not use LIMIT to optimize query select functions? - mysql

I've got a complex query I have to run in an application that is giving me some performance trouble. I've simplified it here. The database is MySQL 5.6.35 on CentOS.
SELECT a.`po_num`,
Count(*) AS item_count,
Sum(b.`quantity`) AS total_quantity,
Group_concat(`web_sku` SEPARATOR ' ') AS web_skus
FROM `order` a
INNER JOIN `order_item` b
ON a.`order_id` = b.`order_key`
WHERE `store` LIKE '%foobar%'
LIMIT 200 offset 0;
The key part of this query is where I've placed "foobar" as a placeholder. If this value is something like big_store, the query takes much longer (roughly 0.4 seconds in the query provided here, much longer in the query I'm actually using) than if the value is small_store (roughly 0.1 seconds in the query provided). big_store would return significantly more results if there were not limit.
But there is a limit and that's what surprises me. Both datasets have more than the LIMIT, which is only 200. It appears to me that MySQL performing the select functions COUNT, SUM, GROUP_CONCAT for all big_store/small_store rows and then applies the LIMIT retroactively. I would imagine that it'd be best to stop when you get to 200.
Could it not do the select functions COUNT, SUM, GROUP_CONCAT actions after grabbing the 200 rows it will use, making my query much much quicker? This seems feasible to me except in cases where there's an ORDER BY on one of those rows.
Does MySQL not use LIMIT to optimize a query select functions? If not, is there a good reason for that? If so, did I make a mistake in my thinking above?

It can stop short due to the LIMIT, but that is not a reasonable query since there is no ORDER BY.
Without ORDER BY, it will pick whatever 200 rows it feels like and stop short.
With an ORDER BY, it will have to scan the entire table that contains store (please qualify columns with which table they come from!). This is because of the leading wildcard. Only then can it trim to 200 rows.
Another problem -- Without a GROUP BY, aggregates (SUM, etc) are performed across the entire table (or at least those that remain after filtering). The LIMIT does not apply until after that.
Perhaps what you are asking about is MariaDB 5.5.21's "LIMIT_ROWS_EXAMINED".
Think of it this way ... All of the components of a SELECT are done in the order specified by the syntax. Since LIMIT is last, it does not apply until after the other stuff is performed.
(There are a couple of exceptions: (1) SELECT col... must be done after FROM ..., since it would not know which table(s); (2) The optimizer readily reorders JOINed table and clauses in WHERE ... AND ....)
More details on that query.
The optimizer peeks ahead, and sees that the WHERE is filtering on order (that is where store is, yes?), so it decides to start with the table order.
It fetches all rows from order that match %foobar%.
For each such row, find the row(s) in order_item. Now it has some number of rows (possibly more than 200) with which to do the aggregates.
Perform the aggregates - COUNT, SUM, GROUP_CONCAT. (Actually this will probably be done as it gathers the rows -- another optimization.)
There is now 1 row (with an unpredictable value for a.po_num).
Skip 0 rows for the OFFSET part of the LIMIT. (OK, another out-of-order thingie.)
Deliver up to 200 rows. (There is only 1.)
Add ORDER BY (but no GROUP BY) -- big deal, sort the 1 row.
Add GROUP BY (but no ORDER BY) in, now you may have more than 200 rows coming out, and it can stop short.
Add GROUP BY and ORDER BY and they are identical, then it may have to do a sort for the grouping, but not for the ordering, and it may stop at 200.
Add GROUP BY and ORDER BY and they are not identical, then it may have to do a sort for the grouping, and will have to re-sort for the ordering, and cannot stop at 200 until after the ORDER BY. That is, virtually all the work is performed on all the data.
Oh, and all of this gets worse if you don't have the optimal index. Oh, did I fail to insist on providing SHOW CREATE TABLE?
I apologize for my tone. I have thrown quite a few tips in your direction; please learn from them.

Related

What is the fastest way to count the number of MySql rows left after a limited results query

If I have a mysql limited query:
SELECT * FROM my_table WHERE date > '2020-12-12' LIMIT 1,16;
Is there a faster way to check and see how many results are left after my limit?
I was trying to do a count with limit, but that wasn't working, i.e.
SELECT count(ID) AS count FROM my_table WHERE date > '2020-12-12' LIMIT 16,32;
The ultimate goal here is just to determine if there ARE any other rows to be had beyond the current result set, so if there is another faster way to do this that would be fine too.
It's best to do this by counting the rows:
SELECT count(*) AS count FROM my_table WHERE date > '2020-12-12'
That tells you how many total rows match the condition. Then you can compare that to the size of the result you got with your query using LIMIT. It's just arithmetic.
Past versions of MySQL had a function FOUND_ROWS() which would report how many rows would have matched if you didn't use LIMIT. But it turns out this had worse performance than running two queries, one to count rows and one to do your limit. So they deprecated this feature.
For details read:
https://www.percona.com/blog/2007/08/28/to-sql_calc_found_rows-or-not-to-sql_calc_found_rows/
https://dev.mysql.com/worklog/task/?id=12615
(You probably want OFFSET 0, not 1.)
It's simple to test whether there ARE more rows. Assuming you want 16 rows, use 1 more:
SELECT ... WHERE ... ORDER BY ... LIMIT 0,17
Then programmatically see whether it returned only 16 rows (no more available) or 17 (there ARE more).
Because it is piggybacking on the fetch you are already doing and not doing much extra work, it is very efficient.
The second 'page' would use LIMIT 16, 17; 3rd: LIMIT 32,17, etc. Each time, you are potentially getting and tossing an extra row.
I discuss this and other tricks where I point out the evils of OFFSET: Pagination
COUNT(x) checks x for being NOT NULL. This is [usually] unnecessary. The pattern COUNT(*) (or COUNT(1)) simply counts rows; the * or 1 has no significance.
SELECT COUNT(*) FROM t is not free. It will actually do a full index scan, which is slow for a large table. WHERE and ORDER BY are likely to add to that slowness. LIMIT is useless since the result is always 1 row. (That is, the LIMIT is applied to the result, not to the counting.)

json_object() and `group by` Optimisation in MySQL

i've got an optimisation problem with my query, once I use the aggregate GROUP BY in my query with a JSON_OBJECT(), the performances are heavily affected, and it seems that the JSON_OBJECT() function is called for EVERY row in the table, even if there is a LIMIT.
Once there is no more GROUP BY, the query is executed really fast. I abstracted the query i'm using to the easiest, but I need to GROUP BY cause
I'm using JSON_ARRAYAGG() for another join.
I got ~25k rows in my table and it takes 10x less time when removing the group by aggregate
select JSON_OBJECT('id',`b`.`id`) as bw
from a
left join `b` on `a`.`id` = `b`.`id_a`
group by `a`.`id`
LIMIT 1;
In general, JSON should be used for storing structured data that only the app needs to look inside. It is clumsy and probably very inefficient for MySQL to pick apart JSON for use with WHERE, GROUP BY, etc.
As for GROUP BY (or ORDER BY) plus LIMIT 1:
With just the LIMIT, MySQL simply peels of the first row it finds. -- much faster, but which row you get is unpredictable.
With Group or Order, it may have to gather all possible rows, juggle them (grouping or sorting), and only then peel off 1 row. -- much slower.
It sounds like you have an "array" of things in each JSON? The RDBMS equivalent involves a second table to handle all those arrays -- one element per row. Switching to that may lead to much faster code. (I don't understand your data well enough to give you a concrete suggestion.)

Optimize LIMIT the number of rows to be SELECT in SQL

Consider a table Test having 1000 rows
Test Table
id name desc
1 Adi test1
2 Sam test2
3 Kal test3
.
.
1000 Jil test1000
If i need to fetch, say suppose 100 rows(i.e. a small subset) only, then I am using LIMIT clause in my query
SELECT * FROM test LIMIT 100;
This query first fetches 1000 rows and then returns 100 out of it.
Can this be optimised, such that the DB engine queries only 100 rows and returns them
(instead of fetching all 1000 rows first and then returning 100)
Reason for above supposition is that the order of processing will be
FROM
WHERE
SELECT
ORDER BY
LIMIT
You can combine LIMIT ROW COUNT with an ORDER BY, This causes MySQL to stop sorting as soon as it has found the first ROW COUNT rows of the sorted result.
Hope this helps, If you need any clarification just drop a comment.
The query you wrote will fetch only 100 rows, not 1000. But, if you change that query in any way, my statement may be wrong.
GROUP BY and ORDER BY are likely to incur a sort, which is arguably even slower than a full table scan. And that sort must be done before seeing the LIMIT.
Well, not always...
SELECT ... FROM t ORDER BY x LIMIT 100;
together with INDEX(x) -- This may use the index and fetch only 100 rows from the index. BUT... then it has to reach into the data 100 times to find the other columns that you ask for. UNLESS you only ask for x.
Etc, etc.
And here's another wrinkle. A lot of questions on this forum are "Why isn't MySQL using my index?" Back to your query. If there are "only" 1000 rows in your table, my example with the ORDER BY x won't use the index because it is faster to simply read through the table, tossing 90% of the rows. On the other hand, if there were 9999 rows, then it would use the index. (The transition is somewhere around 20%, but it that is imprecise.)
Confused? Fine. Let's discuss one query at a time. I can [probably] discuss the what and why of each one you throw at me. Be sure to include SHOW CREATE TABLE, the full query, and EXPLAIN SELECT... That way, I can explain what EXPLAIN tells you (or does not).
Did you know that having both a GROUP BY and ORDER BY may cause the use of two sorts? EXPLAIN won't point that out. And sometimes there is a simple trick to get rid of one of the sorts.
There are a lot of tricks up MySQL's sleeve.

how group by having limit works

Can someone explain how construction group by + having + limit exactly work? MySQL query:
SELECT
id,
avg(sal)
FROM
StreamData
WHERE
...
GROUP BY
id
HAVING
avg(sal)>=10.0
AND avg(sal)<=50.0
LIMIT 100
Query without limit and having clauses executes for 7 seconds, with limit - instantly if condition covers a large amount of data or ~7 seconds otherwise.
Documentation says that limit executes after having which after group by, this means that query should always execute for ~7 seconds. Please help to figure out what is limited by LIMIT clause.
Using LIMIT 100 simply tells MySQL to return only the first 100 records from your result set. Assuming that you are measuring the query time as the round trip from Java, then one component of the query time is the network time needed to move the result set from MySQL across the network. This can take a considerable time for a large result set, and using LIMIT 100 should reduce this time to zero or near zero.
Things are logically applied in a certain pipeline in SQL:
Table expressions are generated and executed (FROM, JOIN)
Rows filtered (WHERE)
Projections and aggregations applied (column list, aggregates, GROUP BY)
Aggregations filtered (HAVING)
Results limited (LIMIT, OFFSET)
Now these may be composed into a different execution order by the planner if that is safe but you always get the proper data out if you think through them in this order.
So group by groups, then these are filtered with having, then the results of that are truncated.
As soon as MySQL has sent the required number of rows to the client,
it aborts the query unless you are using SQL_CALC_FOUND_ROWS. The
number of rows can then be retrieved with SELECT FOUND_ROWS(). See
Section 13.14, “Information Functions”.
http://dev.mysql.com/doc/refman/5.7/en/limit-optimization.html
This effectively means that if your table has a rather hefty number of rows, the server doesn't need to look at all of them. It can stop as soon as it has found a 100 because it knows that's all that you need.

Should criteria be duplicated on subqueries

I have a query which actually runs two queries on a table. I query the whole table, a datediff and then a subquery which tells me the sum of hours each unit spent in certain operational steps. The main query limits the results to the REP depot so technically I don't need to put that same criteria on the subquery since repair_order is unique.
Would it be faster, slower or no difference to apply the depot filter on the subquery?
SELECT
*,
DATEDIFF(date_shipped, date_received) as htg_days,
(SELECT SUM(t3.total_days) FROM report_tables.cycle_time_days as t3 WHERE t1.repair_order=t3.repair_order AND (operation='MFG' OR operation='ENG' OR operation='ENGH' OR operation='HOLD') GROUP BY t3.repair_order) as subt_days
FROM
report_tables.cycle_time_days as t1
WHERE
YEAR(t1.date_shipped)=2010
AND t1.depot='REP'
GROUP BY
repair_order
ORDER BY
date_shipped;
I run into this with a lot of situations but I never know if it would be better to put the filter in the sub query, main query or both.
In this example, it would actually alter the query if you moved your WHERE clause to filter by REP into the subquery. So it wouldn't be about performance at that point, it would be about getting the same result set. In general, though, if you will get the same exact result set by moving a WHERE clause elsewhere in a complex query, it is better to do so at the most atomic level possible, ie, in the subquery. Then the subquery returns a smaller result set to the main query before the main query has to process it.
The answer to your question will vary depending on your schema, the complexity of your queries, the reliability of your data, etc. A general rule of thumb is to try to process the least amount of data possible, which generally means filtering it at the lowest level possible as well.
When you want to optimize a query the absolute number one place to start is to use the EXPLAIN output to see what optimizations the query parser was able to figure out and check to see what the weakest link is in the query plan. Resolve that, rinse, repeat.
You can also use explain's "extended" keyword to see the actual query it built to run which will reveal more about its usage of your criteria. In some cases, it will optimize away duplicate conditions between parent/subqueries. In other cases, it may push the conditions down from the parent in to the subquery. In some cases for (too) complex queries I've seen the it repeat the condition when it was only specified in the query once. Thankfully, you don't have to guess, mysql's explain plan will reveal all, albeit sometimes in cryptic ways.
I usually use a derived table as a "driver or aggregating" query then join that result back onto whatever table that i want to pull data from:
select
t1.*,
datediff(t1.date_shipped, t1.date_received) as htg_days,
subt_days.total_days
from
cycle_time_days as t1
inner join
(
-- aggregating/driver query
select
repair_order,
sum(total_days) as total_days
from
cycle_time_days
where
year(date_shipped) = 2010 and depot = 'REP' and
operation in ('MFG','ENG','ENGH','HOLD') -- covering index on date, depot, op ???
group by
repair_order -- indexed ??
having
total_days > 14 -- added for demonstration purposes
order by
total_days desc limit 10
) as subt_days on t1.repair_order = subt_days.repair_order
order by
t1.date_shipped;