QEMU/QMP alert when writing to memory - qemu

I'm using QEMU to test some software for a personal project and I would like to know whenever the program is writing to memory. The best solution I have come up with is to manually add print statements in the file responsible for writing to memory. Which this would require remaking the object for the file and building QEMU, if I'm correct. But I came across QMP which uses JSON commands to manipulate QEMU, which has an entire list of commands, found here: https://raw.githubusercontent.com/Xilinx/qemu/master/qmp-commands.hx.
But after looking at that I didn't really see anything that would do what I want. I am sort of a new programmer and am not that advanced. And was wondering if anyone had some idea how to go about this a better way.

Recently (9 jun 2016) there were added powerful tracing features to mainline QEMU.
Please see qemu/docs/tracing.txt file as manual.
There are a lot of events that could be traced, see
qemu/trace_events file for list of them.
As i can understand the code, the "guest_mem_before" event is that you need to view guest memory writes.
Details:
There are tracing hooks placed at following functions:
qemu/tcg/tcg-op.c: tcg_gen_qemu_st * All guest stores instructions tcg-generation
qemu/include/exec/cpu_ldst_template.h all non-tcg memory access (fetch/translation time, helpers, devices)

There historically hasn't been any support in QEMU for tracing all guest memory accesses, because there isn't any one place in QEMU where you could easily add print statements to trace them. This is because more guest memory accesses go through the "fast path", where we directly generate native host instructions which look up the host RAM address in a data structure (QEMU's TLB) and perform the load or store. It's only if this fast path doesn't find a hit in the TLB that we fall back to a slow path that's written in C.
The recent trace-events event 'tcg guest_mem_before' can be used to trace virtual memory accesses, but note that it won't tell you:
whether the access succeeded or faulted
what the data being loaded or stored was
the physical address that's accessed
You'll also need to rebuild QEMU to enable it (unlike most trace events which are compiled into QEMU by default and can be enabled at runtime.)

Related

How to load raw binary into Qemu

As all information I found about Qemu is related to Linux kernel, uboot or elf binaries I can't quite figure out how to load a binary blob from an embedded device into a specific address and execute part of it. The code I want to run does only arithmetics, so there are no hardware dependencies involved.
I would start qemu with something like
qemu-arm -singlestep -g8000
attach gdb, set initial register state and jump to my starting address to single step through it.
But how do I initially load binary data to a specific address and eventually set up an additional ram range?
how to load a binary blob from an embedded device into a specific address and execute part of it.
You can load binary blob into softmmu QEMU by the generic loader (-device loader).
I would start qemu with something like
qemu-arm -singlestep -g8000
This command line is for the linux-user QEMU invocation. It emulates userspace linux process of the guest architecture, it is unprivileged and does not provide support for any devices, including generic loader. Try using qemu-system-arm instead.
It's in fact easy with the Unicorn framework which works on top of Qemu. Based on the example in the websites doc section I wrote a Python script which loads the data, sets the registers, adds a hook which prints important per step information and start execution at the desired address until a target address.

Write to QEMU guest system registers & memory?

How do you write to the processor registers and specific memory addresses of a virtual system running in QEMU?
My desire would be to accomplish this from a user space program running outside of QEMU. This would be to induce interrupts and finely control execution of the processor and virtual hardware.
The QEMU Monitor is supposed to read parameters or do simple injects of mouse or keyboard events, but I haven't seen anything about writing.
GDB server within QEMU Monitor seems to be the best for your purpose. One of your options is implementing a gdb protocol, another one is driving gdb itself through its command line.
I've tested it a bit: attaching, reading and writing memory seems to work (I read what I write); jumping to another address seems to work too. (If you may call injected code, you can do anything, theoretically). Writing to text-mode video memory doesn't work (I don't even read what I wrote, and nothing changes on display).

In-memory function calls

What are in-memory function calls? Could someone please point me to some resource discussing this technique and its advantages. I need to learn more about them and at the moment do not know where to go. Google does not seem to help as it takes me to the domain of cognition and nervous system etc..
Assuming your explanatory comment is correct (I'd have to see the original source of your question to know for sure..) it's probably a matter of either (a) function binding times or (b) demand paging.
Function Binding
When a program starts, the linker/loader finds all function references in the executable file that aren't resolvable within the file. It searches all the linked libraries to find the missing functions, and then iterates. At least the Linux ld.so(8) linker/loader supports two modes of operation: LD_BIND_NOW forces all symbol references to be resolved at program start up. This is excellent for finding errors and it means there's no penalty for the first use of a function vs repeated use of a function. It can drastically increase application load time. Without LD_BIND_NOW, functions are resolved as they are needed. This is great for small programs that link against huge libraries, as it'll only resolve the few functions needed, but for larger programs, this might require re-loading libraries from disk over and over, during the lifetime of the program, and that can drastically influence response time as the application is running.
Demand Paging
Modern operating system kernels juggle more virtual memory than physical memory. Each application thinks it has access to an entire machine of 4 gigabytes of memory (for 32-bit applications) or much much more memory (for 64-bit applications), regardless of the actual amount of physical memory installed in the machine. Each page of memory needs a backing store, a drive space that will be used to store that page if the page must be shoved out of physical memory under memory pressure. If it is purely data, the it gets stored in a swap partition or swap file. If it is executable code, then it is simply dropped, because it can be reloaded from the file in the future if it needs to be. Note that this doesn't happen on a function-by-function basis -- instead, it happens on pages, which are a hardware-dependent feature. Think 4096 bytes on most 32 bit platforms, perhaps more or less on other architectures, and with special frameworks, upwards of 2 megabytes or 4 megabytes. If there is a reference for a missing page, the memory management unit will signal a page fault, and the kernel will load the missing page from disk and restart the process.

Memory access exception handling with MinGW on XP

I am trying to use the MinGW GCC toolchain on XP with some vendor code from an embedded project that accesses high memory (>0xFFFF0000) which is, I believe, beyond the virtual mem address space allowed in 'civilian' processes in XP.
I want to handle the memory access exceptions myself in some way that will permit execution to continue at the instruction following the exception, ie ignore it. Is there some way to do it with MinGW? Or with MS toolchain?
The vastly simplified picture is thus:
/////////////
// MyFile.c
MyFunc(){
VendorFunc_A();
}
/////////////////
// VendorFile.c
VendorFunc_A(){
VendorFunc_DoSomeDesirableSideEffect();
VendorFunc_B();
VendorFunc_DoSomeMoreGoodStuff();
}
VendorFunc_B(){
int *pHW_Reg = 0xFFFF0000;
*pHW_Reg = 1; // Mem Access EXCEPTION HERE
return(0); // I want to continue here
}
More detail:
I am developing an embedded project on an Atmel AVR32 platform with freeRTOS using the AVR32-gcc toolchain. It is desirable to develop/debug high level application code independent of the hardware (and the slow avr32 simulator). Various gcc, makefile and macro tricks permit me to build my Avr32/freeRTOS project in the MinGW/Win32 freeRTOS port enviroment and I can debug in eclipse/gdb. But the high-mem HW access in the (vendor supplied) Avr32 code crashes the MinGW exe (due to the mem access exception).
I am contemplating some combination of these approaches:
1) Manage the access exceptions in SW. Ideally I'd be creating a kind of HW simulator but that'd be difficult and involve some gnarly assembly code, I think. Alot of the exceptions can likely just be ignored.
2) Creating a modified copy of the Avr32 header files so as to relocate the HW register #defines into user process address space (and create some structs and linker sections that commmit those areas of virtual memory space)
3) Conditional compilation of function calls that result in highMem/HW access, or alernatively more macro tricks, so as to minimize code cruft in the 'real' HW target code. (There are other developers on this project.)
Any suggestions or helpful links would be appreciated.
This page is on the right track, but seems overly complicated, and is C++ which I'd like to avoid. But I may try it yet, absent other suggestions.
http://www.programmingunlimited.net/siteexec/content.cgi?page=mingw-seh
You need to figure out why the vendor code wants to write 1 to address 0xFFFF0000 in the first place, and then write a custom VendorFunc_B() function that emulates this behavior. It is likely that 0xFFFF0000 is a hardware register that will do something special when written to (eg. change baud rate on a serial port or power up the laser or ...). When you know what will happen when you write to this register on the target hardware, you can rewrite the vendor code to do something appropriate in the windows code (eg. write the string "Starting laser" to a log file). It is safe to assume that writing 1 to address 0xFFFF0000 on Windows XP will not be the right thing to do, and the Windows XP memory protection system detects this and terminates your program.
I had a similar issue recently, and this is the solution i settled on:
Trap memory accesses inside a standard executable built with MinGW
First of all, you need to find a way to remap those address ranges (maybe some undef/define combos) to some usable memory. If you can't do this, maybe you can hook through a seg-fault and handle the write yourself.
I also use this to "simulate" some specific HW behavior inside a single executable, for some already written code. However, in my case, i found a way to redefine early all the register access macros.

How to determine why a task destroys , VxWorks?

I have a VxWorks application running on ARM uC.
First let me summarize the application;
Application consists of a 3rd party stack and a gateway application.
We have implemented an operating system abstraction layer to support OS in-dependency.
The underlying stack has its own memory management&control facility which holds memory blocks in a doubly linked list.
For instance ; we don't directly perform malloc/new , free/delege .Instead we call OSA layer's routines and it gets the memory from OS and puts it in a list then returns this memory to application.(routines : XXAlloc , XXFree,XXReAlloc)
And when freeing the memory we again use XXFree.
In fact this block is a struct which has
-magic numbers indication the beginning and end of memory block
-size that user requested allocated
-size in reality due to alignment issue previous and next pointers
-pointer to piece of memory given back to application. link register that shows where in the application xxAlloc is called.
With this block structure stack can check if a block is corrupted or not.
Also we have pthread library which is ported from Linux that we use to
-create/terminate threads(currently there are 22 threads)
-synchronization objects(events,mutexes..)
There is main task called by taskSpawn and later this task created other threads.
this was a description of application and its VxWorks interface.
The problem is :
one of tasks suddenly gets destroyed by VxWorks giving no information about what's wrong.
I also have a jtag debugger and it hits the VxWorks taskDestoy() routine but call stack doesn't give any information neither PC or r14.
I'm suspicious of specific routine in code where huge xxAlloc is done but problem occurs
very sporadic giving no clue that I can map it to source code.
I think OS detects and exception and performs its handling silently.
any help would be great
regards
It resolved.
I did an isolated test. Allocated 20MB with malloc and memset with 0x55 and stopped thread of my application.
And I wrote another thread which checks my 20MB if any data else than 0x55 is written.
And quess what!! some other thread which belongs other components in CPU (someone else developed them) write my allocated space.
Thanks 4 your help
If your task exits, taskDestroy() is called. If you are suspicious of huge xxAlloc, verify that the allocation code is not calling exit() when memory is exhausted. I've been bitten by this behavior in a third party OSAL before.
Sounds like you are debugging after integration; this can be a hell of a job.
I suggest breaking the problem into smaller pieces.
Process
1) you can get more insight by instrumenting the code and/or using VxWorks intrumentation (depending on which version). This allows you to get more visibility in what happens. Be sure to log everything to a file, so you move back in time from the point where the task ends. Instrumentation is a worthwile investment as it will be handy in more occasions. Interesting hooks in VxWorks: Taskhooklib
2) memory allocation/deallocation is very fundamental functionality. It would be my first candidate for thorough (unit) testing in a well-defined multi-thread environment. If you have done this and no errors are found, I'd first start to look why the tas has ended.
other possible causes
A task will also end when the work is done.. so it may be a return caused by a not-so-endless loop. Especially if it is always the same task, this would be my guess.
And some versions of VxWorks have MMU support which must be considered.