What is exactly fully convolutaionl layer? I mean, why is it 'fully'? The wording in [Long] is quite confusing to me.
Is it because they never use fully connected layer? Or is it because the convolution layers obtained by the 'convolutionization' described in Figure 2 have their kernels cover their entire input regions?
Do you see the last part in this image " fully connected" in fully convolution network we remove this part. But then how can do classification since we already have many channels with big activation map ?
In the example you mentioned they do up-sampling and their cost function is to measure the error between the re-construed image (up-sampled) and the ground truth.
So why it is called fully convolution because it is just convolution there. spatial feature extraction.
The phrase comes from a blend of the phrases "fully connected layer" with "convolutional layer". You can think of it as a fully connected layer which acts on a sub-region of an image. Then, instead of getting a single output feature vector for the whole image, you get a set of vectors, each per its corresponding image part. Where the vectors are formed to produce a map, which is a reminiscent of convolutional feature maps.
Related
I'm new to deep learning, so maybe this is a silly question...
Do any adjustments need to be made for applying Grad-CAM on CNNs that use a Global Average Pooling (GAP) layer right before fully connected ones?
I understand that the GAP layer aggregates the activations of an intermediate layer in order to produce a compact representation of the image, removing information regarding the features location. Is this an obstacle to grad-cam backpropagation?
I imagine that for a CNN that uses, for example, a Max Pooling layer followed by a Flatten layer, o Grad-CAM is capable of retriving the exact location of the relevant features.
I'm sorry if it is a silly doubt, but I couldn't find the answer for it anywhere.
Thanks in advance!
I have been experimenting with grad-cam with some VGGNets and ResNets in different tasks. It could be something in my head, but apparently ResNet tends to highlight larger regions in the image. Both models classify correctly, but the ResNet activation map usually highlights a larger area.
Even in the original Grad-CAM paper, this also happens, as shown below. However, I can't find any comments about it, I would like to know why.
Grad-CAM for VGGNet
Grad-CAM for ResNet
I am familiar with the principal how Overfeat works to not only classify but also localize an object in an image by only using convolutional layers instead of fully connected layers at the end. However, each tutorial or explanation that I read talks about alexnet or a very basic neural network consisting of a few consecutive convolutional layers followed by 2-3 Fully connected layers to classify an image. However my question goes as follow, is it possible to modify a more complex network such as ResNet or Inception which don't use the standard consecutive convolutional layer techniques as in Alexnet or VGG?
Thanks
Welcome, and yes. Looking at a very simplified diagram like this, everything to the left of the split "FC" ('fully connected', or 'dense') arrows can be any kind of (what is typically called an) image classification network, such as those in Keras Applications, which includes VGG, ResNet, Inception, Xception, etc. For these kinds of networks, the input is obviously an image, and the output is sometimes called a 'feature map' (although that's a bit silly---have a look at the output and you'll understand---as it's typically far more akin to a post-modernist map than to a cartographic one).
So the answer to your question is yes: put any kind of network you want before the 'overfeat' ending thing, whether custom or otherwise, but know that it's intended to be some general convolutional reductionist model like ResNet, Inception, etc. Any kind of network that takes an image in and spits out a pooled or flattened (1 dimensional) form of a 'feature map' of 3 dimensions is what's apparently intended for this 'overfeat' concept.
what is the difference between R-CNN, fast R-CNN, faster R-CNN and YOLO in terms of the following:
(1) Precision on same image set
(2) Given SAME IMAGE SIZE, the run time
(3) Support for android porting
Considering these three criteria which is the best object localization technique?
R-CNN is the daddy-algorithm for all the mentioned algos, it really provided the path for researchers to build more complex and better algorithm on top of it.
R-CNN, or Region-based Convolutional Neural Network
R-CNN consist of 3 simple steps:
Scan the input image for possible objects using an algorithm called Selective Search, generating ~2000 region proposals
Run a convolutional neural net (CNN) on top of each of these region proposals
Take the output of each CNN and feed it into a) an SVM to classify the region and b) a linear regressor to tighten the bounding box of the object, if such an object exists.
Fast R-CNN:
Fast R-CNN was immediately followed R-CNN. Fast R-CNN is faster and better by the virtue of following points:
Performing feature extraction over the image before proposing regions, thus only running one CNN over the entire image instead of 2000 CNN’s over 2000 overlapping regions
Replacing the SVM with a softmax layer, thus extending the neural network for predictions instead of creating a new model
Intuitively it makes a lot of sense to remove 2000 conv layers and instead take once Convolution and make boxes on top of that.
Faster R-CNN:
One of the drawbacks of Fast R-CNN was the slow selective search algorithm and Faster R-CNN introduced something called Region Proposal network(RPN).
Here’s is the working of the RPN:
At the last layer of an initial CNN, a 3x3 sliding window moves across the feature map and maps it to a lower dimension (e.g. 256-d)
For each sliding-window location, it generates multiple possible regions based on k fixed-ratio anchor boxes (default bounding boxes)
Each region proposal consists of:
an “objectness” score for that region and
4 coordinates representing the bounding box of the region
In other words, we look at each location in our last feature map and consider k different boxes centered around it: a tall box, a wide box, a large box, etc. For each of those boxes, we output whether or not we think it contains an object, and what the coordinates for that box are. This is what it looks like at one sliding window location:
The 2k scores represent the softmax probability of each of the k bounding boxes being on “object.” Notice that although the RPN outputs bounding box coordinates, it does not try to classify any potential objects: its sole job is still proposing object regions. If an anchor box has an “objectness” score above a certain threshold, that box’s coordinates get passed forward as a region proposal.
Once we have our region proposals, we feed them straight into what is essentially a Fast R-CNN. We add a pooling layer, some fully-connected layers, and finally a softmax classification layer and bounding box regressor. In a sense, Faster R-CNN = RPN + Fast R-CNN.
YOLO:
YOLO uses a single CNN network for both classification and localising the object using bounding boxes. This is the architecture of YOLO :
In the end you will have a tensor of shape 1470 i.e 7*7*30 and the structure of the CNN output will be:
The 1470 vector output is divided into three parts, giving the probability, confidence and box coordinates. Each of these three parts is also further divided into 49 small regions, corresponding to the predictions at the 49 cells that form the original image.
In postprocessing steps, we take this 1470 vector output from the network to generate the boxes that with a probability higher than a certain threshold.
I hope you get the understanding of these networks, to answer your question on how the performance of these network differs:
On the same dataset: 'You can be sure that the performance of these networks are in the order they are mentioned, with YOLO being the best and R-CNN being the worst'
Given SAME IMAGE SIZE, the run time: Faster R-CNN achieved much better speeds and a state-of-the-art accuracy. It is worth noting that although future models did a lot to increase detection speeds, few models managed to outperform Faster R-CNN by a significant margin. Faster R-CNN may not be the simplest or fastest method for object detection, but it is still one of the best performing. However researchers have used YOLO for video segmentation and by far its the best and fastest when it comes to video segmentation.
Support for android porting: As far as my knowledge goes, Tensorflow has some android APIs to port to android but I am not sure how these network will perform or even will you be able to port it or not. That again is subjected to hardware and data_size. Can you please provide the hardware and the size so that I will be able to answer it clearly.
The youtube video tagged by #A_Piro gives a nice explanation too.
P.S. I borrowed a lot of material from Joyce Xu Medium blog.
If your are interested in these algorithms you should take a look into this lesson which go through the algoritmhs you named : https://www.youtube.com/watch?v=GxZrEKZfW2o.
PS: There is also a Fast YOLO if I remember well haha !
I have been working with YOLO and FRCNN a lot. To me the YOLO has the best accuracy and speed but if you want to do research on image processing, I will suggest FRCNN as many previous works are done with it, and to do research you really want to be consistent.
For Object detection, I am trying SSD+ Mobilenet. It has a balance of accuracy and speed So it can also be ported to android devices easily with good fps.
It has less accuracy compared to faster rcnn but more speed than other algorithms.
It also has good support for android porting.
I intend to make a classifier using the feature map obtained from a CNN. Can someone suggest how I can do this?
Would it work if I first train the CNN using +ve and -ve samples (and hence obtain the weights), and then every time I need to classify an image, I apply the conv and pooling layers to obtain the feature map? The problem I find in this, is that the image I want to classify, may not have a similar feature map, and hence I wouldn't be able to find the distance correctly. As the order of the features may by different in the layer.
You can use the same CNN for classification if you used (for example) the cross entropy loss-(also known as softmax with loss). In this case, you should take the argmax of your last layer (the node with the highest score), and that would be the class given by the network. However, all the architectures used in machine learning would expect at testing time an input similar to those used during training.
I'm enrolled in Coursera ML class and I just started learning about neural networks.
One thing that truly mystifies me is how recognizing something so “human”, like a handwritten digit, becomes easy once you find the good weights for linear combinations.
It is even crazier when you understand that something seemingly abstract (like a car) can be recognized just by finding some really good parameters for linear combinations, and combining them, and feeding them to each other.
Combinations of linear combinations are much more expressible than I once thought.
This lead me to wonder if it is possible to visualize NN's decision process, at least in simple cases.
For example, if my input is 20x20 greyscale image (i.e. total 400 features) and the output is one of 10 classes corresponding to recognized digits, I would love to see some kind of visual explanation of which cascades of linear combinations led the NN to its conclusion.
I naïvely imagine that this may be implemented as visual cue over the image being recognized, maybe a temperature map showing “pixels that affected the decision the most”, or anything that helps to understand how neural network worked in a particular case.
Is there some neural network demo that does just that?
This is not a direct answer to your question. I would suggest you take a look at convolutional neural networks (CNN). In CNNs you can almost see the concept that is learned. You should read this publication:
Y. LeCun, L. Bottou, Y. Bengio and P. Haffner: Gradient-Based Learning Applied to Document Recognition, Proceedings of the IEEE, 86(11):2278-2324, November 1998
CNNs are often called "trainable feature extractors". In fact, CNNs implement 2D filters with trainable coefficients. This is why the activation of the first layers are usually shown as 2D images (see Fig. 13). In this paper the authors use another trick to make the networks even more transparant: the last layer is a radial basis function layer (with gaussian functions), i. e. the distance to an (adjustable) prototype for each class is calculated. You can really see the learned concepts by looking at the parameters of the last layer (see Fig. 3).
However, CNNs are artificial neural networks. But the layers are not fully connected and some neurons share the same weights.
Maybe it doesn't answer the question directly but I found this interesting piece in this Andrew Ng, Jeff Dean, Quoc Le, Marc’Aurelio Ranzato, Rajat Monga, Matthieu Devin,
Kai Chen and
Greg Corrado paper (emphasis mine):
In this section, we will present two visualization techniques to verify if the optimal stimulus of the neuron is indeed a face. The first method is visualizing the most responsive stimuli in the test set. Since the test set is large, this method can reliably detect near optimal stimuli of the tested neuron. The second approach is to perform numerical optimization to find the optimal stimulus
...
These visualization methods have complementary strengths and weaknesses. For instance, visualizing the most responsive stimuli may suffer from fitting to noise. On the other hand, the numerical optimization approach can be susceptible to local minima. Results, shown [below], confirm that the tested neuron indeed learns the concept of faces.
In other words, they take a neuron that is best-performing at recognizing faces and
select images from the dataset that it cause it to output highest confidence;
mathematically find an image (not in dataset) that would get highest condifence.
It's fun to see that it actually “captures” features of the human face.
The learning is unsupervised, i.e. input data didn't say whether an image is a face or not.
Interestingly, here are generated “optimal input” images for cat heads and human bodies: