So I'm trying to create a generator to iterate through a data set for use in training with Keras's fit_generator. Here's the definition of the generator, the model, and the call to fit_generator:
import numpy as np
from queue import Queue, deque
from keras.models import Sequential
from keras.layers import Dense
num_features = 40
len_data = 100
data = np.random.rand(len_data, num_features)
def train_generator(train_idxs):
while True:
i = train_idxs.get(block=False)
training_example = data[i,:]
training_example.shape = (1, len(training_example))
yield (training_example, training_example)
layer0_size = num_features
layer1_size = layer0_size / 2
layer2_size = layer1_size / 2
layers = []
layers.append(
Dense(input_dim=layer0_size, output_dim=layer1_size, activation='relu'))
layers.append(
Dense(input_dim=layer1_size, output_dim=layer2_size, activation='relu'))
layers.append(
Dense(input_dim=layer2_size, output_dim=layer1_size, activation='relu'))
layers.append(
Dense(input_dim=layer1_size, output_dim=layer0_size, activation='sigmoid'))
model = Sequential()
for layer in layers:
model.add(layer)
model.compile(optimizer='adam', loss='binary_crossentropy')
train_idxs = Queue()
train_idxs.queue = deque(range(len_data))
train_gen = train_generator(train_idxs)
max_q_size = 2
model.fit_generator(train_gen, samples_per_epoch=len(data), max_q_size=max_q_size, nb_epoch=1)
Keras will then successfully train 98/100 training examples and throw this error
98/100 [============================>.] - ETA: 0s - loss: 0.6930Exception in thread Thread-1:
Traceback (most recent call last):
File "/usr/lib/python3.5/threading.py", line 914, in _bootstrap_inner
self.run()
File "/usr/lib/python3.5/threading.py", line 862, in run
self._target(*self._args, **self._kwargs)
File "/usr/local/lib/python3.5/dist-packages/keras/engine/training.py", line 429, in data_generator_task
generator_output = next(self._generator)
File "scrap.py", line 12, in train_generator
i = train_idxs.get(block=False)
File "/usr/lib/python3.5/queue.py", line 161, in get
raise Empty
queue.Empty
Traceback (most recent call last):
File "scrap.py", line 43, in <module>
model.fit_generator(train_gen, samples_per_epoch=len(data), max_q_size=max_q_size, nb_epoch=1)
File "/usr/local/lib/python3.5/dist-packages/keras/models.py", line 935, in fit_generator
initial_epoch=initial_epoch)
File "/usr/local/lib/python3.5/dist-packages/keras/engine/training.py", line 1528, in fit_generator
str(generator_output))
ValueError: output of generator should be a tuple (x, y, sample_weight) or (x, y). Found: None
It seems like what's happening is that it popped of all of the training_idxs and it's still trying to get more until Keras exhaust the training examples in its internal queue. Is there a way to get it to stop trying to get more training examples from the generator?
Related
I'm trying to run this RNN model for that i want to use the cosine_proximity loss function, i should say that i'm coding using google colabthe code s.o please help me figure the problem.
here is the source code of the RNN model:
import tensorflow as tf
from tensorflow import keras
from keras import Sequential
from keras.layers import LSTM
from keras.layers import Dropout
model = Sequential()
model.add(LSTM(units=512, input_shape = X_train.shape[1:],activation='relu',return_sequences= True))
model.add(Dropout(0.2)
model.add(LSTM(units=128,activation='relu',return_sequences= True))
model.add(Dropout(0.2)
model.add(LSTM(units=64,activation='relu',return_sequences=True))
model.add(Dropout(0.2)
model.add(Dense(units=10,activation='relu'))
model.add(Dropout(0.2)
model.compile(loss="cosine_proximity", optimizer='sgd', metrics = ['accuracy'])
print(model.summary())
model.fit(X_train, y_train, epochs=1, verbose=1)
and this is what i get when i run the cell
Model: "sequential_9"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
lstm_27 (LSTM) (None, 523, 512) 1052672
lstm_28 (LSTM) (None, 523, 128) 328192
lstm_29 (LSTM) (None, 523, 64) 49408
=================================================================
Total params: 1,430,272
Trainable params: 1,430,272
Non-trainable params: 0
_________________________________________________________________
None
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-44-fc8e0b2a4cd4> in <module>()
13 print(model.summary())
14
---> 15 model.fit(X_train, y_train, epochs=1, verbose=1)
1 frames
/usr/local/lib/python3.7/dist-packages/tensorflow/python/framework/func_graph.py in autograph_handler(*args, **kwargs)
1145 except Exception as e: # pylint:disable=broad-except
1146 if hasattr(e, "ag_error_metadata"):
-> 1147 raise e.ag_error_metadata.to_exception(e)
1148 else:
1149 raise
ValueError: in user code:
File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 1021, in train_function *
return step_function(self, iterator)
File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 1010, in step_function **
outputs = model.distribute_strategy.run(run_step, args=(data,))
File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 1000, in run_step **
outputs = model.train_step(data)
File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 860, in train_step
loss = self.compute_loss(x, y, y_pred, sample_weight)
File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 919, in compute_loss
y, y_pred, sample_weight, regularization_losses=self.losses)
File "/usr/local/lib/python3.7/dist-packages/keras/engine/compile_utils.py", line 184, in __call__
self.build(y_pred)
File "/usr/local/lib/python3.7/dist-packages/keras/engine/compile_utils.py", line 133, in build
self._losses = tf.nest.map_structure(self._get_loss_object, self._losses)
File "/usr/local/lib/python3.7/dist-packages/keras/engine/compile_utils.py", line 272, in _get_loss_object
loss = losses_mod.get(loss)
File "/usr/local/lib/python3.7/dist-packages/keras/losses.py", line 2369, in get
return deserialize(identifier)
File "/usr/local/lib/python3.7/dist-packages/keras/losses.py", line 2328, in deserialize
printable_module_name='loss function')
File "/usr/local/lib/python3.7/dist-packages/keras/utils/generic_utils.py", line 710, in deserialize_keras_object
f'Unknown {printable_module_name}: {object_name}. Please ensure '
ValueError: Unknown loss function: cosine_proximity. Please ensure this object is passed to the `custom_objects` argument. See https://www.tensorflow.org/guide/keras/save_and_serialize#registering_the_custom_object for details.
any help pls in order to fix this problem ???
I am trying to apply LSTM on HP news dataset. The data is in JSON format (https://www.kaggle.com/rmisra/news-category-dataset). I have tried this code and got errors. Don't know what's wrong with this code?
from keras.layers import LSTM, Activation, Dense, Dropout, Input, Embedding
from keras.optimizers import RMSprop
from keras.preprocessing.text import Tokenizer
from keras.preprocessing import sequence
from keras.utils import to_categorical
from keras.callbacks import EarlyStopping
import json
from sklearn.preprocessing import LabelBinarizer
with open('News_Category_Dataset_v2.json', 'r') as f:
train = json.load(f)
Y_train = list(train.values())
lb = LabelBinarizer()
X_train = lb.fit_transform(list(train.keys()))
##
X_train,X_test,Y_train,Y_test = train_test_split(X,Y,test_size=0.15)
##
max_words = 1000
max_len = 150
tok = Tokenizer(num_words=max_words)
tok.fit_on_texts(X_train)
sequences = tok.texts_to_sequences(X_train)
sequences_matrix = sequence.pad_sequences(sequences,maxlen=max_len)
def RNN():
inputs = Input(name='inputs',shape=[max_len])
layer = Embedding(max_words,50,input_length=max_len)(inputs)
layer = LSTM(64)(layer)
layer = Dense(256,name='FC1')(layer)
layer = Activation('relu')(layer)
layer = Dropout(0.5)(layer)
layer = Dense(1,name='out_layer')(layer)
layer = Activation('softmax')(layer)
model = Model(inputs=inputs,outputs=layer)
return model
model = RNN()
model.summary()
model.compile(loss='binary_crossentropy',optimizer=RMSprop(),metrics=['accuracy'])
model.fit(sequences_matrix,Y_train,batch_size=128,epochs=10,
validation_split=0.2,callbacks=[EarlyStopping(monitor='val_loss',min_delta=0.0001)])
Got these errors
Traceback (most recent call last):
Traceback (most recent call last):
File ".\Hpnews.py", line 30, in <module>
train = json.load(f)
File "C:\Users\a\Anaconda3\lib\json\__init__.py", line 293, in load
return loads(fp.read(),
File "C:\Users\a\Anaconda3\lib\json\__init__.py", line 357, in loads
return _default_decoder.decode(s)
File "C:\Users\a\Anaconda3\lib\json\decoder.py", line 340, in decode
raise JSONDecodeError("Extra data", s, end)
json.decoder.JSONDecodeError: Extra data: line 2 column 1 (char 366)
this is my json file format
"root":{6 items
"category":string"CRIME"
"headline":string"There Were 2 Mass Shootings In Texas Last Week, But Only 1 On TV"
"authors":string"Melissa Jeltsen"
"link":string"huffingtonpost.com/entry/…" "short_description":string"She left her husband. He killed their children. Just another day in America."
"date":string"2018-05-26" }
The JSON is not a typical JSON but a ndJSON ("newline-delimited JSON") that won't be opened by json.load.
You should use pandas to load you data:
import pandas as pd
data = pd.read_json('News_Category_Dataset_v2.json', lines=True)
gdd.forward(x) call error, but why?
This code uses imcol to implement the convolution layer
Traceback (most recent call last):
File "E:/PycharmProjects/untitled2/kk.py", line 61, in <module>
gdd.forward(x)
File "E:/PycharmProjects/untitled2/kk.py", line 46, in forward
FN,C,FH,FW=self.W.shape
ValueError: not enough values to unpack (expected 4, got 2)
import numpy as np
class Convolution:
# 卷积核大小
def __init__(self,W,b,stride=1,pad=0):
self.W = W
self.b = b
self.stride = stride
self.pad = pad
def forward(self,x):
FN,C,FH,FW=self.W.shape
N,C,H,W = x.shape
out_h = int(1+(H+ 2*self.pad - FH) / self.stride)
out_w = int(1+(W + 2*self.pad -FW) / self.stride)
e = np.array([[2,0,1],[0,1,2],[1,0,2]])
x = np.array([[1,2,3,0],[0,1,2,3],[3,0,1,2],[2,3,0,1]])
gdd = Convolution(e,3,1,0)
gdd.forward(x)
not enough value to unpack means that there are 2 outputs, but you are expecting 4:
FN,C,FH,FW=self.W.shape
just get rid of 2 of them and you are good to go :)
BTW I'm assuming you speak Chinese? 我说中文, 不懂可以用中文问一下
I want to train my data with a convolutional neural network (CNN),I start with reshaping my data than creating my model:
model = Sequential()
input_traces = Input(shape=(3253,))
model.add(Convolution1D(nb_filter=32, filter_length=3, border_mode='same',
activation='relu',input_dim=input_traces))
model.add(MaxPooling1D(pool_length=2))
model.add(Flatten())
model.add(Dense(250, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=
['accuracy'])
print(model.summary())
model.fit(x_train, y_train, batch_size=15, nb_epoch=30, show_accuracy=True,
validation_data=(x_test, y_test))
But this code gives me this error:
CNN_Based_Attack.py:139: UserWarning: Update your `Conv1D` call to the Keras 2 API: `Conv1D(activation="relu", input_shape=(None, /in..., padding="same", filters=32, kernel_size=3)`
model.add(Convolution1D(nb_filter=32, filter_length=3, border_mode='same', activation='relu',input_dim=input_traces))
Traceback (most recent call last):
File "CNN_Based_Attack.py", line 139, in <module>
model.add(Convolution1D(nb_filter=32, filter_length=3, border_mode='same', activation='relu',input_dim=input_traces))
File "/home/.local/lib/python2.7/site-packages/keras/models.py", line 430, in add
layer(x)
File "/home/.local/lib/python2.7/site-packages/keras/engine/topology.py", line 557, in __call__
self.build(input_shapes[0])
File "/home/.local/lib/python2.7/site-packages/keras/layers/convolutional.py", line 134, in build
constraint=self.kernel_constraint)
File "/home/.local/lib/python2.7/site-packages/keras/legacy/interfaces.py", line 88, in wrapper
return func(*args, **kwargs)
File "/home/.local/lib/python2.7/site-packages/keras/engine/topology.py", line 390, in add_weight
weight = K.variable(initializer(shape), dtype=dtype, name=name)
File "/home/.local/lib/python2.7/site-packages/keras/initializers.py", line 200, in __call__
scale /= max(1., float(fan_in + fan_out) / 2)
TypeError: float() argument must be a string or a number
I really don't understand this error. Could you please help me.
This is not how you should use Input. Input is a layer in Keras, and input_shape parameter to Convolution1D is supposed to be list of integers (and this is a reason of the error, since the code tries to use conversion to float on these integers, but you provided Input object instead, which cannot be casted to float), not Input layer.
I'm searching for the way to use fft-convolution in theano.
I wrote simple convolution code with theano.
But this code doesn't work if i set "fft_conv = 1" though simple convolution works with "fft_conv = 0"
Please tell me what is wrong with this code?
import numpy as np
import theano.sandbox.cuda.fftconv
from theano.tensor.nnet import conv
import theano.tensor as T
xdata_test = np.random.uniform(low=-1, high=1, size=(100,76,76),)
xdata_test = np.asarray(xdata_test,dtype='float32')
CONVfilter = np.random.uniform(low=-1,high=1,size=(10,1,6,6))
CONVfilter = np.asarray(CONVfilter,dtype='float32')
x = T.tensor3('x') # the data is presented as rasterized images
layer0_input = x.reshape((100, 1, 76, 76))
fft_flag = 1
if fft_flag == 1 :
##### FFT-CONVOLUTION VERSION
conv_out = theano.sandbox.cuda.fftconv.conv2d_fft(
input=layer0_input,
filters=CONVfilter,
filter_shape=(10, 1, 6, 6),
image_shape=(100,1,76,76),
border_mode='valid',
pad_last_dim=False
)
elif fft_flag == 0 :
###### CONVENTIONAL CONVOLUTION VERSION
conv_out = conv.conv2d(
input=layer0_input,
filters=CONVfilter,
filter_shape=(10, 1, 6, 6),
image_shape=(100,1,76,76),
)
test_conv = theano.function([x],conv_out)
result = test_conv(xdata_test)
The error message is like below:
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "C:\Anaconda\lib\site-packages\spyderlib\widgets\externalshell\sitecustomize.py", line 580, in runfile
execfile(filename, namespace)
File "C:/Users/user/Documents/Python Scripts/ffttest.py", line 38, in <module>
result = test_conv(xdata_test)
File "C:\Anaconda\lib\site-packages\theano\compile\function_module.py", line 606, in __call__
storage_map=self.fn.storage_map)
File "C:\Anaconda\lib\site-packages\theano\gof\link.py", line 205, in raise_with_op
'\n' + '\n'.join(hints))
TypeError: __init__() takes at least 3 arguments (2 given)