SQL query getting error [duplicate] - mysql

This question already has answers here:
Closed 12 years ago.
Possible Duplicate:
Weird Java Boxing
Recently I saw a presentation where was the following sample of Java code:
Integer a = 1000, b = 1000;
System.out.println(a == b); // false
Integer c = 100, d = 100;
System.out.println(c == d); // true
Now I'm a little confused. I understand why in first case the result is "false" - it is because Integer is a reference type and the references of "a" and "b" is different.
But why in second case the result is "true"?
I've heard an opinion, that JVM caching objects for int values from -128 to 127 for some optimisation purposes. In this way, references of "c" and "d" is the same.
Can anybody give me more information about this behavior? I want to understand purposes of this optimization. In what cases performance is increased, etc. Reference to some research of this problem will be great.

I want to understand purposes of this
optimization. In what cases
performance is increased, etc.
Reference to some research of this
problem will be great.
The purpose is mainly to save memory, which also leads to faster code due to better cache efficiency.
Basically, the Integer class keeps a cache of Integer instances in the range of -128 to 127, and all autoboxing, literals and uses of Integer.valueOf() will return instances from that cache for the range it covers.
This is based on the assumption that these small values occur much more often than other ints and therefore it makes sense to avoid the overhead of having different objects for every instance (an Integer object takes up something like 12 bytes).

Look at the implementation of Integer.valueOf(int). It will return the same Integer object for inputs less than 256.
EDIT:
It's actually -128 to +127 by default as noted below.

Related

AS3 parseInt() method limitations

I have this issue in converting a HEX string to Number in as3
I have a value
str = "24421bff100317"; decimal value = 10205787172373271
but when I parseInt it I get
parseInt(str, 16) = 10205787172373272
Can anyone please tell me what am I doing wrong here
Looks like adding one ("24421bff100318") works fine. I have to assume that means this is a case of precision error.
Because there are only a finite amount of numbers that can be represented with the memory available, there will be times that the computer is estimating. This is common when working with decimals and very large numbers. It's visible, for example, in this snippet where apparently the computer can't add basic decimals:
for(var i=0;i<3;i+=0.2){
trace(i);
}
There are a few workarounds if accuracy at this level is critical, namely using datatypes that store more information ("long" instead of "int" in Java - I believe "Number" might work in AS3 but I have not tested it for your scenario) or if that fails, breaking the numbers down into smaller parts and adding them together.
For further reading to understand this topic (since I do think it's fascinating), look up "precision errors" and "data types".

Creating a hash of a string thats sortable

Is there anyway to create hashs of strings where the hashes can be sorted and have the same results as if the strings themselves were sorted?
This won't be possible, at least if you allow strings longer than the hash size. You have 256^(max. string size) possible strings mapped to 256^(hash size) hash values, so you'll end up with some of the strings unsorted.
Just imagine the simplest hash: Truncating every string to (hash size) bytes.
Yes. It's called using the entire input string as the hash.
As others have pointed out it's not practical to do exactly what you've asked. You'd have to use the string itself as the hash which would constrain the lengths of strings that could be "hashed" and so on.
The obvious approach to maintaining a "sorted hash" data structure would be to maintain both a sorted list (heap or binary tree, for example) and a hashed mapping of the data. Inserts and removals would be O(log(n)) while retrievals would be O(1). Off hand I'm not sure how often this would be worth the additional complexity and overhead.
If you had a particularly large data set, mostly read-only and such that logarithmic time retrieval was overly expensive then I suppose it might be useful. Note that the cost of updates is actually the sum of the constant time (hash) and the logarithmic time (binary tree or heap) operations. However O(1) + O(log(n)) reduces to the larger of the two terms during asymptotic analysis. (The underlying cost is still there --- relevant to any implementation effort regardless of its theoretical irrelevance).
For a significant range of data set sizes the cost of maintaining this hypothetical hybrid data structure could be estimated as "twice" the cost of maintaining either of the pure ones. (In other words many implementations of a binary tree over can scale to billions of elements (2^~32 or so) in time cost that's comparable to the cost of the typical hash functions). So I'd be hard-pressed to convince myself that such added code complexity and run-time cost (of a hybrid data structure) would actually be of benefit to a given project.
(Note: I saw that Python 3.1.1 added the notion of "ordered" dictionaries ... and this is similar to being sorted, but not quite the same. From what I gather the ordered dictionary preserves the order in which elements were inserted to the collection. I also seem to remember some talk of "views" ... objects in the language which can access keys of a dictionary in some particular manner (sorted, reversed, reverse sorted, ...) at (possibly) lower cost than passing the set of keys through the built-in "sorted()" and "reversed()." I haven't used these nor have a looked at the implementation details. I would guess that one of these "views" would be something like a lazily evaluated index, performing the necessary sorting on call, and storing the results with some sort of flag or trigger (observer pattern or listener) that's reset when the back-end source collection is updated. In that scheme a call to the "view" would update its index; subsequence calls would be able to use those results so long as no insertions nor deletions had been made to the dictionary. Any call to the view subsequent to key changes would incur the cost of updating the view. However this is all pure speculation on my part. I mention it because it might also provide insight into some alternative ways to approach the question).
Not unless there are fewer strings than hashes, and the hashes are perfect. Even then you still have to ensure the hash order is the same as the string order, this is probably not possible unless you know all the strings ahead of time.
No. The hash would have to contain the same amount of information as the string it is replacing. Otherwise, if two strings mapped to the same hash value, how could you possibly sort them?
Another way of thinking about it is this: If I have two strings, "a" and "b", then I hash both of them with this sort preserving hash function and get f(a) and f(b). However, there are an infinite number of strings that are greater than "a" but less than "b". This would require hashing the strings to arbitrary precision Real values (because of cardinality). In the end, you would basically just have the string encoded as a number.
You're essentially asking if you can compress the key strings into smaller keys while preserving their collation order. So it depends on your data. If your strings are composed of only hexadecimal digits, for example, they can be replaced with 4-bit codes.
But for the general case, it can't be done. You'd end up "hashing" each source key into itself.
I stumble upon this, and although everyone is correct with their answers, I needed a solution exactly like this to use in elasticsearch (don't ask why). Sometimes we don't need a perfect solution for all cases, we just need one to work with the constraints that are acceptable. My solution is able to generate a sortable hashcode for the first n chars of the string, I did some preliminary tests and didn't have any collisions. You need to define beforehand the charset that is used and play with n to a deemed acceptable value of the first chars needed to sort and try to maintain the result hash code in the positive interval of the defined type for it to work, in my case, for Java Long type I could go up to 13 chars.
Below is my code in Java, hopefully, it will help someone else that needs this.
String charset = "abcdefghijklmnopqrstuvwxyz";
public long orderedHash(final String s, final String charset, final int n) {
Long hash = 0L;
if(s.isEmpty() || n == 0)
return hash;
Long charIndex = (long)(charset.indexOf(s.charAt(0)));
if(charIndex == -1)
return hash;
for(int i = 1 ; i < n; i++)
hash += (long)(charIndex * Math.pow(charset.length(), i));
hash += charIndex + 1 + orderedHash(s.substring(1), charset, n - 1);
return hash;
}
Examples:
orderedHash("a", charset, 13) // 1
orderedHash("abc", charset, 13) // 4110785825426312
orderedHash("b", charset, 13) // 99246114928149464
orderedHash("google", charset, 13) // 651008600709057847
orderedHash("stackoverflow", charset, 13) // 1858969664686174756
orderedHash("stackunderflow", charset, 13) // 1858969712216171093
orderedHash("stackunderflo", charset, 13) // 1858969712216171093 same, 13 chars limitation
orderedHash("z", charset, 13) // 2481152873203736576
orderedHash("zzzzzzzzzzzzz", charset, 13) // 2580398988131886038
orderedHash("zzzzzzzzzzzzzz", charset, 14) // -4161820175519153195 no good, overflow
orderedHash("ZZZZZZZZZZZZZ", charset, 13) // 0 no good, not in charset
If more precision is needed, use an unsigned type or a composite one made of two longs for example and compute the hashcode with substrings.
Edit: Although the previously algorithm sufficed for my use I noticed that it was not really ordering correctly the strings if they didn't have a length bigger that the chosen n. With this new algorithm it should be ok now.

What's the absolute minimum a programmer should know about binary numbers and arithmetic? [closed]

Closed. This question is opinion-based. It is not currently accepting answers.
Want to improve this question? Update the question so it can be answered with facts and citations by editing this post.
Closed 2 years ago.
Improve this question
Although I know the basic concepts of binary representation, I have never really written any code that uses binary arithmetic and operations.
I want to know
What are the basic concepts any
programmer should know about binary
numbers and arithmetic ? , and
In what "practical" ways can binary
operations be used in programming. I
have seen some "cool" uses of shift
operators and XOR etc. but are there
some typical problems where using binary
operations is an obvious choice.
Please give pointers to some good reference material.
If you are developing lower-level code, it is critical that you understand the binary representation of various types. You will find this particularly useful if you are developing embedded applications or if you are dealing with low-level transmission or storage of data.
That being said, I also believe that understanding how things work at a low level is useful even if you are working at much higher levels of abstraction. I have found, for example, that my ability to develop efficient code is improved by understanding how things are represented and manipulated at a low level. I have also found such understanding useful in working with debuggers.
Here is a short-list of binary representation topics for study:
numbering systems (binary, hex, octal, decimal, ...)
binary data organization (bits, nibbles, bytes, words, ...)
binary arithmetic
other binary operations (AND,OR,XOR,NOT,SHL,SHR,ROL,ROR,...)
type representation (boolean,integer,float,struct,...)
bit fields and packed data
Finally...here is a nice set of Bit Twiddling Hacks you might find useful.
Unless you're working with lower level stuff, or are trying to be smart, you never really get to play with binary stuff.
I've been through a computer science degree, and I've never used any of the binary arithmetic stuff we learned since my course ended.
Have a squizz here: http://www.swarthmore.edu/NatSci/echeeve1/Ref/BinaryMath/BinaryMath.html
You must understand bit masks.
Many languages and situations require the use of bit masks, for example flags in arguments or configs.
PHP has its error level which you control with bit masks:
error_reporting = E_ALL & ~E_NOTICE
Or simply checking if an int is odd or even:
isOdd = myInt & 1
I believe basic know-hows on binary operations line AND, OR, XOR, NOT would be handy as most of the programming languages support these operations in the form of bit-wise operators.
These operations are also used in image processing and other areas in graphics.
One important use of XOR operation which I can think of is Parity check. Check this http://www.cs.umd.edu/class/sum2003/cmsc311/Notes/BitOp/xor.html
cheers
The following are things I regularly appreciate knowing in my quite conventional programming work:
Know the powers of 2 up to 2^16, and know that 2^32 is about 4.3 billion. Know them well enough so that if you see the number 2147204921 pop up somewhere your first thought is "hmm, that looks pretty close to 2^31" -- that's a very effective module for your bug radar.
Be able to do simple arithmetic; e.g. convert a hexadecimal digit to a nybble and back.
Have some vague idea of how floating-point numbers are represented in binary.
Understand standard conventions that you might encounter in other people's code related to bit twiddling (flags get ORed together to make composite values and AND checks if one's set, shift operators pack and unpack numbers into different bytes, XOR something twice and you get the same something back, that kind of thing.)
Further knowledge is mostly gravy unless you work with significant performance constraints or do other less common work.
At the absolute bare minimum you should be able to implement a bit mask solution. The tasks associated with bit mask operations should ensure that you at least understand binary at a superficial level.
From the top of my head, here are some examples of where I've used bitwise operators to do useful stuff.
A piece of javascript that needed one of those "check all" boxes was something along these lines:
var check = true;
for(var i = 0; i < elements.length; i++)
check &= elements[i].checked;
checkAll.checked = check;
Calculate the corner points of a cube.
Vec3f m_Corners[8];
void corners(float a_Size){
for(size_t i = 0; i < 8; i++){
m_Corners[i] = a_Size * Vec3f(axis(i, Vec3f::X), axis(i, Vec3f::Y), axis(i, Vec3f::Z));
}
}
float axis(size_t a_Corner, int a_Axis) const{
return ((a_Corner >> a_Axis) & 1) == 1
? -.5f
: +.5f;
}
Draw a Sierpinski triangle
for(int y = 0; y < 512; y++)
for(int x = 0; x < 512; x++)
if(x & y) pixels[x + y * w] = someColor;
else pixels[x + y * w] = someOtherColor;
Finding the next power of two
int next = 1 << ((int)(log(number) / log(2));
Checking if a number is a power of two
bool powerOfTwo = number & (number - 1);
The list can go on and on, but for me these are (except for Sierpinksi) everyday examples. Once you'll understand and work with it though, you'll encounter it in more and more places such as the corners of a cube.
You don't specifically mention (nor rule out!-) floating point binary numbers and arithmetic, so I won't miss the opportunity to flog one of my favorite articles ever (seriously: I sometimes wish I could make passing a strict quiz on it a pre-req of working as a programmer...;-).
The most important thing every programmer should know about binary numbers and arithmetic is : Every number in a computer is represented in some kind of binary encoding, and all arithmetic on a computer is binary arithmetic.
The consequences of this are many:
Floating point "bugs" when doing math with IEEE floating point binary numbers (Which is all numbers in javascript, and quite a few in JAVA, and C)
The upper and lower bounds of representable numbers for each type
The performance cost of multiplication/division/square root etc operations (for embedded systems
Precision loss, and accumulation errors
and more. This is stuff you need to know even if you never do a bitwise xor, or not, or whatever in your life. You'll still run into these things.
This really depends on the language you're using. Recent languages such as C# and Java abstract the binary representation from you -- this makes working with binary difficult and is not usually the best way to do things anyway in these languages.
Middle and low level languages like C and C++, however, require you to understand quite a bit about how the numbers are stored underneath -- especially regarding endianness.
Binary knowledge is also useful when implementing a cross platform protcol of some sort .... for example, on x86 machines, byte order is little endian. but most network protocols want big endian numbers. Therefore you have to realize you need to do the conversion for things to go smoothly. Many RFCs, such as this one -> https://www.rfc-editor.org/rfc/rfc4648 require binary knowledge to understand.
In short, it's completely dependent on what you're trying to do.
Billy3
It's handy to know the numbers 256 and 65536. It's handy to know how two's complement negative numbers work.
Maybe you won't run into a lot of binary. I still use it pretty often, but maybe out of habit.
A good familiarity with bitwise operations should make you more facile with boolean algebra, and I think that's important for every programmer--you want to be able to quickly simplify complex logic expressions.
Absolute minimum is, that "2" is not a binary digit and 10b is smaller than 3.
If you never do low-level programming (like C in embedded systems), never have to use a debugger, and never have to work with real numbers, then I suppose you could get by without knowing binary. But knowing binary will make you a stronger programmer, even if indirectly.
Once you venture into those areas you will need to know binary (and its ``sister'' base, hexadecimal). Without knowing it:
Embedded systems programming would be impossible.
Debugging would be hard because you wouldn't know what you were looking at in memory.
Numerical calculations with decimals would give you answers you don't understand.
I learned to twiddle bits back when c and asm were still used for "mainstream" programming. Although I no longer have much use for that knowledge, I recently used it to solve a real-world business problem.
We use a fax service that posts a message back to us when the fax has been sent or failed after x number of retries. The only way I had to identify the fax was a 15 character field. We wanted to consolidate this into one URL for all of our clients. Before we consolidated, all we had to fit in this field was the FaxID PK (32 bit int) column which we just sent as a string.
Now we had to identify the client (a 4 character code) and the database (32 bit int) underneath the client. I was able to do this using base 64 encoding. Without understanding the binary representation of numbers and characters, I probably would never have even thought of this solution.
Some useful information about the number system.
Binary | base 2
Hexadecimal | base 16
Decimal | base 10
Octal | base 8
These are the most common.
Converting them is faily easy.
112 base 8 = (1 x 8^2) + (2 x 8^1) + (4 x 8^0)
74 base 10 = (7 x 10^1) + (4 x 10^0)
The AND, OR, XOR, and etc. are used in logic gates. Search boolean algebra, something well worth the time knowing.
Say for instance, you have 11001111 base 2 and you want to extract the last four only.
Truth table for AND:
P | Q | R
T | T | T
T | F | F
F | F | F
F | T | F
You can use 11001111 base 2 AND 00111111 base 2 = 00001111 base 2
There are plenty of resources on the internet.

What exactly is the danger of using magic debug values (such as 0xDEADBEEF) as literals?

It goes without saying that using hard-coded, hex literal pointers is a disaster:
int *i = 0xDEADBEEF;
// god knows if that location is available
However, what exactly is the danger in using hex literals as variable values?
int i = 0xDEADBEEF;
// what can go wrong?
If these values are indeed "dangerous" due to their use in various debugging scenarios, then this means that even if I do not use these literals, any program that during runtime happens to stumble upon one of these values might crash.
Anyone care to explain the real dangers of using hex literals?
Edit: just to clarify, I am not referring to the general use of constants in source code. I am specifically talking about debug-scenario issues that might come up to the use of hex values, with the specific example of 0xDEADBEEF.
There's no more danger in using a hex literal than any other kind of literal.
If your debugging session ends up executing data as code without you intending it to, you're in a world of pain anyway.
Of course, there's the normal "magic value" vs "well-named constant" code smell/cleanliness issue, but that's not really the sort of danger I think you're talking about.
With few exceptions, nothing is "constant".
We prefer to call them "slow variables" -- their value changes so slowly that we don't mind recompiling to change them.
However, we don't want to have many instances of 0x07 all through an application or a test script, where each instance has a different meaning.
We want to put a label on each constant that makes it totally unambiguous what it means.
if( x == 7 )
What does "7" mean in the above statement? Is it the same thing as
d = y / 7;
Is that the same meaning of "7"?
Test Cases are a slightly different problem. We don't need extensive, careful management of each instance of a numeric literal. Instead, we need documentation.
We can -- to an extent -- explain where "7" comes from by including a tiny bit of a hint in the code.
assertEquals( 7, someFunction(3,4), "Expected 7, see paragraph 7 of use case 7" );
A "constant" should be stated -- and named -- exactly once.
A "result" in a unit test isn't the same thing as a constant, and requires a little care in explaining where it came from.
A hex literal is no different than a decimal literal like 1. Any special significance of a value is due to the context of a particular program.
I believe the concern raised in the IP address formatting question earlier today was not related to the use of hex literals in general, but the specific use of 0xDEADBEEF. At least, that's the way I read it.
There is a concern with using 0xDEADBEEF in particular, though in my opinion it is a small one. The problem is that many debuggers and runtime systems have already co-opted this particular value as a marker value to indicate unallocated heap, bad pointers on the stack, etc.
I don't recall off the top of my head just which debugging and runtime systems use this particular value, but I have seen it used this way several times over the years. If you are debugging in one of these environments, the existence of the 0xDEADBEEF constant in your code will be indistinguishable from the values in unallocated RAM or whatever, so at best you will not have as useful RAM dumps, and at worst you will get warnings from the debugger.
Anyhow, that's what I think the original commenter meant when he told you it was bad for "use in various debugging scenarios."
There's no reason why you shouldn't assign 0xdeadbeef to a variable.
But woe betide the programmer who tries to assign decimal 3735928559, or octal 33653337357, or worst of all: binary 11011110101011011011111011101111.
Big Endian or Little Endian?
One danger is when constants are assigned to an array or structure with different sized members; the endian-ness of the compiler or machine (including JVM vs CLR) will affect the ordering of the bytes.
This issue is true of non-constant values, too, of course.
Here's an, admittedly contrived, example. What is the value of buffer[0] after the last line?
const int TEST[] = { 0x01BADA55, 0xDEADBEEF };
char buffer[BUFSZ];
memcpy( buffer, (void*)TEST, sizeof(TEST));
I don't see any problem with using it as a value. Its just a number after all.
There's no danger in using a hard-coded hex value for a pointer (like your first example) in the right context. In particular, when doing very low-level hardware development, this is the way you access memory-mapped registers. (Though it's best to give them names with a #define, for example.) But at the application level you shouldn't ever need to do an assignment like that.
I use CAFEBABE
I haven't seen it used by any debuggers before.
int *i = 0xDEADBEEF;
// god knows if that location is available
int i = 0xDEADBEEF;
// what can go wrong?
The danger that I see is the same in both cases: you've created a flag value that has no immediate context. There's nothing about i in either case that will let me know 100, 1000 or 10000 lines that there is a potentially critical flag value associated with it. What you've planted is a landmine bug that, if I don't remember to check for it in every possible use, I could be faced with a terrible debugging problem. Every use of i will now have to look like this:
if (i != 0xDEADBEEF) { // Curse the original designer to oblivion
// Actual useful work goes here
}
Repeat the above for all of the 7000 instances where you need to use i in your code.
Now, why is the above worse than this?
if (isIProperlyInitialized()) { // Which could just be a boolean
// Actual useful work goes here
}
At a minimum, I can spot several critical issues:
Spelling: I'm a terrible typist. How easily will you spot 0xDAEDBEEF in a code review? Or 0xDEADBEFF? On the other hand, I know that my compile will barf immediately on isIProperlyInitialised() (insert the obligatory s vs. z debate here).
Exposure of meaning. Rather than trying to hide your flags in the code, you've intentionally created a method that the rest of the code can see.
Opportunities for coupling. It's entirely possible that a pointer or reference is connected to a loosely defined cache. An initialization check could be overloaded to check first if the value is in cache, then to try to bring it back into cache and, if all that fails, return false.
In short, it's just as easy to write the code you really need as it is to create a mysterious magic value. The code-maintainer of the future (who quite likely will be you) will thank you.

Of Ways to Count the Limitless Primes [closed]

Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 7 years ago.
Improve this question
Alright, so maybe I shouldn't have shrunk this question sooo much... I have seen the post on the most efficient way to find the first 10000 primes. I'm looking for all possible ways. The goal is to have a one stop shop for primality tests. Any and all tests people know for finding prime numbers are welcome.
And so:
What are all the different ways of finding primes?
Some prime tests only work with certain numbers, for instance, the Lucas–Lehmer test only works for Mersenne numbers.
Most prime tests used for big numbers can only tell you that a certain number is "probably prime" (or, if the number fails the test, it is definitely not prime). Usually you can continue the algorithm until you have a very high probability of a number being prime.
Have a look at this page and especially its "See Also" section.
The Miller-Rabin test is, I think, one of the best tests. In its standard form it gives you probable primes - though it has been shown that if you apply the test to a number beneath 3.4*10^14, and it passes the test for each parameter 2, 3, 5, 7, 11, 13 and 17, it is definitely prime.
The AKS test was the first deterministic, proven, general, polynomial-time test. However, to the best of my knowledge, its best implementation turns out to be slower than other tests unless the input is ridiculously large.
For a given integer, the fastest primality check I know is:
Take a list of 2 to the square root of the integer.
Loop through the list, taking the remainder of the integer / current number
If the remainder is zero for any number in the list, then the integer is not prime.
If the remainder was non-zero for all numbers in the list, then the integer is prime.
It uses significantly less memory than The Sieve of Eratosthenes and is generally faster for individual numbers.
The Sieve of Eratosthenes is a decent algorithm:
Take the list of positive integers 2 to any given Ceiling.
Take the next item in the list (2 in the first iteration) and remove all multiples of it (beyond the first) from the list.
Repeat step two until you reach the given Ceiling.
Your list is now composed purely of primes.
There is a functional limit to this algorithm in that it exchanges speed for memory. When generating very large lists of primes the memory capacity needed skyrockets.
#akdom's question to me:
Looping would work fine on my previous suggestion, and you don't need to do any calculations to determine if a number is even; in your loop, simply skip every even number, as shown below:
//Assuming theInteger is the number to be tested for primality.
// Check if theInteger is divisible by 2. If not, run this loop.
// This loop skips all even numbers.
for( int i = 3; i < sqrt(theInteger); i + 2)
{
if( theInteger % i == 0)
{
//getting here denotes that theInteger is not prime
// somehow indicate that some number, i, divides it and break
break;
}
}
A Rutgers grad student recently found a recurrence relation that generates primes. The difference of its successive numbers will generate either primes or 1's.
a(1) = 7
a(n) = a(n-1) + gcd(n,a(n-1)).
It makes a lot of crap that needs to be filtered out. Benoit Cloitre also has this recurrence that does a similar task:
b(1) = 1
b(n) = b(n-1) + lcm(n,b(n-1))
then the ratio of successive numbers, minus one [b(n)/b(n-1)-1] is prime. A full account of all this can be read at Recursivity.
For the sieve, you can do better by using a wheel instead of adding one each time, check out the Improved Incremental Prime Number Sieves. Here is an example of a wheel. Let's look at the numbers, 2 and 5 to ignore. Their wheel is, [2,4,2,2].
In your algorithm using the list from 2 to the root of the integer, you can improve performance by only testing odd numbers after 2. That is, your list only needs to contain 2 and all odd numbers from 3 to the square root of the integer. This cuts the number of times you loop in half without introducing any more complexity.
#theprise
If I were wanting to use an incrementing loop instead of an instantiated list (problems with memory for massive numbers...), what would be a good way to do that without building the list?
It doesn't seem like it would be cheaper to do a divisibility check for the given integer (X % 3) than just the check for the normal number (N % X).
If you're wanting to find a way of generating prime numbers, this have been covered in a previous question.