OPAL-Regarding Finding Calledges of methods defined in Abstract Class using CHA algorithm - opal-framework

Here is a question related to the algorithm of constructing the call graph for Java bytecode using CHA.
As there is no concrete method implementation for methods in abstract classes, adding a call edge to such methods might be a bit misleading.
take junit-4.12.jar for instance. runFailed has been defined in junit.runner.BaseTestRunner which is an abstract class. Besides, there are calls to runFailed in method getTest which also defined in junit.runner.BaseTestRunner
While in "Assumption Hierarchy for a CHA Call Graph Construction Algorithm"(Jason&Atanas), it is said that
"given a call site x.m(), where the declared type of x is C, the
possible runtime type of x must be a non-abstract subtype of C."
As far as i'm considered, without add a call edge(Calledge1) from junit.runner.BaseTestRunner getTest to junit.runner.BaseTestRunner runFailed, it is more reasonable to add a call edge(Calledge2) from junit.runner.BaseTestRunner getTest to junit/textui/TestRunner runFailed as TestRunner extends BaseTestRunner.
While after running test code to get the result of CallGraph.calledByStatistics(), only Calledge1 has been found. Calledge2 is missing.
Is there anybody can do me a favor to confirm this?
Thank you in advance.
Regards,
Jiang

I found OPAL offers two views of call graph. The second one won't add a "library-call" edge into call edge.
In CallGraph.calledByStatistics()
The binding is between Callsite (PC) to caller.method
for example: between “INVOKEVIRTUAL(junit.runner.BaseTestRunner{ void runFailed(java.lang.String) })” and
junit/runner/BaseTestRunner.public junit.framework.Test getTest(java.lang.String)
In CallGraph.callsStatistics()
The binding is between subtype.method to caller.method
for example:
between "junit/textui/TestRunner.protected void runFailed(java.lang.String)” and “junit/runner/BaseTestRunner.public junit.framework.Test getTest(java.lang.String)”

Related

In OOP, is function same things as a method? [duplicate]

Can someone provide a simple explanation of methods vs. functions in OOP context?
A function is a piece of code that is called by name. It can be passed data to operate on (i.e. the parameters) and can optionally return data (the return value). All data that is passed to a function is explicitly passed.
A method is a piece of code that is called by a name that is associated with an object. In most respects it is identical to a function except for two key differences:
A method is implicitly passed the object on which it was called.
A method is able to operate on data that is contained within the class (remembering that an object is an instance of a class - the class is the definition, the object is an instance of that data).
(this is a simplified explanation, ignoring issues of scope etc.)
A method is on an object or is static in class.
A function is independent of any object (and outside of any class).
For Java and C#, there are only methods.
For C, there are only functions.
For C++ and Python it would depend on whether or not you're in a class.
But in basic English:
Function: Standalone feature or functionality.
Method: One way of doing something, which has different approaches or methods, but related to the same aspect (aka class).
'method' is the object-oriented word for 'function'. That's pretty much all there is to it (ie., no real difference).
Unfortunately, I think a lot of the answers here are perpetuating or advancing the idea that there's some complex, meaningful difference.
Really - there isn't all that much to it, just different words for the same thing.
[late addition]
In fact, as Brian Neal pointed out in a comment to this question, the C++ standard never uses the term 'method' when refering to member functions. Some people may take that as an indication that C++ isn't really an object-oriented language; however, I prefer to take it as an indication that a pretty smart group of people didn't think there was a particularly strong reason to use a different term.
In general: methods are functions that belong to a class, functions can be on any other scope of the code so you could state that all methods are functions, but not all functions are methods:
Take the following python example:
class Door:
def open(self):
print 'hello stranger'
def knock_door():
a_door = Door()
Door.open(a_door)
knock_door()
The example given shows you a class called "Door" which has a method or action called "open", it is called a method because it was declared inside a class. There is another portion of code with "def" just below which defines a function, it is a function because it is not declared inside a class, this function calls the method we defined inside our class as you can see and finally the function is being called by itself.
As you can see you can call a function anywhere but if you want to call a method either you have to pass a new object of the same type as the class the method is declared (Class.method(object)) or you have to invoke the method inside the object (object.Method()), at least in python.
Think of methods as things only one entity can do, so if you have a Dog class it would make sense to have a bark function only inside that class and that would be a method, if you have also a Person class it could make sense to write a function "feed" for that doesn't belong to any class since both humans and dogs can be fed and you could call that a function since it does not belong to any class in particular.
Simple way to remember:
Function → Free (Free means it can be anywhere, no need to be in an object or class)
Method → Member (A member of an object or class)
A very general definition of the main difference between a Function and a Method:
Functions are defined outside of classes, while Methods are defined inside of and part of classes.
The idea behind Object Oriented paradigm is to "treat" the software is composed of .. well "objects". Objects in real world have properties, for instance if you have an Employee, the employee has a name, an employee id, a position, he belongs to a department etc. etc.
The object also know how to deal with its attributes and perform some operations on them. Let say if we want to know what an employee is doing right now we would ask him.
employe whatAreYouDoing.
That "whatAreYouDoing" is a "message" sent to the object. The object knows how to answer to that questions, it is said it has a "method" to resolve the question.
So, the way objects have to expose its behavior are called methods. Methods thus are the artifact object have to "do" something.
Other possible methods are
employee whatIsYourName
employee whatIsYourDepartmentsName
etc.
Functions in the other hand are ways a programming language has to compute some data, for instance you might have the function addValues( 8 , 8 ) that returns 16
// pseudo-code
function addValues( int x, int y ) return x + y
// call it
result = addValues( 8,8 )
print result // output is 16...
Since first popular programming languages ( such as fortran, c, pascal ) didn't cover the OO paradigm, they only call to these artifacts "functions".
for instance the previous function in C would be:
int addValues( int x, int y )
{
return x + y;
}
It is not "natural" to say an object has a "function" to perform some action, because functions are more related to mathematical stuff while an Employee has little mathematic on it, but you can have methods that do exactly the same as functions, for instance in Java this would be the equivalent addValues function.
public static int addValues( int x, int y ) {
return x + y;
}
Looks familiar? That´s because Java have its roots on C++ and C++ on C.
At the end is just a concept, in implementation they might look the same, but in the OO documentation these are called method.
Here´s an example of the previously Employee object in Java.
public class Employee {
Department department;
String name;
public String whatsYourName(){
return this.name;
}
public String whatsYourDeparmentsName(){
return this.department.name();
}
public String whatAreYouDoing(){
return "nothing";
}
// Ignore the following, only set here for completness
public Employee( String name ) {
this.name = name;
}
}
// Usage sample.
Employee employee = new Employee( "John" ); // Creates an employee called John
// If I want to display what is this employee doing I could use its methods.
// to know it.
String name = employee.whatIsYourName():
String doingWhat = employee.whatAreYouDoint();
// Print the info to the console.
System.out.printf("Employee %s is doing: %s", name, doingWhat );
Output:
Employee John is doing nothing.
The difference then, is on the "domain" where it is applied.
AppleScript have the idea of "natural language" matphor , that at some point OO had. For instance Smalltalk. I hope it may be reasonable easier for you to understand methods in objects after reading this.
NOTE: The code is not to be compiled, just to serve as an example. Feel free to modify the post and add Python example.
In OO world, the two are commonly used to mean the same thing.
From a pure Math and CS perspective, a function will always return the same result when called with the same arguments ( f(x,y) = (x + y) ). A method on the other hand, is typically associated with an instance of a class. Again though, most modern OO languages no longer use the term "function" for the most part. Many static methods can be quite like functions, as they typically have no state (not always true).
Let's say a function is a block of code (usually with its own scope, and sometimes with its own closure) that may receive some arguments and may also return a result.
A method is a function that is owned by an object (in some object oriented systems, it is more correct to say it is owned by a class). Being "owned" by a object/class means that you refer to the method through the object/class; for example, in Java if you want to invoke a method "open()" owned by an object "door" you need to write "door.open()".
Usually methods also gain some extra attributes describing their behaviour within the object/class, for example: visibility (related to the object oriented concept of encapsulation) which defines from which objects (or classes) the method can be invoked.
In many object oriented languages, all "functions" belong to some object (or class) and so in these languages there are no functions that are not methods.
Methods are functions of classes. In normal jargon, people interchange method and function all over. Basically you can think of them as the same thing (not sure if global functions are called methods).
http://en.wikipedia.org/wiki/Method_(computer_science)
A function is a mathematical concept. For example:
f(x,y) = sin(x) + cos(y)
says that function f() will return the sin of the first parameter added to the cosine of the second parameter. It's just math. As it happens sin() and cos() are also functions. A function has another property: all calls to a function with the same parameters, should return the same result.
A method, on the other hand, is a function that is related to an object in an object-oriented language. It has one implicit parameter: the object being acted upon (and it's state).
So, if you have an object Z with a method g(x), you might see the following:
Z.g(x) = sin(x) + cos(Z.y)
In this case, the parameter x is passed in, the same as in the function example earlier. However, the parameter to cos() is a value that lives inside the object Z. Z and the data that lives inside it (Z.y) are implicit parameters to Z's g() method.
Historically, there may have been a subtle difference with a "method" being something which does not return a value, and a "function" one which does.Each language has its own lexicon of terms with special meaning.
In "C", the word "function" means a program routine.
In Java, the term "function" does not have any special meaning. Whereas "method" means one of the routines that forms the implementation of a class.
In C# that would translate as:
public void DoSomething() {} // method
public int DoSomethingAndReturnMeANumber(){} // function
But really, I re-iterate that there is really no difference in the 2 concepts.
If you use the term "function" in informal discussions about Java, people will assume you meant "method" and carry on. Don't use it in proper documents or presentations about Java, or you will look silly.
Function or a method is a named callable piece of code which performs some operations and optionally returns a value.
In C language the term function is used. Java & C# people would say it a method (and a function in this case is defined within a class/object).
A C++ programmer might call it a function or sometimes method (depending on if they are writing procedural style c++ code or are doing object oriented way of C++, also a C/C++ only programmer would likely call it a function because term 'method' is less often used in C/C++ literature).
You use a function by just calling it's name like,
result = mySum(num1, num2);
You would call a method by referencing its object first like,
result = MyCalc.mySum(num1,num2);
Function is a set of logic that can be used to manipulate data.
While, Method is function that is used to manipulate the data of the object where it belongs.
So technically, if you have a function that is not completely related to your class but was declared in the class, its not a method; It's called a bad design.
In OO languages such as Object Pascal or C++, a "method" is a function associated with an object. So, for example, a "Dog" object might have a "bark" function and this would be considered a "Method". In contrast, the "StrLen" function stands alone (it provides the length of a string provided as an argument). It is thus just a "function." Javascript is technically Object Oriented as well but faces many limitations compared to a full-blown language like C++, C# or Pascal. Nonetheless, the distinction should still hold.
A couple of additional facts: C# is fully object oriented so you cannot create standalone "functions." In C# every function is bound to an object and is thus, technically, a "method." The kicker is that few people in C# refer to them as "methods" - they just use the term "functions" because there isn't any real distinction to be made.
Finally - just so any Pascal gurus don't jump on me here - Pascal also differentiates between "functions" (which return a value) and "procedures" which do not. C# does not make this distinction explicitly although you can, of course, choose to return a value or not.
Methods on a class act on the instance of the class, called the object.
class Example
{
public int data = 0; // Each instance of Example holds its internal data. This is a "field", or "member variable".
public void UpdateData() // .. and manipulates it (This is a method by the way)
{
data = data + 1;
}
public void PrintData() // This is also a method
{
Console.WriteLine(data);
}
}
class Program
{
public static void Main()
{
Example exampleObject1 = new Example();
Example exampleObject2 = new Example();
exampleObject1.UpdateData();
exampleObject1.UpdateData();
exampleObject2.UpdateData();
exampleObject1.PrintData(); // Prints "2"
exampleObject2.PrintData(); // Prints "1"
}
}
Since you mentioned Python, the following might be a useful illustration of the relationship between methods and objects in most modern object-oriented languages. In a nutshell what they call a "method" is just a function that gets passed an extra argument (as other answers have pointed out), but Python makes that more explicit than most languages.
# perfectly normal function
def hello(greetee):
print "Hello", greetee
# generalise a bit (still a function though)
def greet(greeting, greetee):
print greeting, greetee
# hide the greeting behind a layer of abstraction (still a function!)
def greet_with_greeter(greeter, greetee):
print greeter.greeting, greetee
# very simple class we can pass to greet_with_greeter
class Greeter(object):
def __init__(self, greeting):
self.greeting = greeting
# while we're at it, here's a method that uses self.greeting...
def greet(self, greetee):
print self.greeting, greetee
# save an object of class Greeter for later
hello_greeter = Greeter("Hello")
# now all of the following print the same message
hello("World")
greet("Hello", "World")
greet_with_greeter(hello_greeter, "World")
hello_greeter.greet("World")
Now compare the function greet_with_greeter and the method greet: the only difference is the name of the first parameter (in the function I called it "greeter", in the method I called it "self"). So I can use the greet method in exactly the same way as I use the greet_with_greeter function (using the "dot" syntax to get at it, since I defined it inside a class):
Greeter.greet(hello_greeter, "World")
So I've effectively turned a method into a function. Can I turn a function into a method? Well, as Python lets you mess with classes after they're defined, let's try:
Greeter.greet2 = greet_with_greeter
hello_greeter.greet2("World")
Yes, the function greet_with_greeter is now also known as the method greet2. This shows the only real difference between a method and a function: when you call a method "on" an object by calling object.method(args), the language magically turns it into method(object, args).
(OO purists might argue a method is something different from a function, and if you get into advanced Python or Ruby - or Smalltalk! - you will start to see their point. Also some languages give methods special access to bits of an object. But the main conceptual difference is still the hidden extra parameter.)
for me:
the function of a method and a function is the same if I agree that:
a function may return a value
may expect parameters
Just like any piece of code you may have objects you put in and you may have an object that comes as a result. During doing that they might change the state of an object but that would not change their basic functioning for me.
There might be a definition differencing in calling functions of objects or other codes. But isn't that something for a verbal differenciations and that's why people interchange them? The mentions example of computation I would be careful with. because I hire employes to do my calculations:
new Employer().calculateSum( 8, 8 );
By doing it that way I can rely on an employer being responsible for calculations. If he wants more money I free him and let the carbage collector's function of disposing unused employees do the rest and get a new employee.
Even arguing that a method is an objects function and a function is unconnected computation will not help me. The function descriptor itself and ideally the function's documentation will tell me what it needs and what it may return. The rest, like manipulating some object's state is not really transparent to me. I do expect both functions and methods to deliver and manipulate what they claim to without needing to know in detail how they do it.
Even a pure computational function might change the console's state or append to a logfile.
From my understanding a method is any operation which can be performed on a class. It is a general term used in programming.
In many languages methods are represented by functions and subroutines. The main distinction that most languages use for these is that functions may return a value back to the caller and a subroutine may not. However many modern languages only have functions, but these can optionally not return any value.
For example, lets say you want to describe a cat and you would like that to be able to yawn. You would create a Cat class, with a Yawn method, which would most likely be a function without any return value.
To a first order approximation, a method (in C++ style OO) is another word for a member function, that is a function that is part of a class.
In languages like C/C++ you can have functions which are not members of a class; you don't call a function not associated with a class a method.
IMHO people just wanted to invent new word for easier communication between programmers when they wanted to refer to functions inside objects.
If you are saying methods you mean functions inside the class.
If you are saying functions you mean simply functions outside the class.
The truth is that both words are used to describe functions. Even if you used it wrongly nothing wrong happens. Both words describe well what you want to achieve in your code.
Function is a code that has to play a role (a function) of doing something.
Method is a method to resolve the problem.
It does the same thing. It is the same thing. If you want to be super precise and go along with the convention you can call methods as the functions inside objects.
Let's not over complicate what should be a very simple answer. Methods and functions are the same thing. You call a function a function when it is outside of a class, and you call a function a method when it is written inside a class.
Function is the concept mainly belonging to Procedure oriented programming where a function is an an entity which can process data and returns you value
Method is the concept of Object Oriented programming where a method is a member of a class which mostly does processing on the class members.
I am not an expert, but this is what I know:
Function is C language term, it refers to a piece of code and the function name will be the identifier to use this function.
Method is the OO term, typically it has a this pointer in the function parameter. You can not invoke this piece of code like C, you need to use object to invoke it.
The invoke methods are also different. Here invoke meaning to find the address of this piece of code. C/C++, the linking time will use the function symbol to locate.
Objecive-C is different. Invoke meaning a C function to use data structure to find the address. It means everything is known at run time.
TL;DR
A Function is a piece of code to run.
A Method is a Function inside an Object.
Example of a function:
function sum(){
console.log("sum")l
}
Example of a Method:
const obj = {
a:1,
b:2,
sum(){
}
}
So thats why we say that a "this" keyword inside a Function is not very useful unless we use it with call, apply or bind .. because call, apply, bind will call that function as a method inside object ==> basically it converts function to method
I know many others have already answered, but I found following is a simple, yet effective single line answer. Though it doesn't look a lot better than others answers here, but if you read it carefully, it has everything you need to know about the method vs function.
A method is a function that has a defined receiver, in OOP terms, a method is a function on an instance of an object.
A class is the collection of some data and function optionally with a constructor.
While you creating an instance (copy,replication) of that particular class the constructor initialize the class and return an object.
Now the class become object (without constructor)
&
Functions are known as method in the object context.
So basically
Class <==new==>Object
Function <==new==>Method
In java the it is generally told as that the constructor name same as class name but in real that constructor is like instance block and static block but with having a user define return type(i.e. Class type)
While the class can have an static block,instance block,constructor, function
The object generally have only data & method.
Function - A function in an independent piece of code which includes some logic and must be called independently and are defined outside of class.
Method - A method is an independent piece of code which is called in reference to some object and are be defined inside the class.
General answer is:
method has object context (this, or class instance reference),
function has none context (null, or global, or static).
But answer to question is dependent on terminology of language you use.
In JavaScript (ES 6) you are free to customising function context (this) for any you desire, which is normally must be link to the (this) object instance context.
In Java world you always hear that "only OOP classes/objects, no functions", but if you watch in detailes to static methods in Java, they are really in global/null context (or context of classes, whithout instancing), so just functions whithout object. Java teachers could told you, that functions were rudiment of C in C++ and dropped in Java, but they told you it for simplification of history and avoiding unnecessary questions of newbies. If you see at Java after 7 version, you can find many elements of pure function programming (even not from C, but from older 1988 Lisp) for simplifying parallel computing, and it is not OOP classes style.
In C++ and D world things are stronger, and you have separated functions and objects with methods and fields. But in practice, you again see functions without this and methods whith this (with object context).
In FreePascal/Lazarus and Borland Pascal/Delphi things about separation terms of functions and objects (variables and fields) are usually similar to C++.
Objective-C comes from C world, so you must separate C functions and Objective-C objects with methods addon.
C# is very similar to Java, but has many C++ advantages.
In C++, sometimes, method is used to reflect the notion of member function of a class. However, recently I found a statement in the book «The C++ Programming Language 4th Edition», on page 586 "Derived Classes"
A virtual function is sometimes called a method.
This is a little bit confusing, but he said sometimes, so it roughly makes sense, C++ creator tends to see methods as functions can be invoked on objects and can behave polymorphic.

Passing 'this' to a Constructor

Say I have open class C(val c:C) and I want to subclass it as class D():C(this)
This is invalid according to the compiler because 'this' is not defined in this context
Is there a way to get this to do what I want? Specifically, I'd like for D to have a constructor that can be called without any arguments and will pass the D object being constructed to C's constructor. In my case, it's fine that this object may not be fully constructed yet.
I'm open to any solutions that don't involve changing C, reflection included.
There's no straightforward solution, because it does not seem to be a good idea.
The constructor of the super class gets executed before the constructor of the class itself does (more details here). Thus passing this instance that has not been initialized at all to the super constructor in place of a valid instance may break some of the logic of the super constructor (e.g. it may expect the c's properties to have some meaningful values, but they don't).
If you need this so bad, you can try to create an instance of D first with some fake/default C, then create another D with the first one:
class D(c: C) : C(c)
fun createD(defaultC: C): D {
val firstD = D(defaultC)
return D(firstD)
}
Though this definitely does not cover all possible use cases.

CPPDepend Detection of virtual function usage

I'm having a slight problem with CPPDepend's ability to detect virtual function usage. Consider the following scenario. Two classes, CParentClass and CChildClass, where CChildClass is derived from CParentClass. The CParentClass has a virtual function Test and CChildClass overrides the base class version of Test.
When it comes to usage, for various reasons I want to do something like the following:-
CChildClass * pMyChild = new CChildClass();
CParentClass * pParentClass = (CParentClass*)pMyChild;
int B = pParentClass->Test();
delete pParentClass;
This results in pMyChild's Test function being called, as desired, yet CPPDepend doesn't detect this and claims that the code is never reached. If I add the word "virtual" to the Test function header in CChildClass (in addition to the one already in CParentClass) then CPPDepend claims everything is ok.
Can anyone shed some light on this for me please as it feels wrong that I should have to put virtual in the derived class function as well as the base class function.
A similar issue can be seen with CDialog destructors in derived classes. Without the virtual in the derived class destructor declaration, CPPDepend complains.
Thanks for any help you can give.
Regards
Neil.
CppDepend do a static analysis not a dynamic one, and give the dependencies from a static point of view and it's more interesting. Indeed what's important is the dependency related to the design choices, for example in your case the object is declared as CParentClass, so the method is coupled with the contract of CParentClass, and in the runtime it could invoke a method from child classes.

AS3 constructor has no method with the same name as the class

I was reading ActionScript 3.0 Abstract Factory Design Pattern: Multiple Products and Factories, and I have the following,
private var busFactory:AbFactory;
busFactory=new BusinessFactory();
Both in BusinessFactory.as and in AbFactory.as there is no method with the same name as the class, only createProductA and createProductB. So, how could busFactory call the constructor with new BusinessFactory ?
The default constructors for both AbFactory and BusinessFactory (which the article shows inherits from AbFactory) are created by the compiler.
If you start to pass arguments to the BusinessFactory() constructor, the compiler will complain about an unexpected argument count. That's when you need to write the constructor yourself. But passing nothing means the default can be used.
Also the reason that you could set a AbFactory to a BusinessFactory means that they share the same heritage.

Why do constructors not return values?

Please tell me why the constructor does not return any value. I want a perfect technical reason to explain to my students why the constructor does not have any return type.
What actually happens with the constructor is that the runtime uses type data generated by the compiler to determine how much space is needed to store an object instance in memory, be it on the stack or on the heap.
This space includes all members variables and the vtbl. After this space is allocated, the constructor is called as an internal part of the instantiation and initialization process to initialize the contents of the fields.
Then, when the constructor exits, the runtime returns the newly-created instance. So the reason the constructor doesn't return a value is because it's not called directly by your code, it's called by the memory allocation and object initialization code in the runtime.
Its return value (if it actually has one when compiled down to machine code) is opaque to the user - therefore, you can't specify it.
Well, in a way it returns the instance that has just been constructed.
You even call it like this, for example is Java
Object o = new Something();
which looks just like calling a "regular" method with a return value
Object o = someMethod();
How is a constructor supposed to return a return value? The new operator returns the newly created instance. You do not call a ctor, newdoes it.
MyClass instance = new MyClass();
If the ctor would return a value, like so:
public int MyClass()
{
return 42;
}
Where would you receive the integer?
(I'm biased towards C++, so regarding other languages, take this with a grain of salt.)
Short answer: You don't want to have to explicitly check for success for every single object construction in your code.
Somewhat longer answer: In C++, constructors are called for dynamically as well as for globally and automatically allocated objects. In this code
void f()
{
std::string s;
}
there is no way for the constructor of s (std::string::string()) to return any value. Either it succeeds - then we can use the object, or it throws an exception - the we never get a chance to try to use it.
IMO, that's the way it should be.
A constructor is some method automatically called when you initialize a new instance of an object.
This method is there if you need to initialize your object to a given state and run few default methods.
Actually you can imagine the constructor always return the instance of the object created that would be a good image.
When you call a constructor the return value is the new object:
Point pt = new Point(1,2);
But within the constructor itself, you're not actually creating and returning the object; it's been created before your code starts, you're just setting up the initial values.
Point::Point(int x, int y) {
this->x = x;
this->y = y;
}
The lack of a return type reflects the fact that constructors are used differently than other functions. A return type of null, while technically accurate, doesn't reflect well the fact that the code is used as if it returns an object. However, any other return type would indicate that your code is supposed to return something at the end, which is also incorrect.
Constructor doesn’t return anything not even Void. Though some of the answers have mentioned that Constructor do return reference to the newly created object , which is not true. It’s the new operator that returns the object.
So Why constructor doesn’t return any value
Because its not supposed to return anything. The whole purpose of constructor is to initialize the current state of the object by setting the initial values.
So Why doesn’t it even return Void
This is actually a Design constraint which has been placed to distinguish it from methods. public void className() is perfectly legal in java but it denotes a method and not a constructor. To make the compiler understand that it’s a constructor , it requires a way to distinguish it.
all answers are biased towards C++/Java. there is no reason a constructor does not return a value other than the language design.
look at a constructor in a broader sense: it is a function which constructs a new object. you can write perfectly valid constructors in C:
typedef struct object object;
int object_create( object **this );
this is perfect OOP in C and the constructor returns value (this can also be called a factory, but the name depends on the intention).
however, in order to create an object automatically (to satisfy some type cast, or conversion for example), there have to be some rules defined. in C++, there is an argument-less constructor, which is inferred by the compiler if it is not defined.
the discussion is broader than what we think. Object Oriented Programming is a name which describes a way of thinking about programming. you can have OO in almost any language: all you need is structures and functions. mainstream languages like C++ and Java are so common that we think they define "the way". now look at the OO model in Ada: it is far from the model of C++ but is still OO. i am sure languages like Lisp have some other ways of doing OO.
One point that hasn't yet been discussed is that the constructor of class "foo" must be usable not only when creating instances of foo, but also when creating instances of classes derived from foo. In the absence of generics (which weren't available when Java, C++, or .net were designed) there would be no way for foo's constructor to return an object of any derived class. Therefore, what needs to happen is for the derived-class object to be created via some other means and then made available to foo's constructor (which will then be able to use the object in question as a foo when doing its initialization).
Even though the VM implementation of a constructor isn't to return any value, in practice it kind of does - the new object's reference. It would then be syntactically weird and / or confusing to be able to store one or both of the new object's reference and an additional return value in one statement.
So the reason the constructor doesn't return a value is because it's not called directly by your code, it's called by the memory allocation and object initialization code in the runtime. Its return value (if it actually has one when compiled down to machine code) is opaque to the user - therefore, you can't specify it.
Constructor is not directly called by the user's code. It's called by the memory allocation and object initialization code in the run time. Its value is not visible to the user.
In case of C#, the syntax for declaring object is :
classname objectname= new constructor();
According to this line, if we are using assignment operator(=) then it should return some value. But the main objective of a constructor is to assign values to variables, so when we use a new keyword it creates instance of that class, and constructor assigns values to the variable for that particular instance of object, so constructor returns assigned values for that objects's instance.
We can not call constructors independently. Instead they are automatically called whenever objects are created.
Ex:
MyDate md = new Mydate(22,12,2012);
In above example new will return a memory location which will be held by md, and programatically we can not return multiple values in single statements.
So constructors can not return anything.
From what I know about OO design methodologies, I would say the following:
1)By allowing a constructor to return a value, framework developer would allow the program to crash in an instant where the returned value is not handled. To keep the integrity of the program workflow, not allowing a return value from the initialization of an object is a valid decision. Instead, language designer would suggest/force the coders to use getter/setter - access methods.
2)Allowing the object to return a value on initialization also opens possible information leaks. Specially when there are multiple layer or access modifications applied to the variables/methods.
As you aware that when object is created constructor will be automatically called So now imagine that constructor is returning an int value. So code should like this...
Class ABC
{
int i;
public:
int ABC()
{
i=0;
return i;
}
.......
};
int main()
{
int k= ABC abc; //constructor is called so we have to store the value return by it
....
}
But as you aware that stament like int k= ABC abc; is not possible in any programming language. Hope you can understand.
i found it helpful
This confusion arises from the assumption that constructors are just like any other functions/methods defined by the class. NO, they are not.
Constructors are just part of the process of object creation. They are not called like other member functions.
I would be using Java as my language in the answer.
class SayHelloOnCreation {
public SayHelloOnCreation() {
System.out.println("Hello, Thanks For Creating me!");
}
}
class Test {
public static void main(String[]args) {
SayHelloOnCreation thing = new SayHelloOnCreation(); //This line here, produces an output - Hello, Thanks For Creating me!
}
}
Now let us see what is happening here. in java, we use the new keyword to create an instance of a class. And as you can see in the code, in the line, SayHelloOnCreation thing = new SayHelloOnCreation();, the expression after the assignment operator runs before assignment is done. So using the keyword new, we call the constructor of that class (SayHelloOnCreation()) and this constructor creates an object on the Java Heap. After the object is created, a reference to that object is assigned to the thing reference of type SayHelloOnCreation.
The point that I am trying to keep here is that if constructors were allowed to have a return type, Firstly the strongly typed nature of the language would be compromised (Remember I am speaking about Java here).
Secondly, an object of class SayHelloOnCreation is created here so by default I guess the constructor returns a reference of the same type, to avoid ClassCastException.
A method returns the value to its caller method, when called explicitly. Since, a constructor is not called explicitly, who will it return the value to. The sole purpose of a constructor is to initialize the member variables of a class.