I remember reading that Total Triggers Runtime is 1 hour for Consumer type users. I don't think I really understand what that means.
Let's say I programmatically create a trigger to run every 10 minutes, like so ...
ScriptApp.newTrigger("myFunction")
.timeBased()
.everyMinutes(10)
.create();
... and let it run around the clock.
myFunction does something very not time consuming like appending a couple rows to a spreadsheet.
My question is, when am I going to hit the said '1 hour' limit?
As you can see under Apps Script quota:
Those times refer to the total execution time of the function(s) that is / are being run on trigger.
When you go on https://script.google.com/u/0/home/executions, you can see all your executions, you can also see the executions for a particular trigger.
It should look like this:
So, if you sum the durations of all the executions of all the functions of type Trigger within the last 24 hours - it cannot exceed the Triggers total runtime.
Will my API key be blocked for rest of the day when I reach the daily requests limit? I don't want to buy billing plan or get unexpected charges.
https://developers.google.com/maps/faq#usage_exceed
You won't be charged, but your API will return an error message.
It is my impression that as you approach your daily quota limit the system starts giving errors. For example, during the last 4 hours of the day the errors gradually increase with perhaps 100% errors during the last hour.
Most days the total allowed requests has been within my quota. One day it went over, like 2645 versus my 2500 daily quota.
I have tried to spread the error misery evenly around the world by limiting the accesses to 3 per 100 secs. This may be working but I have not seen any errors shown on the graphs as being due to exceeding the 100 secs quotas, which is surprising since I am often exceeding 0.04 requests per sec (5 min average).
I'm currently working on an application, which requires detection of activity within the past 12 hours (divided into 10 minute intervals, i.e. 6 times an hour). My initial thought has been to do a cronjob every 10 minutes to detect and accumulate activity level (rows) from a table within the past 10 minutes, and then insert these into a new table, which collects and updates the activity level for e.g. 1.20 (from current timestamp).
Though I'm struggling in figuring out the logic of "pushing" (in need of a better word) all other values to next value within the table. E.g. 1 hour and 20 minutes ago, should then be "pushed" to 1 hour and 30 minutes ago etc.
I realize that my thoughts as to the setup is limited to my understanding of PHP/MySQL and use of same, but am open to other setups such as NodeJS/MongoDB if that seems more flexible and feasible. The output should be a JSON file, showing the activity level for each hour divided into 10 minutes for the past 12 hours.
Would love some thoughts/feedback as to approach and way to handle this. Thanks a bunch in advance.
I have a long running query (about 3 minutes) that upon query execution, alternates states between "sending data" and "writing to net". Why does it alternate states like that and if it's an internal request within the network how come it takes 1 minute to accomplish this for 50k rows?
Inspired by this xckd cartoon I wondered exactly what is the best mechanism to provide an estimate to the user of a file copy / movement?
The alt tag on xkcd reads as follows:
They could say "the connection is probably lost," but it's more fun to do naive time-averaging to give you hope that if you wait around for 1,163 hours, it will finally finish.
Ignoring the funny, is that really how it's done in Windows? How about other OS? Is there a better way?
Have a look at my answer to a similar question (and the other answers there) on how the remaining time is estimated in Windows Explorer.
In my opinion, there is only one way to get good estimates:
Calculate the exact number of bytes to be copied before you begin the copy process
Recalculate you estimate regularly (every 1, 5 or 10 seconds, YMMV) based on the current transfer speed
The current transfer speed can fluctuate heavily when you are copying on a network, so use an average, for example based on the amount of bytes transfered since your last estimate.
Note that the first point may require quite some work, if you are copying many files. That is probably why the guys from Microsoft decided to go without it. You need to decide yourself if the additional overhead created by that calculation is worth giving your user a better estimate.
I've done something similar to estimate when a queue will be empty, given that items are being dequeued faster than they are being enqueued. I used linear regression over the most recent N readings of (time,queue size).
This gives better results than a naive
(bytes_copied_so_far / elapsed_time) * bytes_left_to_copy
Start a global timer that fires say, every 1000 milliseconds and update a total elpased time counter. Let's call this variable "elapsedTime"
While the file is being copied, update some local variable with the amount already copied. Let's call this variable "totalCopied"
In the timer event that is periodically raised, divide totalCopied by totalElapsed to give the number of bytes copied per timer interval (in this case, 1000ms). Let's call this variable "bytesPerSec"
Divide the total file size by bytesPerSec and obtain the total number of seconds theoretically required to copy this file. Let's call this variable remainingTime
Subtract elapsedTime from remainingTime and you a somewhat accurate calculation for file copy time.
I think dialogs should just admit their limitations. It's not annoying because it's failing to give a useful time estimate, it's annoying because it's authoritatively offering an estimate that's obvious nonsense.
So, estimate however you like, based on current rate or average rate so far, rolling averages discarding outliers, or whatever. Depends on the operation and the typical durations of events which delay it, so you might have different algorithms when you know the file copy involves a network drive. But until your estimate has been fairly consistent for a period of time equal to the lesser of 30 seconds or 10% of the estimated time, display "oh dear, there seems to be some kind of holdup" when it's massively slowed, or just ignore it if it's massively sped up.
For example, dialog messages taken at 1-second intervals when a connection briefly stalls:
remaining: 60 seconds // estimate is 60 seconds
remaining: 59 seconds // estimate is 59 seconds
remaining: delayed [was 59 seconds] // estimate is 12 hours
remaining: delayed [was 59 seconds] // estimate is infinity
remaining: delayed [was 59 seconds] // got data: estimate is 59 seconds
// six seconds later
remaining: 53 seconds // estimate is 53 seconds
Most of all I would never display seconds (only hours and minutes). I think it's really frustrating when you sit there and wait for a minute while the timer jumps between 10 and 20 seconds. And always display real information like: xxx/yyyy MB copied.
I would also include something like this:
if timeLeft > 5h --> Inform user that this might not work properly
if timeLeft > 10h --> Inform user that there might be better ways to move the file
if timeLeft > 24h --> Abort and check for problems
I would also inform the user if the estimated time varies too much
And if it's not too complicated, there should be an auto-check function that checks if the process is still alive and working properly every 1-10 minutes (depending on the application).
speaking about network file copy, the best thing is to calculate file size to be transfered, network response and etc. An approach that i used once was:
Connection speed = Ping and calculate the round trip time for packages with 15 Kbytes.
Get my file size and see, theorically, how many time it would take if i would break it in
15 kb packages using my connection speed.
Recalculate my connection speed after transfer is started and ajust the time that will be spended.
I've been pondering on this one myself. I have a copy routine - via a Windows Explorer style interface - which allows the transfer of selected files from an Android Device, to a PC.
At the start, I know the total size of the file(s) that are to be copied, and as I am using C#.NET, I am using a Stopwatch, to get the elapsed time, and while the copy is in progress, I am keeping a total of what is copied so far, in terms of bytes.
I haven't actually tested it yet, but the best way seems to be this -
estimated = elapsed * ((totalSize - copiedSoFar) / copiedSoFar)
I never saw it the way you guys are explaining it-by trasfeed bytes & total bytes.
The "experience" always made a lot more sense (not good/accurate) if you instead use bytes of each file, and file count. This is how the estimate swings wildly.
If you are transferring large files first, the estimate goes long-even with the connection static. It is like it naively thinks that all files are the average size of those thus transferred, and then makes a guess assuming that the average file size will remain accurate for the entire time.
This, and the other ways, all get worse when the connection 'speed' varies...