I am coding a small app and have a question. i am deciding if storing data in JSON or mysql row is best for my scenario.
I am coding an app that may have lots of page hits, and because of that, i am thinking to store JSON encoded array into a column VS mysql rows. One query will be faster to execute VS 2.
The problem i am trying to figure out is i need to delete part of the JSON encoded array, but doing that means upon delete request, i will have to get the entire data, JSON decode and unset the object then update the row again. VS mysql delete row.
Is there a way that maybe i don't know of that can make this much easier to handle?
It probably depends on details you're not providing.
Do you have to use MySQL? If you're fetching a JSON object, and then modifying it and storing it back again, MongoDB seems faster for that use case.
One query will be faster to execute VS 2.
You don't need more than one query to return several rows; the query might return more rows, but looping over results and serialising/deserialising JSONs are both negligible costs compared to other things you will have to do on your site. Don't think too much into this.
As a rule of thumb, on a relational database, try to normalise the data until you see performance issues. If you're set to use MySQL, you probably want many rows. As your dataset grows, the most straightforward way to improve query performance will be to add indexes, and you won't be able to do that on a JSON blob.
Related
I have large JSON data, greater than 2kB, in each record of my table and currently, these are being stored in JSONB field.
My tech stack is Django and Postgres.
I don't perform any updates/modifications on this json data but i do need to read it, frequently and fast. However, due to the JSON data being larger than 2kB, Postgres splits it into chunks and puts it into the TOAST table, and hence the read process has become very slow.
So what are the alternatives? Should i use another database like MongoDB to store these large JSON data fields?
Note: I don't want to pull the keys out from this JSON and turn them into columns. This data comes from an API.
It is hard to answer specifically without knowing the details of your situation, but here are some things you may try:
Use Postgres 12 (stored) generated columns to maintain the fields or smaller JSON blobs that are commonly needed. This adds storage overhead, but frees you from having to maintain this duplication yourself.
Create indexes for any JSON fields you are querying (Postgresql allows you to create indexes for JSON expressions).
Use a composite index, where the first field in the index the field you are querying on, and the second field (/json expression) is that value you wish to retrieve. In this case Postgresql should retrieve the value from the index.
Similar to 1, create a materialised view which extracts the fields you need and allows you to query them quickly. You can add indexes to the materialised view too. This may be a good solution as materialised views can be slow to update, but in your case your data doesn't update anyway.
Investigate why the toast tables are being slow. I'm not sure what performance you are seeing, but if you really do need to pull back a lot of data then you are going to need fast data access whatever database you choose to go with.
Your mileage may vary with all of the above suggestions, especially as each will depend on your particular use case. (see the questions in my comment)
However, the overall idea is to use the tools that Postgresql provides to make your data quickly accessible. Yes this may involve pulling the data out of its original JSON blob, but this doesn't need to be done manually. Postgresql provides some great tools for this.
If you just need to store and read fully this json object without using the json structure in your WHERE query, what about simply storing this data as binary in a bytea column? https://www.postgresql.org/docs/current/datatype-binary.html
I have a flask-based web-server setup that inputs a lot of unique data points. While insertion into the DB is done asynchronously, Getting data out of it is the harder part. For each request, I am looking at an average of 250,000 rows of raw data that needs to be displayed in a graph format using plotly.js. Executing the raw query on the MySQL command line takes about 10 seconds to return the data.
However, since I am using SQLAlchemy as my ORM, there seems to be a significant overhead. The extracted data then needs to be dumped into a JSON format to be sent to the front-end to display.
I understand that this situation has a lot of variables that can be changed but I am asking this question after about a week of trying to find solutions to this problem. Is the solution to throw hardware at it?
TLDR: Large amount of data in Backend(Flask, SQLAlchemy, MySQL); Need to display it on the frontend after querying 250,000 records of data and converting it to JSON; Any good solutions?
EDIT: I forgot to mention the size of the data. The JSON object that is sent is about 22.6MB for 250,000 rows of SQL. The table this problem deals with has about 15 columns with Floats, Timestamps, VarChars and Integers. I'm willing to give any more information that can be given.
Turns out that launching an Async process that does this in the background and hope that it works is a perfectly good solution.
I'm beginning to use Tableau and I have a project involving multiple website logs stored as JSON. I have one log for each day for about a month, each weighting about 500-600 Mb.
Is it possible to open (and join) multiple JSON files in Tableau? If yes, how ? I can load them in parallel, but not join them.
EDIT : I can load multiple JSON files and define their relationship, so this is OK. I still have the memory issue:
I'm am worried that by joining them all, I will not have enough memory to make it work. Are the loaded files stored in RAM of in an internal DB ?
What would be the best way to do this ? Should I merge all the JSON first, or load them in a database and use a connector to Tableau? If so, what could be a good choice of DB?
I'm aware some of these questions are opinion-based, but I have no clue about this and I really need some guideline to get started.
For this volume of data, you probably want to preprocess, filter, aggregate and index it ahead of time - either using a database, something like Parquet and Spark and/or Tableau extracts.
If you use extracts, you probably want to filter and aggregate them for specific purposes, just be aware if that that you aggregate the data when you make the extract, you need to be careful that any further aggregations you perform in the visualization are well defined. Additive functions like SUM(), MIN() and MAX() are safe. Sums of partial sums are still correct sums. But averages of averages and count distincts of count distincts often are not.
Tableau sends a query to the database and then renders a visualization based on the query result set. The volume of data returned depends on the query which depends on what you specify in Tableau. Tableau caches results, and you can also create an extract which serves as a persistent, potentially filtered and aggregated, cache. See this related stack overflow answer
For text files and extracts, Tableau loads them into memory via its Data Engine process today -- replaced by a new in-memory database called Hyper in the future. The concept is the same though, Tableau sends the data source a query which returns a result set. For data of the size you are talking about, you might want to test using some sort of database if it the volume exceeds what comfortably fits in memory.
The JSON driver is very convenient for exploring JSON data, and I would definitely start there. You can avoid an entire ETL step if that serves your needs. But at high volume of data, you might need to move to some sort of external data source to handle production loads. FYI, the UNION feature with Tableau's JSON driver is not (yet) available as of version 10.1.
I think the answer which nobody gave is that No, you cannot join two JSON files in Tableau. Please correct me if I'm wrong.
I believe we can join 2 JSON tables in Tableau.
First extract the column names from the JSON data as below--
select
get_json_object(JSON_column, '$.Attribute1') as Attribute1,
get_json_object(line, '$.Attribute2') as Attribute2
from table_name;
perform the above for the required tableau and join them.
In MySQL 5.7 a new data type for storing JSON data in MySQL tables has been
added. It will obviously be a great change in MySQL. They listed some benefits
Document Validation - Only valid JSON documents can be stored in a
JSON column, so you get automatic validation of your data.
Efficient Access - More importantly, when you store a JSON document in a JSON column, it is not stored as a plain text value. Instead, it is stored
in an optimized binary format that allows for quicker access to object
members and array elements.
Performance - Improve your query
performance by creating indexes on values within the JSON columns.
This can be achieved with “functional indexes” on virtual columns.
Convenience - The additional inline syntax for JSON columns makes it
very natural to integrate Document queries within your SQL. For
example (features.feature is a JSON column): SELECT feature->"$.properties.STREET" AS property_street FROM features WHERE id = 121254;
WOW ! they include some great features. Now it is easier to manipulate data. Now it is possible to store more complex data in column.
So MySQL is now flavored with NoSQL.
Now I can imagine a query for JSON data something like
SELECT * FROM t1
WHERE JSON_EXTRACT(data,"$.series") IN
(
SELECT JSON_EXTRACT(data,"$.inverted")
FROM t1 | {"series": 3, "inverted": 8}
WHERE JSON_EXTRACT(data,"$.inverted")<4 );
So can I store huge small relations in few json colum? Is it good? Does it break normalization. If this is possible then I guess it will act like NoSQL in a MySQL column. I really want to know more about this feature. Pros and cons of MySQL JSON data type.
SELECT * FROM t1
WHERE JSON_EXTRACT(data,"$.series") IN ...
Using a column inside an expression or function like this spoils any chance of the query using an index to help optimize the query. The query shown above is forced to do a table-scan.
The claim about "efficient access" is misleading. It means that after the query examines a row with a JSON document, it can extract a field without having to parse the text of the JSON syntax. But it still takes a table-scan to search for rows. In other words, the query must examine every row.
By analogy, if I'm searching a telephone book for people with first name "Bill", I still have to read every page in the phone book, even if the first names have been highlighted to make it slightly quicker to spot them.
MySQL 5.7 allows you to define a virtual column in the table, and then create an index on the virtual column.
ALTER TABLE t1
ADD COLUMN series AS (JSON_EXTRACT(data, '$.series')),
ADD INDEX (series);
Then if you query the virtual column, it can use the index and avoid the table-scan.
SELECT * FROM t1
WHERE series IN ...
This is nice, but it kind of misses the point of using JSON. The attractive part of using JSON is that it allows you to add new attributes without having to do ALTER TABLE. But it turns out you have to define an extra (virtual) column anyway, if you want to search JSON fields with the help of an index.
But you don't have to define virtual columns and indexes for every field in the JSON document—only those you want to search or sort on. There could be other attributes in the JSON that you only need to extract in the select-list like the following:
SELECT JSON_EXTRACT(data, '$.series') AS series FROM t1
WHERE <other conditions>
I would generally say that this is the best way to use JSON in MySQL. Only in the select-list.
When you reference columns in other clauses (JOIN, WHERE, GROUP BY, HAVING, ORDER BY), it's more efficient to use conventional columns, not fields within JSON documents.
I presented a talk called How to Use JSON in MySQL Wrong at the Percona Live conference in April 2018. I'll update and repeat the talk at Oracle Code One in the fall.
There are other issues with JSON. For example, in my tests it required 2-3 times as much storage space for JSON documents compared to conventional columns storing the same data.
MySQL is promoting their new JSON capabilities aggressively, largely to dissuade people against migrating to MongoDB. But document-oriented data storage like MongoDB is fundamentally a non-relational way of organizing data. It's different from relational. I'm not saying one is better than the other, it's just a different technique, suited to different types of queries.
You should choose to use JSON when JSON makes your queries more efficient.
Don't choose a technology just because it's new, or for the sake of fashion.
Edit: The virtual column implementation in MySQL is supposed to use the index if your WHERE clause uses exactly the same expression as the definition of the virtual column. That is, the following should use the index on the virtual column, since the virtual column is defined AS (JSON_EXTRACT(data,"$.series"))
SELECT * FROM t1
WHERE JSON_EXTRACT(data,"$.series") IN ...
Except I have found by testing this feature that it does NOT work for some reason if the expression is a JSON-extraction function. It works for other types of expressions, just not JSON functions. UPDATE: this reportedly works, finally, in MySQL 5.7.33.
The following from MySQL 5.7 brings sexy back with JSON sounds good to me:
Using the JSON Data Type in MySQL comes with two advantages over
storing JSON strings in a text field:
Data validation. JSON documents will be automatically validated and
invalid documents will produce an error. Improved internal storage
format. The JSON data is converted to a format that allows quick read
access to the data in a structured format. The server is able to
lookup subobjects or nested values by key or index, allowing added
flexibility and performance.
...
Specialised flavours of NoSQL stores
(Document DBs, Key-value stores and Graph DBs) are probably better
options for their specific use cases, but the addition of this
datatype might allow you to reduce complexity of your technology
stack. The price is coupling to MySQL (or compatible) databases. But
that is a non-issue for many users.
Note the language about document validation as it is an important factor. I guess a battery of tests need to be performed for comparisons of the two approaches. Those two being:
Mysql with JSON datatypes
Mysql without
The net has but shallow slideshares as of now on the topic of mysql / json / performance from what I am seeing.
Perhaps your post can be a hub for it. Or perhaps performance is an after thought, not sure, and you are just excited to not create a bunch of tables.
From my experience, JSON implementation at least in MySql 5.7 is not very useful due to its poor performance.
Well, it is not so bad for reading data and validation. However, JSON modification is 10-20 times slower with MySql that with Python or PHP.
Lets imagine very simple JSON:
{ "name": "value" }
Lets suppose we have to convert it to something like that:
{ "name": "value", "newName": "value" }
You can create simple script with Python or PHP that will select all rows and update them one by one. You are not forced to make one huge transaction for it, so other applications will can use the table in parallel. Of course, you can also make one huge transaction if you want, so you'll get guarantee that MySql will perform "all or nothing", but other applications will most probably not be able to use database during transaction execution.
I have 40 millions rows table, and Python script updates it in 3-4 hours.
Now we have MySql JSON, so we don't need Python or PHP anymore, we can do something like that:
UPDATE `JsonTable` SET `JsonColumn` = JSON_SET(`JsonColumn`, "newName", JSON_EXTRACT(`JsonColumn`, "name"))
It looks simple and excellent. However, its speed is 10-20 times slower than Python version, and it is single transaction, so other applications can not modify the table data in parallel.
So, if we want to just duplicate JSON key in 40 millions rows table, we need to not use table at all during 30-40 hours. It has no sence.
About reading data, from my experience direct access to JSON field via JSON_EXTRACT in WHERE is also extremelly slow (much slower that TEXT with LIKE on not indexed column). Virtual generated columns perform much faster, however, if we know our data structure beforehand, we don't need JSON, we can use traditional columns instead. When we use JSON where it is really useful, i. e. when data structure is unknown or changes often (for example, custom plugin settings), virtual column creation on regular basis for any possible new columns doesn't look like good idea.
Python and PHP make JSON validation like a charm, so it is questionable do we need JSON validation on MySql side at all. Why not also validate XML, Microsoft Office documents or check spelling? ;)
I got into this problem recently, and I sum up the following experiences:
1, There isn't a way to solve all questions.
2, You should use the JSON properly.
One case:
I have a table named: CustomField, and it must two columns: name, fields.
name is a localized string, it content should like:
{
"en":"this is English name",
"zh":"this is Chinese name"
...(other languages)
}
And fields should be like this:
[
{
"filed1":"value",
"filed2":"value"
...
},
{
"filed1":"value",
"filed2":"value"
...
}
...
]
As you can see, both the name and the fields can be saved as JSON, and it works!
However, if I use the name to search this table very frequently, what should I do? Use the JSON_CONTAINS,JSON_EXTRACT...? Obviously, it's not a good idea to save it as JSON anymore, we should save it to an independent table:CustomFieldName.
From the above case, I think you should keep these ideas in mind:
Why MYSQL support JSON?
Why you want to use JSON? Did your business logic just need this? Or there is something else?
Never be lazy
Thanks
Strong disagree with some of things that are said in other answers (which, to be fair, was a few years ago).
We have very carefully started to adopt JSON fields with a healthy skepticism. Over time we've been adding this more.
This generally describes the situation we are in:
Like 99% of applications out there, we are not doing things at a massive scale. We work with many different applications and databases, the majority of these are capable of running on modest hardware.
We have processes and know-how in place to make changes if performance does become a problem.
We have a general idea of which tables are going to be large and think carefully about how we optimize queries for them.
We also know in which cases this is not really needed.
We're pretty good at data validation and static typing at the application layer.
Lastly,
When we use JSON for storing complex data, that data is never referenced directly by other tables. We also tend to never need to use them in where clauses in hot paths.
So with all this in mind, using a little JSON field instead of 1 or more tables vastly reduces the complexity of queries and data model. Removing this complexity makes it easier to write certain queries, makes our code simpler and just generally saves time.
Complexity and performance is something that needs to be carefully balanced. JSON fields should not be blindly applied, but for the cases where this works it's fantastic.
'JSON fields don't perform well' is a valid reason to not use JSON fields, if you are at a place where that performance difference matters.
One specific example is that we have a table where we store settings for video transcoding. The settings table has 1 'profile' per row, and the settings themselves have a maximum nesting level of 4 (arrays and objects).
Despite this being a large database overall, there's only a few hundreds of these records in the database. Suggesting to split this into 5 tables would yield no benefit and lots of pain.
This is an extreme example, but we have plenty of others (with more rows) where the decision to use JSON fields is a few years in the past, and hasn't yet caused an issue.
Last point: it is now possible to directly index on JSON fields.
I'm trying to implement a key/value store with mysql
I have a user table that has 2 columns, one for the global ID and one for the serialized data.
Now the problem is that everytime any bit of the user's data changes, I will have to retrieve the serialized data from the db, alter the data, then reserialize it and throw it back into the db. I have to repeat these steps even if there is a very very small change to any of the user's data (since there's no way to update that cell within the db itself)
Basically i'm looking at what solutions people normally use when faced with this problem?
Maybe you should preprocess your JSON data and insert data as a proper MySQL row separated into fields.
Since your input is JSON, you have various alternatives for converting data:
You mentioned many small changes happen in your case. Where do they occur? Do they happen in a member of a list? A top-level attribute?
If updates occur mainly in list members in a part of your JSON data, then perhaps every member should in fact be represented in a different table as separate rows.
If updates occur in an attribute, then represent it as a field.
I think cost of preprocessing won't hurt in your case.
When this is a problem, people do not use key/value stores, they design a normalized relational database schema to store the data in separate, single-valued columns which can be updated.
To be honest, your solution is using a database as a glorified file system - I would not recommend this approach for application data that is core to your application.
The best way to use a relational database, in my opinion, is to store relational data - tables, columns, primary and foreign keys, data types. There are situations where this doesn't work - for instance, if your data is really a document, or when the data structures aren't known in advance. For those situations, you can either extend the relational model, or migrate to a document or object database.
In your case, I'd see firstly if the serialized data could be modeled as relational data, and whether you even need a database. If so, move to a relational model. If you need a database but can't model the data as a relational set, you could go for a key/value model where you extract your serialized data into individual key/value pairs; this at least means that you can update/add the individual data field, rather than modify the entire document. Key/value is not a natural fit for RDBMSes, but it may be a smaller jump from your current architecture.
when you have a key/value store, assuming your serialized data is JSON,it is effective only when you have memcached along with it, because you don't update the database on the fly every time but instead you update the memcache & then push that to your database in background. so definitely you have to update the entire value but not an individual field in your JSON data like address alone in database. You can update & retrieve data fast from memcached. since there are no complex relations in database it will be fast to push & pull data from database to memcache.
I would continue with what you are doing and create separate tables for the indexable data. This allows you to treat your database as a single data store which is managed easily through most operation groups including updates, backups, restores, clustering, etc.
The only thing you may want to consider is to add ElasticSearch to the mix if you need to perform anything like a like query just for improved search performance.
If space is not an issue for you, I would even make it an insert only database so any changes adds a new record that way you can keep the history. Of course you may want to remove the older records but you can have a background job that would delete the superseded records in a batch in the background. (Mind you what I described is basically Kafka)
There's many alternatives out there now that beats RDBMS in terms of performance. However, they all add extra operational overhead in that it's yet another middleware to maintain.
The way around that if you have a microservices architecture is to keep the middleware as part of your microservice stack. However, you have to deal with transmitting the data across the microservices so you'd still end up with a switch to Kafka underneath it all.