The printing output is always 0, after executing the kernel function.
After some testing, cudaMemcpy is still correct. But the kernel seems not working, can not get correct data from d_inputs.
Could somebody help explain? Thanks!
#include <cuda_runtime.h>
#include <cuda.h>
#include <stdio.h>
#include <sys/time.h>
#include <math.h>
#define N 32
__global__ void Kernel_double(int niters, int* d_inputs,double* d_outputs)
{
int tid = blockIdx.x * blockDim.x + threadIdx.x;
if (tid<N) {
double val =(double) d_inputs[tid];
/*for (int iter=0; iter < niters; iter++){
val = (sqrt(pow(val,2.0)) + 5.0) - 101.0;
val = (val / 3.0) + 102.0;
val = (val + 1.07) - 103.0;
val = (val / 1.037) + 104.0;
val = (val + 3.00) - 105.0;
val = (val / 0.22) + 106.0;
}*/
val = val + 1.0;
//printf("This is %f\n",val);
d_outputs[tid] = val;
}
}
int main(int argc, char **argv)
{
int niters = 10;
printf("Iterate %d times with GPU 0 or CPU 1: %d\n", niters, cpu);
int inputs[N];
for (int i = 0; i<N; i++){
inputs[i] = i+1;
}
int d_inputs[N];
double d_outputs[N];
double outputs[N];
cudaMalloc( (void**)&d_inputs, N*sizeof(int));
cudaMalloc( (void**)&d_outputs, N*sizeof(double));
printf("test %d \n", inputs[3]);
cudaMemcpy(d_inputs, inputs, N*sizeof(int), cudaMemcpyHostToDevice);
printf("test %d \n", d_inputs[1]);
Kernel_double<<<16,2>>>(niters, d_inputs,d_outputs);
//cudaDeviceSynchronize();
cudaMemcpy(outputs, d_outputs, N*sizeof(double), cudaMemcpyDeviceToHost);
for(int j =0;j<10; j++){
printf("Outputs[%d] is: %f and %f\n",j, d_outputs[j], outputs[j]);
}
cudaFree(d_inputs);
cudaFree(d_outputs);
return EXIT_SUCCESS;
}
Any time you are having trouble with a CUDA code, you should use proper cuda error checking and run your code with cuda-memcheck, before asking others for help. Even if you don't understand the error output, it will be useful for others trying to help you. If you had used proper cuda error checking here, you would be informed that your cudaMemcpy operations are reporting an invalid argument, due to item 3 below.
Your code will not compile. cpu is not defined anywhere.
We don't allocate for, or create device pointers like this:
int d_inputs[N];
double d_outputs[N];
Those are creating stack variables (arrays) that the compiler is allowed to treat as if it were a constant pointer. Instead you should do it like this:
int *d_inputs;
double *d_outputs;
the compiler understands that these are modifiable pointers (which you will modify later with cudaMalloc).
Once you fix the issue in item 3, this will not be legal:
printf("test %d \n", d_inputs[1]);
as this requires dereferencing a device pointer (d_inputs) in host code, which is illegal in CUDA, at least as you have done so here. You have a similar problem in the printf statement later in your code as well (with d_outputs).
The following code has the above items addressed to some degree, and seems to run correctly for me:
$ cat t44.cu
#include <cuda_runtime.h>
#include <cuda.h>
#include <stdio.h>
#include <sys/time.h>
#include <math.h>
#define N 32
__global__ void Kernel_double(int niters, int* d_inputs,double* d_outputs)
{
int tid = blockIdx.x * blockDim.x + threadIdx.x;
if (tid<N) {
double val =(double) d_inputs[tid];
/*for (int iter=0; iter < niters; iter++){
val = (sqrt(pow(val,2.0)) + 5.0) - 101.0;
val = (val / 3.0) + 102.0;
val = (val + 1.07) - 103.0;
val = (val / 1.037) + 104.0;
val = (val + 3.00) - 105.0;
val = (val / 0.22) + 106.0;
}*/
val = val + 1.0;
//printf("This is %f\n",val);
d_outputs[tid] = val;
}
}
int main(int argc, char **argv)
{
int niters = 10;
int cpu = 0;
printf("Iterate %d times with GPU 0 or CPU 1: %d\n", niters, cpu);
int inputs[N];
for (int i = 0; i<N; i++){
inputs[i] = i+1;
}
int *d_inputs;
double *d_outputs;
double outputs[N];
cudaMalloc( (void**)&d_inputs, N*sizeof(int));
cudaMalloc( (void**)&d_outputs, N*sizeof(double));
printf("test %d \n", inputs[3]);
cudaMemcpy(d_inputs, inputs, N*sizeof(int), cudaMemcpyHostToDevice);
// printf("test %d \n", d_inputs[1]);
Kernel_double<<<16,2>>>(niters, d_inputs,d_outputs);
//cudaDeviceSynchronize();
cudaMemcpy(outputs, d_outputs, N*sizeof(double), cudaMemcpyDeviceToHost);
for(int j =0;j<10; j++){
printf("Outputs[%d] is: %f\n",j, outputs[j]);
}
cudaFree(d_inputs);
cudaFree(d_outputs);
return EXIT_SUCCESS;
}
$ nvcc -lineinfo -arch=sm_61 -o t44 t44.cu
$ cuda-memcheck ./t44
========= CUDA-MEMCHECK
Iterate 10 times with GPU 0 or CPU 1: 0
test 4
Outputs[0] is: 2.000000
Outputs[1] is: 3.000000
Outputs[2] is: 4.000000
Outputs[3] is: 5.000000
Outputs[4] is: 6.000000
Outputs[5] is: 7.000000
Outputs[6] is: 8.000000
Outputs[7] is: 9.000000
Outputs[8] is: 10.000000
Outputs[9] is: 11.000000
========= ERROR SUMMARY: 0 errors
$
Related
I am trying to count the number of times curand_uniform() returns 1.0. However i cant seem to get the following code to work for me:
#include <stdio.h>
#include <stdlib.h>
#include <thrust/device_vector.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <curand_kernel.h>
using namespace std;
__global__
void counts(int length, int *sum, curandStatePhilox4_32_10_t* state) {
int tempsum = int(0);
int i = blockIdx.x * blockDim.x + threadIdx.x;
curandStatePhilox4_32_10_t localState = state[i];
for(; i < length; i += blockDim.x * gridDim.x) {
double thisnum = curand_uniform( &localState );
if ( thisnum == 1.0 ){
tempsum += 1;
}
}
atomicAdd(sum, tempsum);
}
__global__
void curand_setup(curandStatePhilox4_32_10_t *state, long seed) {
int id = threadIdx.x + blockIdx.x * blockDim.x;
curand_init(seed, id, 0, &state[id]);
}
int main(int argc, char *argv[]) {
const int N = 1e5;
int* count_h = 0;
int* count_d;
cudaMalloc(&count_d, sizeof(int) );
cudaMemcpy(count_d, count_h, sizeof(int), cudaMemcpyHostToDevice);
int threads_per_block = 64;
int Nblocks = 32*6;
thrust::device_vector<curandStatePhilox4_32_10_t> d_state(Nblocks*threads_per_block);
curand_setup<<<Nblocks, threads_per_block>>>(d_state.data().get(), time(0));
counts<<<Nblocks, threads_per_block>>>(N, count_d, d_state.data().get());
cudaMemcpy(count_h, count_d, sizeof(int), cudaMemcpyDeviceToHost);
cout << count_h << endl;
cudaFree(count_d);
free(count_h);
}
I am getting the terminal error (on
linux):
terminate called after throwing an instance of 'thrust::system::system_error'
what(): parallel_for failed: cudaErrorInvalidValue: invalid argument
Aborted (core dumped)
And i am compiling like this:
nvcc -Xcompiler "-fopenmp" -o test uniform_one_hit_count.cu
I don't understand this error message.
This line:
thrust::device_vector<curandStatePhilox4_32_10_t> d_state(Nblocks*threads_per_block);
is initializing a new vector on the device. When thrust does that, it calls the constructor for the object in use, in this case curandStatePhilox4_32_10, a struct whose definition is in /usr/local/cuda/include/curand_philox4x32_x.h (on linux, anyway). Unfortunately that struct definition doesn't provide any constructors decorated with __device__, and this is causing trouble for thrust.
A simple workaround would be to assemble the vector on the host and copy it to the device:
thrust::host_vector<curandStatePhilox4_32_10_t> h_state(Nblocks*threads_per_block);
thrust::device_vector<curandStatePhilox4_32_10_t> d_state = h_state;
Alternatively, just use cudaMalloc to allocate space:
curandStatePhilox4_32_10_t *d_state;
cudaMalloc(&d_state, (Nblocks*threads_per_block)*sizeof(d_state[0]));
You have at least one other problem as well. This is not actually providing a proper allocation of storage for what the pointer should be pointing to:
int* count_h = 0;
after that, you should do something like:
count_h = (int *)malloc(sizeof(int));
memset(count_h, 0, sizeof(int));
and on your print-out line, you most likely want to do this:
cout << count_h[0] << endl;
The other way to address the count_h issue would be to start with:
int count_h = 0;
and this would necessitate a different set of changes to your code (to the cudaMemcpy operations).
I'm running a toy CUDA sample on my GeForce 1080 Ti (Pascal) on windows 10 and CUDA 9.2.
Goal is to test cudaMemPrefetchAsync to the CPU, as it's supposed to work.
However, I get a CUDA error (invalid device ordinal) on this particular line.
#include "cuda_runtime.h"
#include "device_launch_parameters.h"
#include <cstdio>
#include <cstdlib>
void fill(int* a, int val, int N) {
for (int k = 0; k < N; ++k) {
a[k] = val;
}
}
__global__ void add(int* a, int* b, int N)
{
for (int i = threadIdx.x + blockIdx.x * blockDim.x; i < N; i += blockDim.x * gridDim.x) {
a[i] += b[i];
}
}
inline void check(cudaError_t err, const char* file, int line) {
if (err != cudaSuccess) {
::fprintf(stderr, "ERROR at %s[%d] : %s\n", file, line, cudaGetErrorString(err));
abort();
}
}
#define CUDA_CHECK(err) do { check(err, __FILE__, __LINE__); } while(0)
int main()
{
int deviceId;
CUDA_CHECK(cudaGetDevice(&deviceId));
const int N = 1024*1024*32;
int *a, *b;
CUDA_CHECK(cudaMallocManaged(&a, N * sizeof(int)));
CUDA_CHECK(cudaMallocManaged(&b, N * sizeof(int)));
CUDA_CHECK(cudaMemPrefetchAsync(a, N * sizeof(int), cudaCpuDeviceId)); // program breaks here
CUDA_CHECK(cudaMemPrefetchAsync(b, N * sizeof(int), cudaCpuDeviceId));
fill(a, 1, N);
fill(a, 2, N);
CUDA_CHECK(cudaMemPrefetchAsync(a, N * sizeof(int), deviceId));
CUDA_CHECK(cudaMemPrefetchAsync(b, N * sizeof(int), deviceId));
add<<<32, 256>>>(a, b, N);
CUDA_CHECK(cudaGetLastError());
CUDA_CHECK(cudaDeviceSynchronize());
return 0;
}
Is that a hardware/driver/OS limitation? Can I simply ignore the error?
Is that a hardware/driver/OS limitation?
Yes, the latter. Quoting from the documentation
GPUs with SM architecture 6.x or higher (Pascal class or newer)
provide additional Unified Memory features such as on-demand page
migration and GPU memory oversubscription that are outlined throughout
this document. Note that currently these features are only supported
on Linux operating systems.
So asynchronous page migration is not supported in Windows at the moment and that it why you get an error when you try to enable it.
I have implemented this code: http://www.cuvilib.com/Reduction.pdf in order to calculate the sum of the elements of a matrix.
However in GPU it runs much slower than in CPU.
I got i7 processor and NVIDIA GT 540M graphics card.
Is it supposed to be that way or something else?
EDIT: I use version 3 of the above code in Ubuntu 13.04 and I compile it using Eclipse Nsight. The size of the matrix is 2097152 elements. It executes in 3.6 ms whereas the CPU version in around 1.0 ms. Below is the whole code:
#include <stdio.h>
#include <stdlib.h>
#include <thrust/sort.h>
#include <sys/time.h>
#include <omp.h>
#include <iostream>
#include <algorithm>
#define MIN(a,b) (((a)<(b))?(a):(b))
static const int WORK_SIZE = 2097152;
int find_min(int *a,int length){
int min = a[0];
for (int i=1;i<length;i++)
if (a[i]<min)
min=a[i];
return min;
}
__global__ static void red_min(int *g_idata,int *g_odata) {
extern __shared__ int sdata[];
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x * blockDim.x + threadIdx.x;
sdata[tid]= g_idata[i];
__syncthreads();
for(unsigned int s=blockDim.x/2; s > 0; s >>= 1) {
if (tid<s) {
sdata[tid] = MIN(sdata[tid],sdata[tid + s]);
}
__syncthreads();
}
if (tid == 0)
g_odata[blockIdx.x] = sdata[0];
}
int main(void) {
int *d1,*d2;
int i,*result;
int *idata,*fdata;
srand ( time(NULL) );
result = (int *)malloc(sizeof(int));
idata = (int *)malloc(WORK_SIZE*sizeof(int));
fdata = (int *)malloc(WORK_SIZE*sizeof(int));
cudaMalloc((int**)&d1,WORK_SIZE*sizeof(int));
cudaMalloc((int**)&d2,WORK_SIZE*sizeof(int));
for (i = 0; i < WORK_SIZE; i++){
idata[i] = rand();
fdata[i] = i;
}
struct timeval begin, end;
gettimeofday(&begin, NULL);
*result = find_min(idata,WORK_SIZE);
printf( "Minimum Element CPU: %d \n", *result);
gettimeofday(&end, NULL);
int time = (end.tv_sec * (unsigned int)1e6 + end.tv_usec) - (begin.tv_sec * (unsigned int)1e6 + begin.tv_usec);
printf("Microseconds elapsed CPU: %d\n", time);
cudaMemcpy(d1,idata,WORK_SIZE*sizeof(int),cudaMemcpyHostToDevice);
cudaEvent_t start, stop;
cudaEventCreate( &start);
cudaEventCreate( &stop);
cudaEventRecord(start,0);
int num_blocks = 16384;
bool flag = true;
while (num_blocks>0){
if (flag) {
red_min<<<num_blocks,128,128*sizeof(int)>>>(d1,d2);
}
else {
red_min<<<num_blocks,128,128*sizeof(int)>>>(d2,d1);
}
num_blocks /= 128;
flag = !flag;
}
GT540M is a mobile GPU, so I assume you're running on a laptop, and furthermore you may be hosting the X display on the 540M GPU.
I built a complete version of your code:
#include <stdio.h>
#include <stdlib.h>
#include <thrust/sort.h>
#include <sys/time.h>
#include <omp.h>
#include <iostream>
#include <algorithm>
#define MIN(a,b) (((a)<(b))?(a):(b))
static const int WORK_SIZE = 2097152;
int find_min(int *a,int length){
int min = a[0];
for (int i=1;i<length;i++)
if (a[i]<min)
min=a[i];
return min;
}
__global__ static void red_min(int *g_idata,int *g_odata) {
extern __shared__ int sdata[];
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x * blockDim.x + threadIdx.x;
sdata[tid]= g_idata[i];
__syncthreads();
for(unsigned int s=blockDim.x/2; s > 0; s >>= 1) {
if (tid<s) {
sdata[tid] = MIN(sdata[tid],sdata[tid + s]);
}
__syncthreads();
}
if (tid == 0)
g_odata[blockIdx.x] = sdata[0];
}
int main(void) {
int *d1,*d2;
int i,*result;
int *idata,*fdata;
srand ( time(NULL) );
result = (int *)malloc(sizeof(int));
idata = (int *)malloc(WORK_SIZE*sizeof(int));
fdata = (int *)malloc(WORK_SIZE*sizeof(int));
cudaMalloc((int**)&d1,WORK_SIZE*sizeof(int));
cudaMalloc((int**)&d2,WORK_SIZE*sizeof(int));
for (i = 0; i < WORK_SIZE; i++){
idata[i] = rand();
fdata[i] = i;
}
struct timeval begin, end;
gettimeofday(&begin, NULL);
*result = find_min(idata,WORK_SIZE);
printf( "Minimum Element CPU: %d \n", *result);
gettimeofday(&end, NULL);
int time = (end.tv_sec * (unsigned int)1e6 + end.tv_usec) - (begin.tv_sec * (unsigned int)1e6 + begin.tv_usec);
printf("Microseconds elapsed CPU: %d\n", time);
cudaMemcpy(d1,idata,WORK_SIZE*sizeof(int),cudaMemcpyHostToDevice);
cudaEvent_t start, stop;
cudaEventCreate( &start);
cudaEventCreate( &stop);
cudaEventRecord(start,0);
int num_blocks = 16384;
bool flag = true;
int loops = 0;
while (num_blocks>0){
if (flag) {
red_min<<<num_blocks,128,128*sizeof(int)>>>(d1,d2);
}
else {
red_min<<<num_blocks,128,128*sizeof(int)>>>(d2,d1);
}
num_blocks /= 128;
flag = !flag;
loops++;
}
cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);
float et = 0.0f;
cudaEventElapsedTime(&et, start, stop);
printf("GPU time: %fms, in %d loops\n", et, loops);
int gpuresult;
if (flag)
cudaMemcpy(&gpuresult, d1, sizeof(int), cudaMemcpyDeviceToHost);
else
cudaMemcpy(&gpuresult, d2, sizeof(int), cudaMemcpyDeviceToHost);
printf("GPU min: %d\n", gpuresult);
return 0;
}
compiled it:
$ nvcc -O3 -arch=sm_20 -o t264 t264.cu
and ran it on a M2050 GPU, RHEL 5.5, CUDA 5.5, Xeon X5650 CPU
$ ./t264
Minimum Element CPU: 288
Microseconds elapsed CPU: 1217
GPU time: 0.621408ms, in 3 loops
GPU min: 288
$
So my CPU results were pretty close to yours, but my GPU results were about 5-6x faster. If we compare M2050 to your GT540M, we see that the M2050 has 14 SMs whereas the GT540M has 2. More importantly, the M2050 has about 5x the memory bandwidth of your GT540M GPU (28.8GB/s peak theoretical for GT540M vs. ~150GB/s peak theoretical for M2050)
Since a well written parallel reduction is a memory bandwidth constrained code on GPUs, the speed difference between your GPU and my GPU makes sense.
So I would say your results are probably about what is expected, and to get better results you will probably need a faster GPU.
Also, if your GT540M is also hosting an X display, it's possible that the GPU timing is corrupted by display activity. If we are timing a single kernel, this is not normally an issue - the kernel execution interrupts the display processing briefly. But when we are timing a sequence of kernels in succession, it's possible for the display tasks to jump in and execute in-between kernel calls (the GPU is multi-tasking when it is asked to both support a display and also process CUDA code). Therefore, this may be a possible performance impact in your case as well.
I am trying to find the maximum of an array.. I took the help from CUDA Maximum Reduction Algorithm Not Working. and do some own modification. However I am running it for 16 data. I am finding that in kernel code shared memory copies only 1st 4data. rest are lost. I put two cuPrintf..1st printf shows data is their in the shared memory. But the 2nd cuPrintf is just after __syncthreads.. and that shows 0 from thread ids 4 onwords.. pls help
#include
#include
#include
#include
#include
#include "cuPrintf.cu"
#include "cuPrintf.cuh"
__device__ float MaxOf2(float a, float b)
{
if(a > b) return a;
else return b;
}
__global__ void findMax(int size,float *array_device , float *outPut)
{
extern __shared__ float sdata[];
int tid = threadIdx.x;
int i = blockIdx.x*blockDim.x + threadIdx.x;
if(i< size)
{
sdata[tid] = array_device[i];
cuPrintf(" array_d[%d]===%f, sdata[%d]===%f\n ",i,array_device[i],tid,sdata[tid]);
__threadfence();
}
__syncthreads();
if(tid<size)
cuPrintf(" array_d[%d]===%f, sdata[%d]===%f\n ",i,array_device[i],tid,sdata[tid]);
for ( int s=blockDim.x/2; s>0; s=s>>1)//s=blockDim.x/2
{
if (tid < s)
{
sdata[tid]= MaxOf2(sdata[tid],sdata[tid+s]);
}
__syncthreads();
}
if (tid == 0) outPut[blockIdx.x] = sdata[0];
}
int main()
{
long double M = pow(2,20);
long double N = 2;
int noThreadsPerBlock = 512 ;
printf("\n Provide the array Size N.(array will be of size N * 2^20 ) :-");
scanf("%Lf",&N);
long int size = 16;
int numOfBlock = (int)size /noThreadsPerBlock + 1;
printf("\n num of blocks==%ld",numOfBlock);
float *array_device , *outPut;
float array_host[]={221,100,2,340,47,36,500,1,33,4460,5,6,7,8,9,11};
cudaMalloc((void **)&array_device, size*sizeof(float));
cudaMalloc((void **)&outPut, size*sizeof(float));
cudaError_t error0 = cudaGetLastError();
printf("\n 0CUDA error: %s\n", cudaGetErrorString(error0));
printf("size===%ld",size);
cudaMemcpy(array_device, array_host, size*sizeof(float), cudaMemcpyHostToDevice);
cudaError_t error1 = cudaGetLastError();
printf("\n1CUDA error: %s\n", cudaGetErrorString(error1));
while(size>1 )
{
cudaPrintfInit();
findMax<<< numOfBlock,noThreadsPerBlock>>>(size,array_device, outPut);cudaPrintfDisplay(stdout, true);
cudaPrintfEnd();
cudaError_t error2 = cudaGetLastError();
printf(" 2CUDA error: %s\n", cudaGetErrorString(error2));
cudaMemcpy(array_device, outPut, size*sizeof(float), cudaMemcpyDeviceToDevice);
size = numOfBlock;
printf("\n ****size==%ld\n",size);
numOfBlock = (int)size /noThreadsPerBlock + 1;
}
cudaMemcpy(array_host, outPut, size*sizeof(float), cudaMemcpyDeviceToHost);
cudaError_t error3 = cudaGetLastError();
printf("\n3CUDA error: %s\n", cudaGetErrorString(error3));
for(int i=0;i<size;i++)
printf("\n index==%d ;data=%f ",i,array_host[i]);
return 0;
}
I'm posting my comment as an answer as requested.
Firstly, you havent specified dynamic size of shared memory in kernel launch. It should look something like:
findMax<<< numOfBlock,noThreadsPerBlock,sizeof(float)*noThreadsPerBlock>>>
Secondly, what was the concept behind condition if(tid<size) on second cuPrintf? Providing output of the program could also help.
I am trying to learn cuda. I am trying to run a simple code
#include <stdlib.h>
#include <stdio.h>
__global__ void kernel(int *array)
{
int index = blockIdx.x * blockDim.x + threadIdx.x;
array[index] = 7;
}
int main(void)
{
int num_elements = 256;
int num_bytes = num_elements * sizeof(int);
// pointers to host & device arrays
int *device_array = 0;
int *host_array = 0;
// malloc a host array
host_array = (int*)malloc(num_bytes);
// cudaMalloc a device array
cudaMalloc((void**)&device_array, num_bytes);
int block_size = 128;
int grid_size = num_elements / block_size;
kernel<<<grid_size,block_size>>>(device_array);
// download and inspect the result on the host:
cudaMemcpy(host_array, device_array, num_bytes, cudaMemcpyDeviceToHost);
// print out the result element by element
for(int i=0; i < num_elements; ++i)
{
printf("%d ", host_array[i]);
}
// deallocate memory
free(host_array);
cudaFree(device_array);
}
It is supposed to print 7's but it prints 0's
This statement doesn't seem to get executed
"kernel<<>>(device_array);"
It doesn't give any compilation error also.
Any help ??
The code runs fine on my machine, but make sure you add cudaDeviceSynchronize and error checking after the kernel call.
Change the code as follows to check for errors:
kernel<<<grid_size,block_size>>>(device_array);
// wait until tasks are completed
cudaDeviceSynchronize();
// check for errors
cudaError_t error = cudaGetLastError();
if (error != cudaSuccess) {
fprintf(stderr, "ERROR: %s \n", cudaGetErrorString(error));
}