Data cleasning, migration in big, in-service database - mysql

Hi I'm a server developer and we have a big mysql database(biggest table has about 0.5 billion rows) running 24-7.
And there's a lot of broken data. Most of them are logically wrong and involves multi-source(multiple tables, s3). And since it's kinda logically complicated, we need Rails model to clean them (can't be done with pure sql queries)
Right now, I am using my own small cleansing framework and using AWS Auto Scaling Group to scale up instances and speed up. But since the database is in-service, I have to be careful(table locks and other stuffs) and limit the process amount.
So I am curious about
How do you (or big companies) clean your data while the database is in-service?
Do you use temporary tables and swap? or just update/insert/delete to an in-service database?
Do you use a framework or library or solution to clean data in efficient way? (such as distributed processing)
How do you detect messed up data real-time?
Do you use a framework or library or solution to detect broken data?

So I have face a problem similar in nature to what you are dealing with but different in scale. this is how I would approach the situation.
First access the infrastructure concerns, like can the data base be offline or restricted from use for a few hours for maintenance, if so read on.
Next you need to define what constitutes as "broken data".
Once you arrive at your definition of "broken data" translate a way to programmatically identify it.
Write a script that leverages your programatic identification algorithm and run some test.
Then back up you data records in preparation.
Then given the scale of your data set you will probably need to increase your server resources as not to bottle neck the script.
Run the script
Test your data to assess the effectiveness of your script
If needed adjust and rerun
Its possible to do this with out closing of the database for maintenance but I think you will get better results if you do. Also since this is a rails app I would look at the model validations that your app has and input field validations to prevent "broken data" in real time.

Related

How to migrate data from mongodb to mysql?

I am currently working on an application like to analitics, i has Angularjs app which communicates with Spring REST Client App from which user creates token(trackingID) and use generated script with this id putting on his website to collect information about visitor's actions through another Spring REST tracking App, for tracking app i am using as mongodb to collect visitor actions/visitor info for fast insertion, but for rest client app mysql with user/accounts details.
My question is how to migrate mongo data from tracking app to mysql maybe for getting posibility of join for easily and fastest way of analyze data with any kind of filters from angularjs client app, to create manually any workers that periodically will transfer data from last point to present state from mongo to mysql, or are any existed tools that can be setted for this transfer?
There is no official library to do this.
But you can use mongoexport feature from mongoDB to export it in a CSV format and mysqlimport to import them into MySQL.
Here are links to the documentation MySQL import and MongoDB Export.
One more method you can try to write a program in one of your favorite language and read from MongoDB and write into MySQL
MySQL 5.7 has a new JSON data type, that can be very convenient.
You can create a table at MySQL to receive the JSON messages AS IS, and then use SQL to query it or do a post processing to load the data in a structured set of database tables.
Check this out: https://dev.mysql.com/doc/refman/5.7/en/json.html
I realise this question is a few years old - but recently I've had a number of people enquiring whether a tool I developed (https://virtual.blue/apps/json-converter) can do exactly what the OP is asking (convert MongoDB to SQL) so I am guessing it is still something people want. Keep reading to find out why I am honestly not surprised by this.
The short answer to whether the tool can help you is: perhaps. If your existing data relationships are not too complicated, and your database is not enormous, it may well be worth a try.
However, I thought it might help to try and explain what the issues are with this kind of conversion, since all the answers I have seen so far are along the lines of "try tool X" or "first convert to format Y and then you can slurp it into MySQL using utility Z". ie there is no thought to whether what you get at the end of doing this is going to make sense in terms of data relationships and integrity.
For example, you could just stick your entire database dump in a single field of a single SQL table (ok space limitations might prevent this in reality, but hopefully you get my point). Then your database would be "in MySQL format", but it would be absolutely no use to anyone.
The point is, what you actually want is a fully defined database model, correctly encapsulating all of the intrinsic data relationships. ("Database normalization" as it is known.) If your conversion process gets those relationships wrong, then you have a broken model, and any queries you try to run over it are likely to return nonsense. Unfortunately there is no magic tool that is just going to "know" the best way to represent your data in MySQL, and closing your eyes and shovelling it into a bunch of random tools is unlikely to miraculously get you what you want.
And herein lies the fundamental problem with the "NoSQL" philosophy (fad). They sold people the bogus notion of "non-relational data". My first thought when I heard this was, "How does that work? Surely all data is relational?" By the looks of things we are steadily getting more and more evidence that my instincts were right. ("NoSQL? Why stop there? I go with 'NoDatabase'. It returns no results at all, but it sure is fast!")
The NoSQL madness throws several important fundamental engineering principles to the wind. We shouted "don't hard code!", "DRY!" (Don't Repeat Yourself) because these actions infuse inflexibility into systems. Traditional wisdom makes precisely the same flexibility argument when it advises "create a fully described model with all the data relationships represented". Then you can execute any arbitrary query over it and expect meaningful results. "Yes but there are a whole bunch of queries we are never going to need to run," says the NoSQL proponent. But surely we learnt our lesson on things we are "never going to need to do"? ("I hard code liberally, because I know I am never going to want to change my code." Hmm...)
The arguments about speed are largely moot. Say it turns out you are frequently doing a complex 9 table join, with unsurprisingly sluggish performance. So create an index. Cache it. Swap some disk space for speed. The NoSQL philosophy is to swap data integrity for speed, which makes no sense at all.
When you generate your fast lookup index (cache/table/map/whatever) what you are really doing is creating a view over your model. If your model changes, you can readily update your view. Going from a model to a view is easy - it's a one to many operation and you are on the right side of entropy.
However, when you went with MongoDB you effectively decided to create views without bothering to describe your fundamental model. Now you discover there are queries you want to run, but can't - and so it's no wonder you want to move over to SQL and actually have your data modelled correctly. The problem is you now want to go from a view to a model. Now you're on the wrong side of entropy. Your view is a lossy representation of the model's fundamental relationships. You can't expect a tool to "translate" your database, because you are asking it to insert new relationships which were not originally defined. These are real world relationships that are not machine-guessable. The tool cannot know what relationships were intended.
In short the only way you can do this reliably is to get your hands dirty. An intelligent human, with complete understanding of the system you are modelling needs to sit down and carefully come up with (possibly a substantial amount of) code which effectively picks through the data and resolves all of the insufficiently represented data relationships. If your data is complex then it's going to be a headache and there is no way to cheat.
If your data is still relatively simple then I would suggest making the conversion as soon as possible, before it becomes difficult. In this case my tool (https://virtual.blue/apps/json-converter) may be able to help.
(They really should have asked a Physicist before they came up with all this nonsense...!)
You can download a trial version of Studio 3T for Mongo and export your database to SQL (or JSON) directly

SQLite3 database per customer

Scenario:
Building a commercial app consisting in an RESTful backend with symfony2 and a frontend in AngularJS
This app will never be used by many customers (if I get to sell 100 that would be fantastic. Hopefully much more, but in any case will be massive)
I want to have a multi tenant structure for the database with one schema per customer (they store sensitive information for their customers)
I'm aware of problem when updating schemas but I will have to live with it.
Today I have a MySQL demo database that I will clone each time a new customer purchase the app.
There is no relationship between my customers, so I don't need to communicate with multiple shards for any query
For one customer, they can be using the app from several devices at the time, but there won't be massive write operations in the db
My question
Trying to set some functional tests for the backend API I read about having a dedicated sqlite database for loading testing data, which seems to be good idea.
However I wonder if it's also a good idea to switch from MySQL to SQLite3 database as my main database support for the application, and if it's a common practice to have one dedicated SQLite3 database PER CLIENT. I've never used SQLite and I have no idea if the process of updating a schema and replicate the changes in all the databases is done in the same way as for other RDBMS
Is this a correct scenario for SQLite?
Any suggestion (aka tutorial) in how to achieve this?
[I wonder] if it's a common practice to have one dedicated SQLite3 database PER CLIENT
Only if the database is deployed along with the application, like on a phone. Otherwise I've never heard of such a thing.
I've never used SQLite and I have no idea if the process of updating a schema and replicate the changes in all the databases is done in the same way as for other RDBMS
SQLite is a SQL database and responds to ALTER TABLE and the like. As for updating all the schemas, you'll have to re-run the update for all schemas.
Schema synching is usually handled by an outside utility, usually your ORM will have something. Some are server agnostic, some only support specific servers. There are also dedicated database change management tools such as Sqitch.
However I wonder if it's also a good idea to switch from MySQL to SQLite3 database as my main database support for the application, and
SQLite's main advantage is not requiring you to install and run a server. That makes sense for quick projects or where you have to deploy the database, like a phone app. For server based application there's no problem having a database server. SQLite's very restricted set of SQL features becomes a disadvantage. It will also likely run slower than a server database for anything but the simplest queries.
Trying to set some functional tests for the backend API I read about having a dedicated sqlite database for loading testing data, which seems to be good idea.
Under no circumstances should you test with a different database than the production database. Databases do not all implement SQL the same, MySQL is particularly bad about this, and your tests will not reflect reality. Running a MySQL instance for testing is not much work.
This separate schema thing claims three advantages...
Extensibility (you can add fields whenever you like)
Security (a query cannot accidentally show data for the wrong tenant)
Parallel Scaling (you can potentially split each schema onto a different server)
What they're proposing is equivalent to having a separate, customized copy of the code for every tenant. You wouldn't do that, it's obviously a maintenance nightmare. Code at least has the advantage of version control systems with branching and merging. I know only of one database management tool that supports branching, Sqitch.
Let's imagine you've made a custom change to tenant 5's schema. Now you have a general schema change you'd like to apply to all of them. What if the change to 5 conflicts with this? What if the change to 5 requires special data migration different from everybody else? Now let's imagine you've made custom changes to ten schemas. A hundred. A thousand? Nightmare.
Different schemas will require different queries. The application will have to know which schema each tenant is using, there will have to be some sort of schema version map you'll need to maintain. And every different possible query for every different possible schema will have to be maintained in the application code. Nightmare.
Yes, putting each tenant in a separate schema is more secure, but that only protects against writing bad queries or including a query builder (which is a bad idea anyway). There are better ways mitigate the problem such as the view filter suggested in the docs. There are many other ways an attacker can access tenant data that this doesn't address: gain a database connection, gain access to the filesystem, sniff network traffic. I don't see the small security gain being worth the maintenance nightmare.
As for scaling, the article is ten years out of date. There are far, far better ways to achieve parallel scaling then to coarsely put schemas on different servers. There are entire databases dedicated to this idea. Fortunately, you don't need any of this! Scaling won't be a problem for you until you have tens of thousands to millions of tenants. The idea of front loading your design with a schema maintenance nightmare for a hypothetical big parallel scaling problem is putting the cart so far before the horse, it's already at the pub having a pint.
If you want to use a relational database I would recommend PostgreSQL. It has a very rich SQL implementation, its fast and scales well, and it has something that renders this whole idea of separate schemas moot: a built in JSON type. This can be used to implement the "extensibility" mentioned in the article. Each table can have a meta column using the JSON type that you can throw any extra data into you like. The application does not need special queries, the meta column is always there. PostgreSQL's JSON operators make working with the meta data very easy and efficient.
You could also look into a NoSQL database. There are plenty to choose from and many support custom schemas and parallel scaling. However, it's likely you will have to change your choice of framework to use one that supports NoSQL.

SQL Assemblies vs Application code for complicated queries on large XML columns

I have a table with a few relational columns and one XML column which sometimes holds a fairly large chunk of data. I also have a simple webservice which uses the database. I need to be able to report on things like all the instances of a certain element within the XML column, a list of all the distinct values for a certain element, things like that.
I was able to get a list of all the distinct values for an element, but didn't get much further than that. I ended up writing incredibly complex T-SQL code to do something that seems pretty simple in C#: go through all the rows in this table, and apply this ( XPath | XQuery | XSLT ) to the XML column. I can filter on the relational columns to reduce the amount of data, but this is still a lot of data for some of the queries.
My plan was to embed an assembly in SQL Server (I'm using 2008 SP2) and have it create an indexed view on the fly for a given query (I'd have other logic to clean this view up). This would allow me to keep the network traffic down, and possibly also allow me to use tools like Excel and MSRS reports as a cheap user interface, but I'm seeing a lot of people saying "just use application logic rather than SQL assemblies". (I could be barking entirely up the wrong tree here, I guess).
Grabbing the big chunk of data to the web service and doing the processing there would have benefits as well - I'm less constrained by the SQL Server environment (since I don't live inside it) and my setup process is easier. But it does mean I'm bringing a lot of data over the network, storing it in memory while I process it, then throwing some of it away.
Any advice here would be appreciated.
Thanks
Edit:
Thanks guys, you've all been a big help. The issue was that we were generating a row in the table for a file, and each file could have multiple results, and we would doing this each time we ran a particular build job. I wanted to flatten this out into a table view.
Each execution of this build job checked thousands of files for several attributes, and in some cases each of these tests these were generating thousands of results (MSIVAL tests were the worst culprit).
The answer (duh!) is to flatten it out before it goes into the database! Based on your feedback, I decided to try creating a row for each result for each test on each file, and the XML just had the details of that one result - this made the query much simpler. Of course, we now have hundreds of thousands of rows each time we run this tool but the performance is much better. I now have a view which creates a flattened version of one of the classes of results that are emitted by the build job - this returns >200,000 and takes <5 seconds, compared to around 3 minutes for the equivalent (complicated) query before I went the flatter route, and between 10 and 30 minutes for the XML file processing of the old (non-database) version.
I now have some issues with the number of times I connect, but I have an idea of how to fix that.
Thanks again! +1's all round
I suggest using the standard xml tools in TSQL. (http://msdn.microsoft.com/en-us/library/ms189075.aspx). If you don't wish to use this I would recommend processing the xml on another machine.
SQLCLR is perfect for smaller functions, but with the restrictions on the usable methods it tends to become an exercise in frustration once you are trying to do more advanced things.
What you're asking about is really a huge balancing act and it totally depends on several factors. First, what's the current load on your database? If you're running this on a database that is already under heavy load, you're probably going to want to do this parsing on the web service. XML shredding and querying is an incredibly expensive procedure in SQL Server, especially if you're doing it on un-indexed columns that don't have a schema defined for them. Schemas and indexes help with this processing overhead, but they can't eliminate the fact that XML parsing isn't cheap. Secondly, the amount of data you're working with. It's entirely possible that you just have too much data to push over the network. Depending on the location of your servers and the amount of data, you could face insurmountable problems here.
Finally, what are the relative specs of your machines? If your web service machine has low memory, it's going to be thrashing data in and out of virtual memory trying to parse the XML which will destroy your performance. Maybe you're not running the most powerful database hardware and shredding XML is going to be performance prohibitive for the CPU you've got on your database machine.
At the end of the day, the only way to really know is to try both ways and figure out what makes sense for you. Doing the development on your web services machine will almost undoubtedly be easier as LINQ to XML is a more elegant way of parsing through XML than XQuery shoehorned into T-SQL is. My indication, given the information you provided in your question, is that T-SQL is going to perform better for you in the long run because you're doing XML parsing on every row or at least most rows in the database for reporting purposes. Pushing that kind of information over the network is just ugly. That said, if performance isn't that important, there's something to be said about taking the easier and more maintainable route of doing all the parsing on the application server.

Using combination of MySQL and MongoDB

Does it make sense to use a combination of MySQL and MongoDB. What im trying to do basically is use MySQl as a "raw data backup" type thing where all the data is being stored there but not being read from there.
The Data is also stored at the same time in MongoDB and the reads happen only from mongoDB because I dont have to do joins and stuff.
For example assume in building NetFlix
in mysql i have a table for Comments and Movies. Then when a comment is made In mySQL i just add it to the table, and in MongoDB i update the movies document to hold this new comment.
And then when i want to get movies and comments i just grab the document from mongoDb.
My main concern is because of how "new" mongodb is compared to MySQL. In the case where something unexpected happens in Mongo, we have a MySQL backup where we can quickly get the app fallback to mysql and memcached.
On paper it may sound like a good idea, but there are a lot of things you will have to take into account. This will make your application way more complex than you may think. I'll give you some examples.
Two different systems
You'll be dealing with two different systems, each with its own behavior. These different behaviors will make it quite hard to keep everything synchronized.
What will happen when a write in MongoDB fails, but succeeds in MySQL?
Or the other way around, when a column constraint in MySQL is violated, for example?
What if a deadlock occurs in MySQL?
What if your schema changes? One migration is painful, but you'll have to do two migrations.
You'd have to deal with some of these scenarios in your application code. Which brings me to the next point.
Two data access layers
Your application needs to interact with two external systems, so you'll need to write two data access layers.
These layers both have to be tested.
Both have to be maintained.
The rest of your application needs to communicate with both layers.
Abstracting away both layers will introduce another layer, which will further increase complexity.
Chance of cascading failure
Should MongoDB fail, the application will fall back to MySQL and memcached. But at this point memcached will be empty. So each request right after MongoDB fails will hit the database. If you have a high-traffic site, this can easily take down MySQL as well.
Word of advice
Identify all possible ways in which you think 'something unexpected' can happen with MongoDB. Then use the most simple solution for each individual case. For example, if it's data loss you're worried about, use replication. If it's data corruption, use delayed replication.

Pattern for updating slave SQL Server 2008 databases from a master whilst minimising disruption

We have an ASP.NET web application hosted by a web farm of many instances using SQL Server 2008 in which we do aggregation and pre-processing of data from multiple sources into a format optimised for fast end user query performance (producing 5-10 million rows in some tables). The aggregation and optimisation is done by a service on a back end server which we then want to distribute to multiple read only front end copies used by the web application instances to facilitate maximum scalability.
My question is about the best way to get this data from a back end database out to the read only front end copies in such a way that does not kill their performance during the process. The front end web application instances will be under constant high load and need to have good responsiveness at all times.
The backend database is constantly being updated so I suspect that transactional replication will not be the best approach, as the constant stream of updates to the copies will hurt their performance.
Staleness of data is not a huge issue so snapshot replication might be the way to go, but this will result in poor performance during the periods of replication.
Doing a drop and bulk insert will result in periods with no data for user queries.
I don't really want to get into writing a complex cluster approach where we drop copies out of the cluster during updating - is there something along these lines that we can do without too much effort, or is there a better alternative?
There is actually a technology built into SQL Server 2005 (and 2008) that is designed to address this kind of issues. Service Broker (I'll refer further as SSB). The problem is that it has a very steep learning curve.
I know MySpace went public how uses SSB to manage their park of SQL Servers: MySpace Uses SQL Server Service Broker to Protect Integrity of 1 Petabyte of Data. I know of several more (major) sites that use similar patterns but unfortunately they have not gone public so I cannot refer names. I was personally involved with some projects around this technology (I am a former member of the SQL Server team).
Now bear in mind that SSB is not a dedicate data transfer technology like Replication. As such you will not find anyhting similar to the publishing wizards and simple deployment options of Replication (check a table and it gets transferred). SSB is a reliable messaging technology and as such its primitives stop at the level of message exchange, you would have to write the code that leverages the data change capture, packs it as messages and also the unpacking of message into relational tables at destination.
Why still some companies preffer SSB over Replication at a task like you describe is because SSB has a far better story when it comes to reliability and scalability. I know of projects that exchange data between 1500+ sites, far beyond the capabilities of Replication. SSB is also abstracted from the physical topology: you can move databases, rename machines, rebuild servers all without changing the application. Because data flow occurs over logical routes the application can addapt on-the-fly to new topologies. SSB is also resilient to long periods of disocnnect and downtime, being capable of resuming the data flow after hours, days and even months of disconnect. High troughput achieved by engine integration (SSB is part of the SQL engine itself, is not a collection of sattelite applications and processes like Replication) means that the backlog of changes can be processes on reasonable times (I know of sites that are going through half a million transactions per minute). SSB applications typically rely on internal Activation to process the incomming data. SSB also has some unique features like built-in load balancing (via routes) with sticky session semantics, support for deadlock free application specific correlated processing, priority data delivery, specific support for database mirroring, certificate based authentication for cross domain operations, built-in persisted timers and many more.
This is not a specific answer 'how to move data from table T on server A to server B'. Is more a generic technology on how to 'exhange data between server A and server B'.
I've never had to deal with this scenario before but did come up with a possible solution for this. Basically, it would require a change in your main database structure. Instead of storing the data, you would keep records of modifications of this data. Thus, if a record is added, you store "Table X, inserted new record with these values: ..." With modifications, just store the table, field and changed value. With deletions, just store which record is deleted. Every modification will be stored with a timestamp.
Your client systems would keep their local copies of the database and will regularly ask for all database modifications after a certain date/time. You then execute those modifications on the local database and it will be up-to-date again.
And the back-end? Well, it would just keep a list of modifications and perhaps a table with the base data. Keeping just the modifications also means you're keeping track of history, allowing you to ask the system what it looked like a year ago.
How well this would perform depends on the number of modifications on the back-end database. But if you request the changes every 15 minutes, it shouldn't be that much data every time.
But again, I never had the chance to work this out in a real application so it's still a theoretic principle for me. It seems fast but a lot of work will be required.
Option 1: Write an app to transfer the data using row level transactions. It might take longer but would result in no interruption of the site using the data because the rows are there before and after the read occurs, just with new data. This processing would happen on a separate server to minimize load.
In sql server 2008 you can set READ_COMMITTED_SNAPSHOT to ON to ensure that the row being updated is not causing blocking.
But basically all this app does is read the new data as it is available out from one database and into the other.
Option 2: Move the data (tables or entire database) from the aggregation server to the front-end server. Automate this if possible. Then switch your web application to point to the new database or tables for future requests. This works but requires control over the web app, which you may not have.
Option 3: If you were talking about a single table (or this could work with many) what you can do is a view swap. So you write your code against a sql view which points to table A. You do you work on Table B and when it's ready, you update the view to point to Table B. You can even write a function that determines the active table and automate the whole swap thing.
Option 4: You might be able to use something like byte-level replication of the server. That sounds scary though. Which is basically copying the server from point A to point B exactly down to the very bytes. It's mostly used in DR situations which this sounds like it could be a kinda/sorta DR situation, but not really.
Option 5: Give up and learn how to sell insurance. :)