Apache Pig: Store only specific fields using JsonStorage() - json
I loaded a json file using JsonLoad() and it loads correctly. Now I want to store only few fields of the json object into a file using jsonStorage(). My Pig script is:
data_input = LOAD '$DATA_INPUT' USING JsonLoader(<<schema>>);
x = FOREACH data_input GENERATE (user__id_str);
STORE x INTO '$DATA_OUTPUT' USING JsonStorage();
Expected output:
{"user__id_str":12345}
{"user__id_str":12345}
{"user__id_str":123467}
Output I am getting:
{"user__id_str":null}
{"user__id_str":null}
{"user__id_str":null}
What is wrong?
EDIT: The schema is huge: consists of 306 fields:
user__contributors_enabled:chararray,retweeted_status__user__friends_count:int,quoted_status__extended_entities__media:chararray,retweeted_status__user__profile_background_image_url:chararray,quoted_status__user__is_translation_enabled:chararray,user__geo_enabled:chararray,avl_word_tags_all:chararray,quoted_status__user__profile_background_color:chararray,quoted_status__user__id_str:chararray,retweeted_status__place__bounding_box__coordinates:chararray,retweeted_status__quoted_status__metadata__result_type:chararray,retweeted_status__user__utc_offset:int,retweeted_status__user__contributors_enabled:chararray,retweeted_status__in_reply_to_screen_name:chararray,retweeted_status__place__place_type:chararray,retweeted_status__quoted_status__user__profile_background_image_url_https:chararray,user__utc_offset:int,quoted_status__favorited:chararray,user__entities__description__urls:chararray,place__url:chararray,quoted_status__user__profile_sidebar_border_color:chararray,favorited:chararray,retweeted_status__user__profile_banner_url:chararray,quoted_status__entities__user_mentions:chararray,retweet_count:int,retweeted_status__user__entities__description__urls:chararray,retweeted_status__quoted_status__user__is_translation_enabled:chararray,retweeted_status__entities__media:chararray,place__bounding_box__type:chararray,text_to_syntaxnet:chararray,quoted_status__user__chararrayed_count:int,avl_pos_tags:chararray,retweeted_status__user__statuses_count:int,quoted_status__metadata__iso_language_code:chararray,created_at:chararray,avl_lexicon_text:chararray,retweeted_status__lang:chararray,place__country:chararray,quoted_status__user__verified:chararray,retweeted_status__quoted_status__user__profile_background_tile:chararray,quoted_status__user__utc_offset:int,retweeted_status__quoted_status__user__location:chararray,quoted_status__created_at:chararray,retweeted_status__quoted_status__lang:chararray,place__place_type:chararray,user__profile_image_url:chararray,quoted_status__user__profile_use_background_image:chararray,user__name:chararray,user__notifications:chararray,user__id:int,in_reply_to_status_id:int,retweeted_status__metadata__iso_language_code:chararray,id:int,retweeted_status__user__follow_request_sent:chararray,retweeted_status__quoted_status__user__profile_use_background_image:chararray,retweeted_status__quoted_status__user__statuses_count:int,quoted_status__id_str:chararray,retweeted_status__user__profile_image_url:chararray,user__protected:chararray,user__profile_image_url_https:chararray,retweeted_status__source:chararray,quoted_status__source:chararray,retweeted_status__user__profile_link_color:chararray,retweeted_status__quoted_status__id_str:chararray,user__followers_count:int,retweeted_status__quoted_status__user__notifications:chararray,avl_num_sentences:int,retweeted_status__quoted_status__truncated:chararray,retweeted_status__text:chararray,quoted_status__favorite_count:int,quoted_status__metadata__result_type:chararray,truncated:chararray,metadata__iso_language_code:chararray,user__profile_banner_url:chararray,retweeted_status__quoted_status__user__profile_image_url_https:chararray,retweeted_status__quoted_status__user__utc_offset:int,quoted_status__user__profile_link_color:chararray,quoted_status__user__profile_image_url_https:chararray,retweeted_status__user__screen_name:chararray,retweeted_status__favorited:chararray,avl_lang:chararray,retweeted_status__user__location:chararray,retweeted_status__quoted_status__user__has_extended_profile:chararray,retweeted_status__quoted_status__user__verified:chararray,user__description:chararray,retweeted_status__user__profile_use_background_image:chararray,retweeted_status__quoted_status__user__contributors_enabled:chararray,quoted_status__is_quote_status:chararray,avl_sent:chararray,quoted_status__entities__media:chararray,quoted_status__possibly_sensitive:chararray,quoted_status__user__favourites_count:int,retweeted_status__quoted_status__user__default_profile_image:chararray,avl_num_words:int,quoted_status__user__friends_count:int,id_str:chararray,user__default_profile:chararray,user__profile_text_color:chararray,quoted_status__user__description:chararray,retweeted_status__user__favourites_count:int,retweeted_status__quoted_status__user__friends_count:int,quoted_status__user__name:chararray,retweeted_status__quoted_status__created_at:chararray,user__verified:chararray,quoted_status_id_str:chararray,user__profile_sidebar_border_color:chararray,retweeted_status__quoted_status__user__profile_text_color:chararray,retweeted_status__quoted_status__user__following:chararray,favorite_count:int,retweeted_status__quoted_status__entities__symbols:chararray,source:chararray,quoted_status_id:int,user__profile_use_background_image:chararray,retweeted_status__user__following:chararray,quoted_status__user__location:chararray,coordinates__type:chararray,retweeted_status__user__id:int,retweeted_status__quoted_status__text:chararray,quoted_status__entities__urls:chararray,retweeted_status__in_reply_to_status_id_str:chararray,text:chararray,retweeted_status__quoted_status__is_quote_status:chararray,quoted_status__id:int,user__entities__url__urls:chararray,quoted_status__user__contributors_enabled:chararray,retweeted_status__quoted_status__user__favourites_count:int,retweeted_status__quoted_status__id:int,retweeted_status__retweet_count:int,retweeted_status__favorite_count:int,metadata__result_type:chararray,retweeted_status__user__protected:chararray,retweeted_status__quoted_status__user__name:chararray,possibly_sensitive:chararray,retweeted_status__user__profile_sidebar_fill_color:chararray,retweeted_status__user__profile_image_url_https:chararray,retweeted_status__quoted_status_id:int,place__contained_within:chararray,retweeted_status__user__id_str:chararray,retweeted_status__user__entities__url__urls:chararray,retweeted_status__id_str:chararray,retweeted_status__quoted_status__entities__user_mentions:chararray,in_reply_to_status_id_str:chararray,retweeted_status__user__has_extended_profile:chararray,user__default_profile_image:chararray,user__is_translator:chararray,place__bounding_box__coordinates:chararray,retweeted_status__is_quote_status:chararray,quoted_status__user__entities__description__urls:chararray,entities__urls:chararray,retweeted_status__quoted_status__favorite_count:int,quoted_status__truncated:chararray,retweeted_status__user__default_profile_image:chararray,user__statuses_count:int,retweeted_status__quoted_status__user__entities__description__urls:chararray,retweeted_status__quoted_status__entities__hashtags:chararray,retweeted_status__quoted_status__user__description:chararray,retweeted_status__user__verified:chararray,retweeted_status__user__followers_count:int,avl_syn_1:chararray,quoted_status__user__default_profile:chararray,retweeted_status__place__bounding_box__type:chararray,retweeted_status__id:int,retweeted_status__user__lang:chararray,retweeted_status__quoted_status__user__default_profile:chararray,retweeted_status__quoted_status__user__profile_link_color:chararray,retweeted_status__in_reply_to_user_id:int,retweeted_status__user__is_translation_enabled:chararray,retweeted_status__user__chararrayed_count:int,quoted_status__user__default_profile_image:chararray,quoted_status__retweet_count:int,retweeted_status__user__profile_background_tile:chararray,quoted_status__user__id:int,retweeted_status__quoted_status__user__screen_name:chararray,retweeted_status__user__notifications:chararray,coordinates__coordinates:chararray,avl_brand_1:chararray,retweeted_status__quoted_status__metadata__iso_language_code:chararray,retweeted_status__quoted_status__retweeted:chararray,retweeted_status__quoted_status_id_str:chararray,retweeted_status__user__profile_text_color:chararray,quoted_status__retweeted:chararray,retweeted_status__user__is_translator:chararray,retweeted_status__user__default_profile:chararray,retweeted_status__extended_entities__media:chararray,avl_word_tags:chararray,quoted_status__user__follow_request_sent:chararray,retweeted_status__quoted_status__possibly_sensitive:chararray,user__screen_name:chararray,quoted_status__user__profile_banner_url:chararray,extended_entities__media:chararray,retweeted_status__quoted_status__retweet_count:int,quoted_status__user__profile_background_image_url:chararray,place__name:chararray,user__created_at:chararray,lang:chararray,in_reply_to_screen_name:chararray,retweeted_status__in_reply_to_status_id:int,quoted_status__user__profile_text_color:chararray,user__url:chararray,retweeted_status__user__profile_background_image_url_https:chararray,retweeted_status__truncated:chararray,entities__symbols:chararray,retweeted_status__quoted_status__user__profile_sidebar_border_color:chararray,quoted_status__entities__hashtags:chararray,retweeted_status__created_at:chararray,place__country_code:chararray,quoted_status__user__screen_name:chararray,avl_score:int,quoted_status__user__lang:chararray,avl_source:chararray,place__full_name:chararray,retweeted_status__place__url:chararray,retweeted_status__user__profile_background_color:chararray,quoted_status__user__following:chararray,quoted_status__user__profile_image_url:chararray,quoted_status__text:chararray,user__chararrayed_count:int,retweeted_status__quoted_status__user__protected:chararray,avl_words_not_in_lexicon:chararray,retweeted_status__quoted_status__user__id_str:chararray,quoted_status__user__followers_count:int,retweeted_status__quoted_status__extended_entities__media:chararray,retweeted_status__quoted_status__user__is_translator:chararray,user__time_zone:chararray,retweeted_status__metadata__result_type:chararray,in_reply_to_user_id_str:chararray,quoted_status__user__profile_background_image_url_https:chararray,avl_num_paragraphs:int,retweeted_status__quoted_status__user__profile_background_color:chararray,retweeted_status__quoted_status__user__followers_count:int,quoted_status__user__has_extended_profile:chararray,retweeted_status__user__profile_sidebar_border_color:chararray,avl_brand_all:chararray,retweeted_status__place__country_code:chararray,retweeted_status__user__description:chararray,quoted_status__user__profile_background_tile:chararray,retweeted_status__quoted_status__user__geo_enabled:chararray,quoted_status__user__created_at:chararray,entities__hashtags:chararray,retweeted_status__user__time_zone:chararray,quoted_status__user__geo_enabled:chararray,retweeted_status__possibly_sensitive:chararray,retweeted_status__user__name:chararray,retweeted:chararray,quoted_status__user__entities__url__urls:chararray,user__profile_background_tile:chararray,user__follow_request_sent:chararray,retweeted_status__quoted_status__entities__urls:chararray,quoted_status__user__statuses_count:int,retweeted_status__quoted_status__user__profile_background_image_url:chararray,user__is_translation_enabled:chararray,user__profile_background_image_url_https:chararray,user__friends_count:int,retweeted_status__quoted_status__user__id:int,geo__coordinates:chararray,user__following:chararray,user__favourites_count:int,retweeted_status__place__country:chararray,retweeted_status__quoted_status__user__chararrayed_count:int,user__profile_link_color:chararray,retweeted_status__place__full_name:chararray,quoted_status__user__protected:chararray,quoted_status__user__notifications:chararray,user__lang:chararray,retweeted_status__place__contained_within:chararray,retweeted_status__entities__hashtags:chararray,retweeted_status__entities__urls:chararray,user__profile_background_image_url:chararray,retweeted_status__quoted_status__favorited:chararray,retweeted_status__place__name:chararray,user__profile_background_color:chararray,geo__type:chararray,retweeted_status__entities__symbols:chararray,retweeted_status__place__id:chararray,quoted_status__lang:chararray,retweeted_status__retweeted:chararray,avl_sentences:chararray,avl_global_idx:int,retweeted_status__entities__user_mentions:chararray,retweeted_status__quoted_status__user__time_zone:chararray,user__id_str:chararray,quoted_status__user__profile_sidebar_fill_color:chararray,quoted_status__entities__symbols:chararray,retweeted_status__user__url:chararray,retweeted_status__quoted_status__user__profile_sidebar_fill_color:chararray,quoted_status__user__is_translator:chararray,retweeted_status__quoted_status__user__lang:chararray,user__profile_sidebar_fill_color:chararray,retweeted_status__quoted_status__source:chararray,entities__media:chararray,entities__user_mentions:chararray,retweeted_status__user__created_at:chararray,user__has_extended_profile:chararray,quoted_status__user__time_zone:chararray,is_quote_status:chararray,place__id:chararray,retweeted_status__quoted_status__user__created_at:chararray,user__location:chararray,retweeted_status__quoted_status__user__follow_request_sent:chararray,quoted_status__user__url:chararray,retweeted_status__user__geo_enabled:chararray,in_reply_to_user_id:int,retweeted_status__in_reply_to_user_id_str:chararray,retweeted_status__quoted_status__user__profile_banner_url:chararray,retweeted_status__quoted_status__entities__media:chararray,retweeted_status__quoted_status__user__profile_image_url:chararray
I found the answer: All the json objects in the input file donot have the same schema. So i guess it is not able to load according to the defined schema defined for the JsonLoader().
Used Elephant bird which made life easier.
Related
Merging and/or Reading 88 JSON Files into Dataframe - different datatypes
I basically have a procedure where I make multiple calls to an API and using a token within the JSON return pass that pack to a function top call the API again to get a "paginated" file. In total I have to call and download 88 JSON files that total 758mb. The JSON files are all formatted the same way and have the same "schema" or at least should do. I have tried reading each JSON file after it has been downloaded into a data frame, and then attempted to union that dataframe to a master dataframe so essentially I'll have one big data frame with all 88 JSON files read into. However the problem I encounter is roughly on file 66 the system (Python/Databricks/Spark) decides to change the file type of a field. It is always a string and then I'm guessing when a value actually appears in that field it changes to a boolean. The problem is then that the unionbyName fails because of different datatypes. What is the best way for me to resolve this? I thought about reading using "extend" to merge all the JSON files into one big file however a 758mb JSON file would be a huge read and undertaking. Could the other solution be to explicitly set the schema that the JSON file is read into so that it is always the same type?
If you know the attributes of those files, you can define the schema before reading them and create an empty df with that schema so you can to a unionByName with the allowMissingColumns=True: something like: from pyspark.sql.types import * my_schema = StructType([ StructField('file_name',StringType(),True), StructField('id',LongType(),True), StructField('dataset_name',StringType(),True), StructField('snapshotdate',TimestampType(),True) ]) output = sqlContext.createDataFrame(sc.emptyRDD(), my_schema) df_json = spark.read.[...your JSON file...] output.unionByName(df_json, allowMissingColumns=True) I'm not sure this is what you are looking for. I hope it helps
Modify JSON generated in Maximo 7.6.1
I'm able to successfully generate JSON file from Maximo however I would like to modify the JSON before it gets generated. Like below is the sample JSON that gets generated in Maximo, {"lastreadingdate":"2020-01-30T16:48:33+01:00", "linearassetmeterid":0, "sinceinstall":0.0, "lastreading":"1,150", "plustinitrdng":0.0, "sincelastinspect":0.0, "_rowstamp":"568349195", "assetnum":"RS100003", "active":true, "assetmeterid":85, "lifetodate":0.0, "measureunitid":"KWH", "metername":"1010", "remarks":"TESTING JSON"} I need the JSON to be generated as below , {"spi:action": "OSLC draft", "spi:tri1readingdate":"2020-01-30T16:48:33+01:00", "spi:tryassetmeterid":0, "spi:install":0.0, "spi:lastreadingTx":"1,150", "spi:intrdngtrX":0.0, and so on...} Basically I need to change the target attribute names and prefix "spi" Below is the error occuring in JSON Mapping .
You're not specifying how you generate the JSON file but I'll quickly explain how you can achieve this: As Dex pointed out, there is a JSON Mapping app in the integration module that you can use to map your outbound object structure's fields to your target structure naming. You define your JSON structure on the JSON Mapping tab by providing a JSON sample. You then define your mapping with Maximo on the Properties tab, like this: Reading this IBM doc before jumping right into it should help you a lot: https://www.ibm.com/developerworks/community/wikis/form/anonymous/api/wiki/02db2a84-fc66-4667-b760-54e495526ec1/page/e10f6e96-435d-433c-8259-5690eb756779/attachment/169224c7-10a5-4cee-af72-697a476f8b2e/media/JSON
How to load json and value out of json in Pig?
I have a json and value out of json 000000,{"000":{"phoneNumber":null,"firstName":"xyz","lastName":"pqr","email":"email#xyz.com","alternatePickup":true,"sendTextNotification":false,"isSendTextNotification":false,"isAlternatePickup":true}} I'm trying to load this json in pig using elephant bird json loader but unable to do that. I'm able to load the following json {"000":{"phoneNumber":null,"firstName":"xyz","lastName":"pqr","email":"email#xyz.com","alternatePickup":true,"sendTextNotification":false,"isSendTextNotification":false,"isAlternatePickup":true}} Using following script - REGISTER json-simple-1.1.1.jar; REGISTER elephant-bird-pig-4.3.jar; REGISTER elephant-bird-hadoop-compat-4.3.jar; json_data = load 'ek.json' using com.twitter.elephantbird.pig.load.JsonLoader() AS (json_key: [(phoneNumber:chararray,firstName:chararray,lastName:chararray,email:chararray,alternatePickup:boolean,sendTextNotification:boolean,isSendTextNotification:boolean,isAlternatePickup:boolean)]); dump json_data; But when I include value out of json json_data = load 'ek.json' using com.twitter.elephantbird.pig.load.JsonLoader() AS (id:int,json_key: [(phoneNumber:chararray,firstName:chararray,lastName:chararray,email:chararray,alternatePickup:boolean,sendTextNotification:boolean,isSendTextNotification:boolean,isAlternatePickup:boolean)]); it is not working!! Appreciate the help in advance.
JsonLoader allows loading only of correct json, while your format is actually CSV. There are three options for you ordered by incresing complexity: Adjust your input format and make id part of it Load data as CSV (as 2 fields: id and json, then use custom UDF to parse json field into a tuple) Write custom loader that will allow you your original format.
You can use builtin JsonStorage and JsonLoader() a = load 'a.json' using JsonLoader('a0:int,a1:{(a10:int,a11:chararray)},a2:(a20:double,a21:bytearray),a3:[chararray]'); In this example data is loaded without a schema; it assumes there is a .pig_schema (produced by JsonStorage) in the input directory. a = load 'a.json' using JsonLoader();
reading .csv file + JSON with Matlab
So I have a .CSV file that contains dataset information, the data seems to be described in JSON. I want to read it with MatLab. One line example(7000 total) of the data: imagename.jpg,"[[{""name"":""nose"",""position"":[2911.68,1537.92]},{""name"":""left eye"",""position"":[3101.76,544.32]},{""name"":""right eye"",""position"":[2488.32,544.32]},{""name"":""left ear"",""position"":null},{""name"":""right ear"",""position"":null},{""name"":""left shoulder"",""position"":null},{""name"":""right shoulder"",""position"":[190.08,1270.08]},{""name"":""left elbow"",""position"":null},{""name"":""right elbow"",""position"":[181.44,3231.36]},{""name"":""left wrist"",""position"":[2592,3093.12]},{""name"":""right wrist"",""position"":[2246.4,3965.76]},{""name"":""left hip"",""position"":[3006.72,3360.96]},{""name"":""right hip"",""position"":[155.52,3412.8]},{""name"":""left knee"",""position"":null},{""name"":""right knee"",""position"":null},{""name"":""left ankle"",""position"":[2350.08,4786.56]},{""name"":""right ankle"",""position"":[1460.16,5019.84]}]]","[[{""segment"":[[0,17.28],[933.12,5175.36],[0,5166.72],[0,2306.88]]}]]",https://imageurl.jpg, If I use the Import functionlity/tool, I am able separate the data in four colums using the , as delimiter: Image File Name,Key Points,Segmentation,Image URL, imagename.jpg, "[[{""name"":""nose"",""position"":[2911.68,1537.92]},{""name"":""left eye"",""position"":[3101.76,544.32]},{""name"":""right eye"",""position"":[2488.32,544.32]},{""name"":""left ear"",""position"":null},{""name"":""right ear"",""position"":null},{""name"":""left shoulder"",""position"":null},{""name"":""right shoulder"",""position"":[190.08,1270.08]},{""name"":""left elbow"",""position"":null},{""name"":""right elbow"",""position"":[181.44,3231.36]},{""name"":""left wrist"",""position"":[2592,3093.12]},{""name"":""right wrist"",""position"":[2246.4,3965.76]},{""name"":""left hip"",""position"":[3006.72,3360.96]},{""name"":""right hip"",""position"":[155.52,3412.8]},{""name"":""left knee"",""position"":null},{""name"":""right knee"",""position"":null},{""name"":""left ankle"",""position"":[2350.08,4786.56]},{""name"":""right ankle"",""position"":[1460.16,5019.84]}]]", "[[{""segment"":[[0,17.28],[933.12,5175.36],[0,5166.72],[0,2306.88]]}]]", https://imageurl.jpg, But I have truble trying to use the tool to do further decomposition of the data. Of corse the ideal would be to separate the data in a code. I hope someone can orientate me on how to or the tools I need to use. I have seen other questions, but they don't seem to fit my particular case. Thank you very much!!
You can read a JSON file and store it in a MATLAB structure using the following command structure1 = matlab.internal.webservices.fromJSON(json_string) You can create a JSON string from a MATLAB structure using the following command json_string= matlab.internal.webservices.toJSON(structure1)
JSONlab is what you want. It has a 'loadjson' function which inputs a char array of JSON data and returns a struct with all the data
Loading json with varying schema into PIG
I ran into an issue loading a set json documents into PIG. What I have is a lot of json documents that all vary in the fields they have, the fields that I need are in most documents and in whare missing I would like to get a null value. I just downloaded and compiled the latest Pig version (0.12 straight from the apache git repository) just to be sure this hasn't been solved yet. What I have is a json document like this: {"foo":1,"bar":2,"baz":3} When I load this into PIG using this Json1 = LOAD 'test.json' USING JsonLoader('foo:int,bar:int,baz:int'); DESCRIBE Json1; DUMP Json1; I get the expected results Json1: {foo: int,bar: int,baz: int} (1,2,3) However when the fields are in a different order in the schema : Json2 = LOAD 'test.json' USING JsonLoader('baz:int,bar:int,foo:int'); DESCRIBE Json2; DUMP Json2; I get an undesired result: Json2: {baz: int,bar: int,foo: int} (1,2,3) That should have been (3,2,1) Apparently the field names in the schema definition have nothing to do with the fieldnames in the json. What I need is to load specific fields from a json file (with embedded documents!) into PIG. How do I resolve this?
I think this is a known issue with even the latest version of Pig, so there isn't an easy way around this other than to use a more capable JsonLoader. Use the Elephant Bird JSONLoader instead which will behave the way you expect - in other words respect field ordering.