Suppose I have a website and for its database there is one table is
Table_name table_1 and attributes are like table_1(a1(primary key,a2,a3,a4,a5,a6,a7) and in my website for for most of transactions I only uses attributes (a1,a2,a3) but the a4,a5 ,a6 and a7 are rarely used so I want to know what is better design approach to access data from following option
A)keep this table as it is and use this query select a1,a2,a3 from table_1;
B) Create 2 separate table table1(a1,a2,a3) and table_2(a1,a4,a5,a6,a7)
which approch have lower cost or load on database?
For read querys over (a1, a2, a3), obviusly "b" is (not noticeably) cheaper.
But all the other things are worst except if (a4, a5, a6, a7) are, in most of cases, nulls and you used (1->0,1) cardinality between both tables (that is: for each a1 in table_1 there is 0 or 1 tuples with the same value of a1 in table_2 and, of course, all values of a1 in table_2 exists in table_1).
Anyway, as I said, any possible advantage will be minimal compared to the complexity, maintainability issues, and also efficiency reduction (for inserts and when you need data from both tables).
So, if I were you, I would select "a" layout without any doubt.
B is provide less cost than A . Because if you choose A option you'll have been wasted space for a4, a5, a6,a7. But if you choose B option, you must create a foreign key (a1) for connect table_1. And your SQL query become cheap.
Related
Sample Table:
+----+-------+-------+-------+-------+-------+---------------+
| id | col1 | col2 | col3 | col4 | col5 | modifiedTime |
+----+-------+-------+-------+-------+-------+---------------+
| 1 | temp1 | temp2 | temp3 | temp4 | temp5 | 1554459626708 |
+----+-------+-------+-------+-------+-------+---------------+
above table has 50 million records
(col1, col2, col3, col4, col5 these are VARCHAR columns)
(id is PK)
(modifiedTime)
Every column is indexed
For Ex: I have two tabs in my website.
FirstTab - I print the count of above table with following criteria [col1 like "value1%" and col2 like "value2%"]
SeocndTab - I print the count of above table with following criteria [col3 like "value3%"]
As I have 50 million records, the count with those criteria takes too much time to get the result.
Note: I would change records data(rows in table) sometime. Insert new rows. Delete not needed records.
I need a feasible solution instead of querying the whole table. Ex: like caching the older count. Is anything like this possible.
While I'm sure it's possible for MySQL, here's a solution for Postgres, using triggers.
Count is stored in another table, and there's a trigger on each insert/update/delete that checks if the new row meets the condition(s), and if it does, add 1 to the count. Another part of the trigger checks if the old row meets the condition(s), and if it does, subtracts 1.
Here's the basic code for the trigger that counts the rows with temp2 = '5':
CREATE OR REPLACE FUNCTION updateCount() RETURNS TRIGGER AS
$func$
BEGIN
IF TG_OP = 'INSERT' OR TG_OP = 'UPDATE' THEN
EXECUTE 'UPDATE someTableCount SET cnt = cnt + 1 WHERE 1 = (SELECT 1 FROM (VALUES($1.*)) x(id, temp1, temp2, temp3) WHERE x.temp2 = ''5'')'
USING NEW;
END IF;
IF TG_OP = 'DELETE' OR TG_OP = 'UPDATE' THEN
EXECUTE 'UPDATE someTableCount SET cnt = cnt - 1 WHERE 1 = (SELECT 1 FROM (VALUES($1.*)) x(id, temp1, temp2, temp3) WHERE x.temp2 = ''5'')'
USING OLD;
END IF;
RETURN new;
END
$func$ LANGUAGE plpgsql;
Here's a working example on dbfiddle.
You could of course modify the trigger code to have dynamic where expressions and store counts for each in the table like:
CREATE TABLE someTableCount
(
whereExpr text,
cnt INT
);
INSERT INTO someTableCount VALUES ('temp2 = ''5''', 0);
In the trigger you'd then loop through the conditions and update accordingly.
FirstTab - I print the count of above table with following criteria [col1 like "value1%" and col2 like "value2%"]
That would benefit from a 'composite' index:
INDEX(col1, col2)
because it would be "covering". (That is, all the columns needed in the query are found in a single index.)
SeocndTab - I print the count of above table with following criteria [col3 like "value3%"]
You apparently already have the optimal (covering) index:
INDEX(col3)
Now, let's look at it from a different point of view. Have you noticed that search engines no longer give you an exact count of rows that match? You are finding out why -- It takes too long to do the tally not matter what technique is used.
Since "col1" gives me no clue of your app, nor any idea of what is being counted, I can only throw out some generic recommendations:
Don't give the counts.
Precompute the counts, save them somewhere and deliver 'stale' values. This can be handy if there are only a few different "values" being counted. It is probably not practical for arbitrary strings.
Say "about nnnn" in the output.
Play some tricks to decide whether it is practical to compute the exact value or just say "about".
Say "more than 1000".
etc
If you would like to describe the app and the columns, perhaps I can provide some clever tricks.
You expressed concern about "insert speed". This is usually not an issue, and the benefit of having the 'right' index for SELECTs outweighs the slight performance hit for INSERTs.
It sounds like you're trying to use a hammer when a screwdriver is needed. If you don't want to run batch computations, I'd suggest using a streaming framework such as Flink or Samza to add and subtract from your counts when records are added or deleted. This is precisely what those frameworks are built for.
If you're committed to using SQL, you can set up a job that performs the desired count operations every given time window, and stores the values to a second table. That way you don't have to perform repeated counts across the same rows.
As a general rule of thumb when it comes to optimisation (and yes, 1 SQL server node#50mio entries per table needs one!), here is a list of few possible optimisation techniques, some fairly easy to implement, others maybe need more serious modifications:
optimize your MYSQL field type and sizes, eg. use INT instead of VARCHAR if data can be presented with numbers, use SMALL INT instead of BIG INT, etc. In case you really need to have VARCHAR, then use as small as possible length of each field,
look at your dataset; is there any repeating values? Let say if any of your field has only 5 unique values in 50mio rows, then save those values to separate table and just link PK to this Sample Table,
MYSQL partitioning, basic understanding is shown at this link, so the general idea is so implement some kind of partitioning scheme, e.g. new partition is created by CRONJOB every day at "night" when server utilization is at minimum, or when you reach another 50k INSERTs or so (btw also some extra effort will be needed for UPDATE/DELETE operations on different partitions),
caching is another very simple and effective approach, since requesting (almost) same data (I am assuming your value1%, value2%, value3% are always the same?) over and over again. So do SELECT COUNT() once a while, and then use differencial index count to get actual number of selected rows,
in-memory database can be used alongside tradtional SQL DBs to get often-needed data: simple key-value pair style could be enough: Redis, Memcached, VoltDB, MemSQL are just some of them. Also, MYSQL also knows in-memory engine,
use other types of DBs, e.g NoSQL DB like MongoDB, if your dataset/system can utilize different concept.
If you are looking for aggregation performance and don't really care about insert times, I would consider changing your Row DBMS for a Column DBMS.
A Column RDBMS stores data as columns, meaning each column is indexed independantly from the others. This allows way faster aggregations, I have switched from Postgres to MonetDB (an open source column DBMS) and summing one field from a 6 milions lines table dropped down from ~60s to 50ms. I chose MonetDB as it supports SQL querying and odbc connections which were a plus for my use case, but you will experience similar performance improvements with other Column DBMS.
There is a downside to Column storing, which is that you lose performance on insert, update and delete queries, but from what you said, I believe it won't affect you that much.
In Postgres, you can get an estimated row count from the internal statistics that are managed by the query planner:
SELECT reltuples AS approximate_row_count FROM pg_class WHERE relname = 'mytable';
Here you have more details: https://wiki.postgresql.org/wiki/Count_estimate
You could create a materialized view first. Something like this:
CREATE MATERIALIZED VIEW mytable AS SELECT * FROM the_table WHERE col1 like "value1%" and col2 like "value2%";`
You can also materialize directly the count queries. If you have 10 tabs, then you should have to materialize 10 views:
CREATE MATERIALIZED VIEW count_tab1 AS SELECT count(*) FROM the_table WHERE col1 like "value1%" and col2 like "value2%";`
CREATE MATERIALIZED VIEW count_tab2 AS SELECT count(*) FROM the_table WHERE col2 like "value2%" and col3 like "value3%";`
...
After each insert, you should refresh views (asynchronously):
REFRESH MATERIALIZED VIEW count_tab1
REFRESH MATERIALIZED VIEW count_tab2
...
As noted in the critique, you have not posted what you have tried. So I would assume that the limit of question is exactly what you posted. So kindly report results of exactly that much
What is the current time you are spending for the subset of the problem, i.e. count of [col1 like "value1%" and col2 like "value2%"] and 2nd [col3 like "value3%]
The trick would be to scan the data source once and make the data source smaller by creating an index. So first create an index on col1,col2,col3,id. Purpose of col3 and id is so that database scans just the index. And I would get both counts in same SQL
select sum
(
case
when col1 like 'value1%' and col2 like 'value2%' then 1
else 0
end
) cnt_condition_1,
sum
(
case
when col3 like 'value3%' then 1
else 0
end
) cnt_condition_2
from table
where (col1 like 'value1%' and col2 like 'value2%') or
(col3 like 'value3%')
```
So the 50M row table is probably very wide right now. This should trim it down - on a reasonable server I would expect above to return in a few seconds. If it does not and each condition returns < 10% of the table, second option will be to create multiple indexes for each scenario and do count for each so that index is used in each case.
If there is no bulk insert/ bulk updates happening in your system, Can you try vertical partitioning in your table? By vertical partitioning, you can separate the data block of col1, col2 from other data of the table and so your searching space will reduce.
Also, indexing on every columns doesn't seem to be the best approach to go with. Index wherever it is absolutely needed. In this case, I would say Index(col1,col2) and Index(col3).
Even after indexing, you need to look into the fragmentation of those indexes and modify it accordingly to get the best results. Because, sometimes 50 million index of one column can sit as one huge chunk, which will restrict multi processing capabilities of your SQL server.
Each Database has their own peculiarities in how to "enhance" their RDBMS. I can't speak for MySQL or SQL Server but for PostgreSQL you should consider making the indexes that you search as GIN (Generalized Inverted Index)-based indexes.
CREATE INDEX name ON table USING gin(col1);
CREATE INDEX name ON table USING gin(col2);
CREATE INDEX name ON table USING gin(col3);
More information can be found here.
-HTH
this will work:
select count(*) from (
select * from tablename where col1 like 'value1%' and col2 like 'value2%' and col3
like'value3%')
where REGEXP_LIKE(col1,'^value1(.*)$') and REGEXP_LIKE(col2,'^value2(.*)$') and
REGEXP_LIKE(col1,'^value2(.*)$');
try not to apply index on all the columns as it slows down the processing of a sql
query and have it in required columns only.
We have a database table which stores browser data for visitors, broken down by multiple different subtypes. For simplicity, let's use the table schema below. The querying will basically be on any single id column, the metric column, the timestamp column (stored as seconds since epoch), and one of the device, browser, or os columns.
We are going to performance test the star vs snowflake schema (where all of the ids go into a single column, but then an additional column id_type is added to determine which type of identifier it is) for this table, but as long as the star schema (which is how it is now) is within 80% of the snowflake performance, we are going to keep it since it will make our load process much easier. Before I do that however, I want to make sure the indexes are optimized on the star schema.
create table browser_data (
id_1 int,
id_2 int,
id_3 int,
id_4 int,
metric varchar(20),
browser varchar(20),
device varchar(20),
os varchar(20),
timestamp bigint
)
Would it be better to create individual indexes on just the id columns, or also include the metric and timestamp columns in those indexes as well?
Do not normalize "continuous" values, such as DATETIME, FLOAT, INT. Do leave the values in the main table.
When you move the value to other table(s), especially "snowflake", it makes querying based on the values somewhere between a little slower and a lot slower. This especially happens when you need to filter on more than one metric that is not in the main table. Either of these perform very poorly because of "snowflake" or "over-normalization":
WHERE a.x = 123 AND b.y = 345
ORDER BY a.x, b.y
As for what indexes to create -- that depends entirely on the queries you need to perform. So, I strongly recommend you sketch out the likely SELECTs based on your tentative CREATE TABLEs.
INT is 4 bytes. TIMESTAMP is 5, FLOAT is 4, etc. That is, normalizing such things are also inefficient on space.
More
When doing JOINs, the Optimizer will almost always start with one table, then move on to the another table, etc. (See "Nested Loop Join".)
For example (building on the above 'code'), when 2 columns are normalized, and you are testing on the values, you do not have two ids in hand, you only have the two values. This makes the query execution very inefficient. For
SELECT ...
FROM main
JOIN a USING(a_id)
JOIN b USING(b_id)
WHERE a.x = 123 AND b.y = 345
The following is very likely to be the 'execution plan':
Reach into a to find the row(s) with x=123; get the id(s) for those rows. This may include many rows that are yet to be filtered by b.y. a needs INDEX(x)
Go back to the main table, looking up rows with those id(s). main needs INDEX(a_id). Again, more rows than necessary may be hauled around.
Only now, do you get to b (using b_id) to check for y=345; toss the unnecessary rows you have been hauling around. b needs INDEX(b_id)
Note my comment about "haul around". Blindly using * (in SELECT *) adds to the problem -- all the columns are being hauled around while performing the steps.
On the other hand... If x and y were in the main table, then the code works like:
WHERE main.x = 123
AND main.y = 345
only needs INDEX(x,y) (in either order). And it quickly locates exactly the rows desired.
In the case of ORDER BY a.x, b.y, it cannot use any index on any table. So the query must create a tmp table, sort it, then deliver the rows in the desired order.
But if x and y are in the same table, then INDEX(x,y) (in that order) may be useful for ORDER BY x,y and avoid the tmp table and the sort.
With a single table, the Optimizer might use an index for WHERE, or it might use an index for ORDER BY, depending on the phase of the moon. In some cases, one index can be used for both -- this is optimal.
Another note: If you also have LIMIT 10,... If the sort is avoided, then only 10 rows need to be looked at, not the entire set from the WHERE.
I have two tables A and B with a relationship of One-to-many from A to B.
A has 5 columns:
a1, a2, a3, a4, a5
and B has 5 columns
b1, b2, b3, b4, a1.
Note a1 is foreign key in table B.
I have a requirement to check duplicate records in the table i.e. no two records should have exactly same values for all the attributes.
The most efficient way I can think of for determining their uniqueness is by creating a checksum sort of value and keep it in every row of table A. But this requires extra space plus I will have to make sure that the checksum is really unique.
Is this the best way to go ahead or is there some other way I am unaware of?
For e.g. Lets say table A is Rules Table and Table B is Trigger table. Now Rules table has records of various rules created by different users.(This means that there will be a mapping to Users Table in Rules Table.). Now what I actually want is that a user should not be able to create identical rules. So when a user saves rules I run a query to check if there is record of identical checksum for this particular user if yes then I give the appropriate error otherwise I let the user to create the record.I guess this clears that why I can't put unique constraint on all records.
Do a SELECT with a GROUP BY clause. For example:
SELECT a1, a2, a3, a4, a5, COUNT(*) FROM #TempPersons GROUP BY a1, a2, a3, a4, a5 HAVING COUNT(*) > 1;
This will return a result with the a1, a2, a3, a4, a5 and a count of how many times that value appears
Having a UNIQUE constraint on those columns seems like the way to go.
However, just for the sake of answering your other remarks: I've worked with extra columns to check for changes in the past before. Back then I did something similar to this:
CONVERT([NVARCHAR](42),HASHBYTES('SHA1',CONCAT(Column1, '||', Column2, ...),(1))
I found it to be a rather nice way to concat many columns into a single hash, unique depending on it's contents & without it blowing out of proportion. (I used this in a datawarehousing environment, to check large tables for record level changes based on a business key. Stored this as a PERSISTED column to allow an index to run on this too).
Here's my problem...
I need to be able to check which items in a list of about 1,000 items (the needles) are in a fairly large table containing about ~500,000 rows (the haystack).
My question is, what's the best/fastest/most efficient way to do this?
I know that I can create a SQL statement like this:
SELECT id FROM haystack WHERE id IN (ID1, ID2, ID3, ..., IDn)
(assuming ID1, ID2, ID3, ..., IDn are the the needles.)
However, I'm not sure how performant or wise that is if the needles list contains 1,000+ items.
I also know that, if my needles list was in a table of it's own, I could join that table to the haystack table. However, the needles list isn't already in a table.
So - I guess another possible option is to put those 1,000 items into a temporary table and then join that to the haystack table. If that's the best option - then what's the best way to quickly load 1,000 items into a temporary table? (E.g., 1,000 individual INSERT statements? Insert all rows in a single INSERT statment? Is there a limit on how long an INSERT statement can be?)
A third possible option - write the needles list to a text file, then use LOAD DATA INFILE to load that into a (temporary) table, then join the temp table to the haystack table. But, wow... that seems like a lot of overhead.
Is there another, better option?
For what it's worth, the context of this is PHP, and I'm getting the needles list from a JSON web-service response, and using MySQLi for the database interaction.
According to this benchmark, it is faster in your case to use a temporary table and the JOIN method.
I am not sure though that's not a premature optimisation. You should perform your own benchmark and determine if the added complexity deserves the effort. I would recommend going with the simple IN method and only start to optimise when you detect a performance issue.
Just remember that according to the manual:
The number of values in the IN list is only limited by the max_allowed_packet value.
I think your query SELECT id FROM haystack WHERE id IN (ID1, ID2, ID3, ..., IDn) would be fine. I have a very similar use case where I have millions of "needles" and I pass them to the IN clause in blocks of 10,000 via PDO with no issues.
I would add that the column you are checking should be indexed. In my case it is the primary key of the table.
If the needles are going to be used to query the haystack frequently, you absolutely want to create a new table. For this example, I'm going to assume that the needles are int values and will label them as id in the table needle.
First, you need to create the table
CREATE TABLE needle (
id INT(11) PRIMARY KEY
)
Next, you need to insert the values
INSERT INTO needle (id)
VALUES (ID1),
(ID2),
...,
(IDn)
Now, you can query haystack using a join.
SELECT h.id
FROM haystack h
JOIN needle n
ON h.id = n.id
If this is an infrequent query and the number of needles won't grow beyond the 1,000, using the IN clause won't hurt your performance greatly.
Is there any way to keep always the same value in two fields of different tables?
You could use triggers so that if one of the fields is change, the other is synchronized to match.
It's usually best not to store a value twice. Instead you can store the value in just one of the tables and when you query you can join the two tables together on a foreign key so that you have access to values from both tables at the same time:
SELECT table1.foo, table2.bar
FROM table1
JOIN table2 ON table1.table2_id = table2.id
If you store the value twice it is called denormalization. This can lead to problems if the values ever get out-of-sync for one reason or another. Sometimes it is advantageous to denormalize to improve performance, but a single join is very fast so unless you have measured the performance and found it to be too slow, I'd advise against doing this.
Any reason why you couldn't normalize the design of your database so that you don't have the same data twice and don't have to worry about stuff like this anymore?
In case you can't change the design take a look at triggers
Why would you ever want to do this?
If one attribute of one entity is always the same as some attribute of another related entity, then you have a redundant data model.
Instead of trying to synchronize the attributes, refer to one attribute. Use a join to join the first table to the second, then get the value of the attribute from one table. E.g, if you currently have this:
TableA.foo should always equal TableB.bar
drop column TableA.foo, and do this:
select A.*, B.bar as foo
from TableA A
join TableB B on (B.foreign_key = A.key);
INSERT INTO TABLE A (FieldInA) VALUES ('X')
INSERT INTO TABLE B (FieldInB) VALUES ('X')
Then simply never delete, nor update, these table rows, and voilĂ , you have always the same value in two fields of different tables.