I am used to JAX-RS and would like to have similar comfort when sending requests using Spring MVC and working with the responses, i.e. on the client side inside my tests.
On the server (controller) side I'm quite happy with the automatic conversion, i.e. it suffices to just return an object instance and have JSON in the resulting HTTP response sent to the client.
Could you tell me how to work around the manual process of converting objectInstance to jsonString or vice versa in these snippets? If possible, I'd also like to skip configuring the content type manually.
String jsonStringRequest = objectMapper.writeValueAsString(objectInstance);
ResultActions resultActions = mockMvc.perform(post(PATH)
.contentType(MediaType.APPLICATION_JSON)
.content(jsonStringRequest)
)
String jsonStringResponse = resultActions.andReturn().getResponse().getContentAsString();
Some objectInstanceResponse = objectMapper.readValue(jsonStringResponse, Some.class);
For comparison, with JAX-RS client API I can easily send an object using request.post(Entity.entity(objectInstance, MediaType.APPLICATION_JSON_TYPE) and read the response using response.readEntity(Some.class);
if you have lot's of response objects, you could create some generic JsonToObject mapper-factory. It could be then used to detect the object type from a generic response (all response objects inherit from the same generic class) and respond/log properly from a bad mapping attempt.
I do not have a code example at hand, but as a pseudocode:
public abstract GenericResponse {
public String responseClassName = null;
// get/set
}
In the server code, add the name of the actual response object to this class.
The JsonToObject factory
public ConverterFactory<T> {
private T objectType;
public ConverterFactory(T type) {
objectType = type;
}
public T convert(String jsonString) {
// Type check
GenericResponse genResp = mapper.readValue(result.getResponse().getContentAsString(),
GenericResponse.class);
if (objectType.getClass().getSimpleName().equals(genResp.getResponseClassName())) {
// ObjectMapper code
return mapper.readValue(result.getResponse().getContentAsString(),
objectType.class);
} else {
// Error handling
}
}
}
I think this could be extended to be used with annotation to do more automation magic with the response. (start checking with BeanPostProcessor)
#Component
public class AnnotationWorker implements BeanPostProcessor {
#Override
public Object postProcessBeforeInitialization(final Object bean, String name) throws BeansException {
ReflectionUtils.doWithFields(bean.getClass(), field -> {
// make the field accessible if defined private
ReflectionUtils.makeAccessible(field);
if (field.getAnnotation(MyAnnotation.class) != null) {
field.set(bean, log);
}
});
return bean;
}
}
The above code snippet is copied from my current project and it injects to fields, you need to change it so, that it works for methods, eg ... where you may need it.
Having this all implemented may be tricky and can't say it necessarily works even, but it's something to try if you don't mind a bit of educative work.
Related
I've got following setup: C#, ServiceStack, MariaDB, POCOs with objects and structs, JSON.
The main question is: how to use ServiceStack to store POCOs to MariaDB having complex types (objects and structs) blobbed as JSON and still have working de/serialization of the same POCOs? All of these single tasks are supported, but I had problems when all put together mainly because of structs.
... finally during writing this I found some solution and it may look like I answered my own question, but I still would like to know the answer from more skilled people, because the solution I found is a little bit complicated, I think. Details and two subquestions arise later in the context.
Sorry for the length and for possible misinformation caused by my limited knowledge.
Simple example. This is the final working one I ended with. At the beginning there were no SomeStruct.ToString()/Parse() methods and no JsConfig settings.
using Newtonsoft.Json;
using ServiceStack;
using ServiceStack.DataAnnotations;
using ServiceStack.OrmLite;
using ServiceStack.Text;
using System.Diagnostics;
namespace Test
{
public class MainObject
{
public int Id { get; set; }
public string StringProp { get; set; }
public SomeObject ObjectProp { get; set; }
public SomeStruct StructProp { get; set; }
}
public class SomeObject
{
public string StringProp { get; set; }
}
public struct SomeStruct
{
public string StringProp { get; set; }
public override string ToString()
{
// Unable to use .ToJson() here (ServiceStack does not serialize structs).
// Unable to use ServiceStack's JSON.stringify here because it just takes ToString() => stack overflow.
// => Therefore Newtonsoft.Json used.
var serializedStruct = JsonConvert.SerializeObject(this);
return serializedStruct;
}
public static SomeStruct Parse(string json)
{
// This method behaves differently for just deserialization or when part of Save().
// Details in the text.
// After playing with different options of altering the json input I ended with just taking what comes.
// After all it is not necessary, but maybe useful in other situations.
var structItem = JsonConvert.DeserializeObject<SomeStruct>(json);
return structItem;
}
}
internal class ServiceStackMariaDbStructTest
{
private readonly MainObject _mainObject = new MainObject
{
ObjectProp = new SomeObject { StringProp = "SomeObject's String" },
StringProp = "MainObject's String",
StructProp = new SomeStruct { StringProp = "SomeStruct's String" }
};
public ServiceStackMariaDbStructTest()
{
// This one line is needed to store complex types as blobbed JSON in MariaDB.
MySqlDialect.Provider.StringSerializer = new JsonStringSerializer();
JsConfig<SomeStruct>.RawSerializeFn = someStruct => JsonConvert.SerializeObject(someStruct);
JsConfig<SomeStruct>.RawDeserializeFn = json => JsonConvert.DeserializeObject<SomeStruct>(json);
}
public void Test_Serialization()
{
try
{
var json = _mainObject.ToJson();
if (!string.IsNullOrEmpty(json))
{
var objBack = json.FromJson<MainObject>();
}
}
catch (System.Exception ex)
{
Debug.WriteLine(ex.Message);
}
}
public void Test_Save()
{
var cs = "ConnectionStringToMariaDB";
var dbf = new OrmLiteConnectionFactory(cs, MySqlDialect.Provider);
using var db = dbf.OpenDbConnection();
db.DropAndCreateTable<MainObject>();
try
{
db.Save(_mainObject);
var dbObject = db.SingleById<MainObject>(_mainObject.Id);
}
catch (System.Exception ex)
{
Debug.WriteLine(ex.Message);
}
}
}
}
What (I think) I know / have tried but at first didn't help to solve it myself:
ServiceStack stores complex types in DB as blobbed JSV by default (last paragraph of first section: https://github.com/ServiceStack/ServiceStack.OrmLite), so it is necessary to set it the way it is proposed: MySqlDialect.Provider.StringSerializer = new JsonStringSerializer(); (https://github.com/ServiceStack/ServiceStack.OrmLite#pluggable-complex-type-serializers)=> default JSV changed to JSON.
the ServiceStack's serialization does not work with structs, it is necessary to treat them special way:
a) according to https://github.com/ServiceStack/ServiceStack.Text#c-structs-and-value-types and example https://github.com/ServiceStack/ServiceStack.Text/#using-structs-to-customize-json it is necessary to implement TStruct.ToString() and static TStruct.ParseJson()/ParseJsv() methods.
b) according to https://github.com/ServiceStack/ServiceStack.Text/#typeserializer-details-jsv-format and unit tests https://github.com/ServiceStack/ServiceStack.Text/blob/master/tests/ServiceStack.Text.Tests/CustomStructTests.cs it shall be TStruct.ToString() (the same as in a) and static TStruct.Parse().
Subquestion #1: which one is the right one? For me, ParseJson() was never called, Parse() was. Documentation issue or is it used in other situation?
I implemented option b). Results:
IDbConnection.Save(_mainObject) saved the item to MariaDB. Success.
Through the saving process ToString() and Parse() were called. In Parse, incoming JSON looked this way:
"{\"StringProp\":\"SomeStruct's String\"}". Fine.
Serialization worked. Success.
Deserialization failed. I don't know the reason, but JSON incoming to Parse() was "double-escaped":
"{\\\"StringProp\\\":\\\"SomeStruct's String\\\"}"
Subquestion #2: Why the "double-escaping" in Parse on deserialization?
I tried to solve structs with JsConfig (and Newtonsoft.Json to get proper JSON):
JsConfig<SomeStruct>.SerializeFn = someStruct => JsonConvert.SerializeObject(someStruct);
JsConfig<SomeStruct>.DeSerializeFn = json => JsonConvert.DeserializeObject<SomeStruct>(json);
a) at first without ToString() and Parse() defined in the TStruct. Results:
Save failed: the json input in JsonConvert.DeserializeObject(json) that is used during Save was just type name "WinAmbPrototype.SomeStruct".
De/serialization worked.
b) then I implemented ToString() also using Newtonsoft.Json. During Save ToString() was used instead of JsConfig.SerializeFn even the JsConfig.SerializeFn was still set (maybe by design, I do not judge). Results:
Save failed: but the json input of DeserializeFn called during Save changed, now it was JSV-like "{StringProp:SomeStruct's String}", but still not deserializable as JSON.
De/serialization worked.
Then (during writing this I was still without any solution) I found JsConfig.Raw* "overrides" and tried them:
JsConfig<SomeStruct>.RawSerializeFn = someStruct => JsonConvert.SerializeObject(someStruct);
JsConfig<SomeStruct>.RawDeserializeFn = json => JsonConvert.DeserializeObject<SomeStruct>(json);
a) at first without ToString() and Parse() defined in the TStruct. Results are the same as in 2a.
b) then I implemented ToString(). Results:
BOTH WORKED. No Parse() method needed for this task.
But it is very fragile setup:
if I removed ToString(), it failed (now I understand why, default ToString produced JSON with just type name in 2a, 3a).
if I removed RawSerializeFn setting, it failed in RawDeserializeFn ("double-escaped" JSON).
Is there some simpler solution? I would be very glad if someone points me to better direction.
Acceptable would be maybe two (both of them accessible because of different circumstances):
if I am the TStruct owner: with just pure TStruct.ToString() and static TStruct.Parse() to support out of the box de/serialization and DB by ServiceStack (without different input in Parse()).
if I am a consumer of TStruct with no JSON support implemented and I am without access to its code: until now I did not find the way, if the ToString is not implemented: Save to DB did not work. Maybe would be fine to ensure JsConfig serialize functions are enough for both de/serialization and when used during saving to DB.
And the best one would be without employing other dependency (e.g. Newtonsoft.Json) to serialize structs. Maybe some JsConfig.ShallProcessStructs = true; (WARNING: just a tip, not working as of 2021-04-02) would be fine for such situations.
ServiceStack treats structs like a single scalar value type, just like most of the core BCL Value Types (e.g. TimeSpan, DateTime, etc). Overloading the Parse() and ToString() methods and Struct's Constructor let you control the serialization/deserialization of custom structs.
Docs have been corrected. Structs use Parse whilst classes use ParseJson/ParseJsv
If you want to serialize a models properties I'd suggest you use a class instead as the behavior you're looking for is that of a POCO DTO.
If you want to have structs serailized as DTOs in your RDBMS an alternative you can try is to just use JSON.NET for the complex type serialization, e.g:
public class JsonNetStringSerializer : IStringSerializer
{
public To DeserializeFromString<To>(string serializedText) =>
JsonConvert.DeserializeObject<To>(serializedText);
public object DeserializeFromString(string serializedText, Type type) =>
JsonConvert.DeserializeObject(serializedText, type);
public string SerializeToString<TFrom>(TFrom from) =>
JsonConvert.SerializeObject(from);
}
MySqlDialect.Provider.StringSerializer = new JsonNetStringSerializer();
Similar to Jersey: Json array with 1 element is serialized as object BUT on the client side. E.g. I recieve a JSON object where a field is an array regulary, but in case there is only one element, it is a single object.
{"fileInfo":[{"fileName":"weather.arff","id":"10"},"fileName":"supermarket.arff","id":"11"}]}
versus
{"fileInfo":{"fileName":"weather.arff","id":"10"}}
I'm parsing/unmarshalling the JSON using Jersey/Genson. Of course, if the JSON doesnt match the target class I recieve an error (such as expected [ but read '{' )
I've read a lot about this bug and how to avoid when creating JSON objects on the SERVER side, but I found nothing about how to handle this issus when dealing on the CLIENT side.
As always, I prefere the most codeless possibility if there are several solutions...
BTW: Moxy works but it does not marshal native Object-type objects which is another requirement...
Update
Starting with Genson 1.3 release you can achieve it by enabling permissiveParsing:
Genson genson = new GensonBuilder().usePermissiveParsing(true).create();
Answer
Uh, do you know what library produces this on server side? I am curious to see who is responsible for all those badly structured jsons out there...
It is not yet supported in Genson. Originally because IMO people should not produce such dynamic json. Anyway, I opened an issue - this can be easily done, you can expect it to be present in the release coming next week.
Otherwise here is a way to achieve it without breaking the existing mechanisms.
You need to register a Factory that will use Gensons collections factory to create an instance of its standard collection converter. Then you will wrap this converter in another one that will handle the object to array logic. Here is the code (not codeless..., but if you wait a bit you won't have to code :)).
import com.owlike.genson.convert.DefaultConverters.CollectionConverterFactory;
import com.owlike.genson.convert.DefaultConverters.CollectionConverterFactory;
class SingleObjectAsCollectionFactory implements Factory<Converter<Collection>> {
// get the default factory
Factory<Converter<Collection<?>>> defaultFactory = CollectionConverterFactory.instance;
#Override
public Converter<Collection> create(Type type, Genson genson) {
// obtain an instance of the correct default converter for this type
final CollectionConverter defaultConverter = (CollectionConverter) defaultFactory.create(type, genson);
// wrap it in your own converter
return new Converter<Collection>() {
#Override
public void serialize(Collection object, ObjectWriter writer, Context ctx) throws Exception {
defaultConverter.serialize(object, writer, ctx);
}
#Override
public Collection deserialize(ObjectReader reader, Context ctx) throws Exception {
if (reader.getValueType() == ValueType.OBJECT) {
Object object = defaultConverter.getElementConverter().deserialize(reader, ctx);
Collection result = defaultConverter.create();
result.add(object);
return result;
} else return defaultConverter.deserialize( reader, ctx );
}
};
}
}
And then register it
Genson genson = new GensonBuilder()
.withConverterFactory(new SingleObjectAsCollectionFactory())
.create();
Suppose I have two sets of controllers in Spring:
/jsonapi1/*
/jsonapi2/*
both of which return objects that are to be interpretted as JSON text.
I'd like some kind of filter to wrap the responses from one set of these controllers so that:
the original response is contained within another object.
For example, if /jsonapi1/count returns:
{"num_humans":123, "num_androids":456}
then the response should be wrapped and returned as follows:
{ "status":0,
"content":{"num_humans":123, "num_androids":456}
}
if an exception happens in the controller, then filter should catch the exception and report it as follows
{ "status":5,
"content":"Something terrible happened"
}
The responses from the other controllers are returned unchanged.
We're currently customizing a MappingJackson2HttpMessageConverter passed to WebMvcConfigurerAdapter.configureMessageConverters in order to perform the above tasks. Works great except that it doesn't seem possible for this approach to be selective about the URLs (or controller classes) it applies to.
Is it possible to apply these kinds of wrappers to individual controller classes or URLs?
Update: Servlet filters look like a solution. Is it possible chose which filter gets applied to which controller methods, or which URLs?
I was struggling on this for multiple days. The solution by #Misha didn't work for me. I was able to finally get this working using ControllerAdvice and ResponseBodyAdvice.
ResponseBodyAdvice allows to inject custom transformation logic on the response returned by a controller but before it is converted to HttpResponse and committed.
This is how my controller method looks:
#RequestMapping("/global/hallOfFame")
public List<HallOfFame> getAllHallOfFame() {
return hallOfFameService.getAllHallOfFame();
}
Now i wanted to add some standard fields around the response like devmessage and usermessage. That logic goes into the ResponseAdvice:
#ControllerAdvice
public class TLResponseAdvice implements ResponseBodyAdvice<Object> {
#Override
public boolean supports(MethodParameter returnType, Class<? extends HttpMessageConverter<?>> converterType) {
return true;
}
#Override
public Object beforeBodyWrite(Object body, MethodParameter returnType, MediaType selectedContentType,
Class<? extends HttpMessageConverter<?>> selectedConverterType, ServerHttpRequest request,
ServerHttpResponse response) {
// TODO Auto-generated method stub
final RestResponse<Object> output = new RestResponse<>();
output.setData(body);
output.setDevMessage("ResponseAdviceDevMessage");
output.setHttpcode(200);
output.setStatus("Success");
output.setUserMessage("ResponseAdviceUserMessage");
return output;
}
}
The entity classes look like this:
#Setter // All lombok annotations
#Getter
#ToString
public class RestResponse<T> {
private String status;
private int httpcode;
private String devMessage;
private String userMessage;
private T data;
}
#Entity
#Data // Lombok
public class HallOfFame {
#Id
private String id;
private String name;
}
To handle exceptions, simply create another ControllerAdvice with ExceptionHandler. Use the example in this link.
Advantages of this solution:
It keeps your controllers clean. You can support any return type from your controller methods.
Your controller return type class does not need to extend some base class as required by the AOP approach.
You do not need to hack your way through Spring filters by using HttpServletResponseWrappers. They come up with a performance penalty.
EDIT - 17th September 2019
To handle exceptions use #ExceptionHandler. Refer code below.
#ExceptionHandler(Exception.class)
#ResponseBody
public MyResponseEntity<Object> handleControllerException(HttpServletRequest request, Throwable ex) {
// default value
int httpCode = HttpStatus.INTERNAL_SERVER_ERROR.value();
if(ex instanceof ResourceNotFoundException) {
httpCode = HttpStatus.NOT_FOUND.value();
}
...
}
The way I understand your question, you have exactly three choices.
Option #1
Manually wrap your objects in simple SuccessResponse, ErrorResponse, SomethingSortOfWrongResponse, etc. objects that have the fields you require. At this point, you have per-request flexibility, changing the fields on one of the response wrappers is trivial, and the only true drawback is code repetition if many of the controller's request methods can and should be grouped together.
Option #2
As you mentioned, and filter could be designed to do the dirty work, but be wary that Spring filters will NOT give you access to request or response data. Here's an example of what it might look like:
#Component
public class ResponseWrappingFilter extends GenericFilterBean {
#Override
public void doFilter(
ServletRequest request,
ServletResponse response,
FilterChain chain) {
// Perform the rest of the chain, populating the response.
chain.doFilter(request, response);
// No way to read the body from the response here. getBody() doesn't exist.
response.setBody(new ResponseWrapper(response.getStatus(), response.getBody());
}
}
If you find a way to set the body in that filter, then yes, you could easily wrap it up. Otherwise, this option is a dead end.
Option #3
A-ha. So you got this far. Code duplication is not an option, but you insist on wrapping responses from your controller methods. I'd like to introduce the true solution - aspect-oriented programming (AOP), which Spring supports fondly.
If you're not familiar with AOP, the premise is as follows: you define an expression that matches (like a regular expression matches) points in the code. These points are called join points, while the expressions that match them are called pointcuts. You can then opt to execute additional, arbitrary code, called advice, when any pointcut or combination of pointcuts are matched. An object that defines pointcuts and advice is called an aspect.
It's great for expressing yourself more fluently in Java. The only drawback is weaker static type checking. Without further ado, here's your response-wrapping in aspect-oriented programming:
#Aspect
#Component
public class ResponseWrappingAspect {
#Pointcut("within(#org.springframework.stereotype.Controller *)")
public void anyControllerPointcut() {}
#Pointcut("execution(* *(..))")
public void anyMethodPointcut() {}
#AfterReturning(
value = "anyControllerPointcut() && anyMethodPointcut()",
returning = "response")
public Object wrapResponse(Object response) {
// Do whatever logic needs to be done to wrap it correctly.
return new ResponseWrapper(response);
}
#AfterThrowing(
value = "anyControllerPointcut() && anyMethodPointcut()",
throwing = "cause")
public Object wrapException(Exception cause) {
// Do whatever logic needs to be done to wrap it correctly.
return new ErrorResponseWrapper(cause);
}
}
The final result will be the non-repeating response wrapping that you seek. If you only want some or one controller receive this effect, then update the pointcut to match methods only within instances of that controller (rather than any class holding the #Controller annotation).
You'll need to include some AOP dependencies, add the AOP-enabling annotation in a configuration class, and make sure something component-scans the package this class is in.
Simplest way i manage custom responses from controllers is by utilising the Map variable.
so your code ends up looking like:
public #ResponseBody Map controllerName(...) {
Map mapA = new HashMap();
mapA.put("status", "5");
mapA.put("content", "something went south");
return mapA;
}
beauty of is is that you can configure it any thousand ways.
Currently i use for object transmition, custom exception handling and data reporting, too easy.
Hope this helps
I am also using AOP with #Around. Developed a custom annotation and using that for point cut. I am using a global Response. It has the status, Message and data which is of type List of type
List <? extends parent> dataList
( which can solve your class cast exception). All the entities extends this Parent class. This way I can set all the data into my List.
Also I am using the message key as param with the custom annotation and setting it in action.
Hope this helps.
I need to work with data returned from a service which has a more complex JSON structure than the examples provided in the GXT documentation and thus far I cannot find any instructions or example which demonstrates how this might be accomplished.
The JSON contains multiple key/value pairs, but some of the key/value pairs are collections. I can have all of the data returned to me in one call from the service in the proper structure, but there does not appear to be a way to parse the data into separate entities. In my particular case I am attempting to configure a loader which will process one of the collections but I also need other key/value pairs from the same message (it is not ok to have the loader make one call and then have another call made for the same data and retrieve the other key/value pairs). Is there any way to accomplish this using GXT3?
Example: let's assume I can make a request from a server which returns JSON containing the name of an author along with a collection of the books the author has written. I want to display the author's name above a grid which lists the books. I want only one request made to the server and then have my view display the author in one component and the book list in a grid. Assume I need a loader instead of just a store as the grid may have to make additional calls (e.g. if it is a paging grid, livegrid, etc.).
Example JSON: (one JSON message returned with and author element along with a collection of book elements - I've indented the JSON to illustrate the structure)
{ "returnData" :
{"author" : "AuthorName"},
{"books" :
{"id" : "1", "name" : "Book1"},{"id" : "2", "name" : "Book2"}
}
}
Using the example for JsonReader (see the javadoc for an example) I can receive the request and parse the links into a collection using AutoBeans. This works fine when I need to have those retrieved and parsed in a loader. However, if I do that then the other properties are ignored. I currently don't see any way to parse the other values in the same request so they can be used elsewhere. My example code for the collection processing is below:
// this is the root JSON object, the AuthorRecord
public interface AuthorRecord {
#PropertyName(value="author")
String getAuthor();
#PropertyName(value="author")
void setAuthor(String author);
#PropertyName(value="books")
List<Book> getBooks();#
#PropertyName(value="books")
void setBooks (List<Book> books);
}
// models the book objects returned
public interface Book {
#PropertyName(value="id")
String getId();
#PropertyName(value="id")
void setId(String id);
#PropertyName(value="name")
String getName();
#PropertyName(value="name")
void setName(String name);
}
public interface ReturnData {
AuthorRootObject getAuthorRoot();
}
public interface LibraryAutoBeanFactory extends AutoBeanFactory {
AutoBean<ReturnData> authorRecord();
AutoBean<ListLoadConfig> loadConfig();
}
public class ReturnDataJsonReader extends JsonReader<ListLoadResult<Book>,
ReturnData> {
public ReturnDataJsonReader(AutoBeanFactory factory,
Class<ReturnData> rootBeanType) {
super(factory, rootBeanType);
}
#Override
protected ListLoadResultBean<Book> createReturnData(Object loadConfig,
ReturnData incomingData) {
return new ListLoadResultBean<Book>(incomingData.getBooks());
}
}
The problem I was having was that I need to have a view that includes a grid (paging grid, etc.) which lists out the books, while having the Author's name sit above the grid. I wanted to get all of this information (or at least the first page of results) with only one request to the server since the JSON message contains all the information I need to accomplish this. The problem is that the loader makes the request and receives the response, and it expects that the reader it will use is going to process a collection. In my case, I need the loader to process the collection of books but also populate another data field. The solution I found was to create an arbitrary collection to pass to the loader and then implement my own load handler to process the return object as needed.
1.The JSON being returned is really just one object of type ReturnData. The extended JsonReader could process this using AutoBeans, but if the reader is to be used for the loader, it needs to return a collection. Therefore, override the createReturnData() method to return a collection of one object.
public class ReturnDataJsonReader extends JsonReader<ListLoadResult<AuthorRecord>,
ReturnData> {
public ReturnDataJsonReader(AutoBeanFactory factory, Class<ReturnData> rootBeanType)
{
super(factory, rootBeanType);
}
#Override
protected ListLoadResultBean<AuthorRecord> createReturnData(Object loadConfig,
ReturnData incomingData) {
List<AuthorRecord> authorDataCollection = new ArrayList<AuthorRecord>();
authorDataCollection.add(incomingData);
return authorDataCollection;
}
}
2.The LoadHandler used in the examples takes a ListStore as an input and populates it with the results from the loader. Since the return object is not what we want populating the loader, and since we need to populate another property on the view, create your own LoadHandler to take the objects needed as input and populate them:
View Class Example:
public class ExampleViewClass {
// truncating most of the code in here for brevity
// note some of the objects referenced here reference objects in the question
private String authorName;
private ListStore<Book> bookList;
// IMPORTANT - create your own LoadHandler
private class LibraryLoadResultistStoreBinding<C, M, D extends
ListLoadResult<AuthorRecord>> implements LoadHandler<ListLoadConfig,
ListLoadResult<AuthorRecord>> {
private final ListStore<Book> bookStore;
private final String authorName;
public LibraryLoadResultistStoreBinding(ListStore<Book> books, String author) {
this.bookStore = books;
this.authorName = author;
}
#Override
public void onLoad(LoadEvent<ListLoadConfig, ListLoadResult<AuthorRecord> event)
{
// the response object
AuthorRecord response = event.getLoadResult().getData().get(0);
bookStore.replaceAll(response.getBooks());
author = response.getAuthor();
}
}
// example uses an HttpProxy but that's not required
public void populateView() {
LibraryAutoBeanFactory factory = GWT.create(LibraryAutoBeanFactory.class);
ReturnDataJsonReader reader = new ReturnDataJsonReader(factory, ReturnData.class);
String path = "http://path.to.resource/getinfo";
RequestBuilder builder = new RequestBuilder(RequestBuilder.GET, path);
HttpProxy<ListLoadConfig> proxy = new HttpProxy<ListLoadConfig>(builder);
final ListLoader<ListLoadConfig, ListLoadResult<AuthorRecord>> loader = new
ListLoader<ListLoadConfig, ListLoadResult<AuthorRecord>> (proxy, reader);
loader.useLoadConfig(ReturnDataAutoBeanFactory.instance.loadConfig().as();
loader.addLoadHandler(new LibraryLoadResultistStoreBinding<ListLoadConfig,
AuthorRecord, ListLoadResult<AuthorRecord>>(bookList, authorName);
// pass in the objects to be populated
loader.load(); // fire the loader
}
I have successfully set up a quick test of creating a "REST-like" service that returns an object serialized to JSON, and that was quite easy and quick (based on this article).
But while returning JSON-ified objects was easy as peach, I have yet to see any examples dealing with input parameters that are not primitives. How can I pass in a complex object as an argument? I am using Apache CXF, but examples using other frameworks like Jackson are welcome too :)
Client side would probably be something like building a javascript object, pass it into JSON.stringify(complexObj), and pass that string as one of the parameters.
The service would probably look something like this
#Service("myService")
class RestService {
#GET
#Produces("application/json")
#Path("/fooBar")
public Result fooBar(#QueryParam("foo") double foo, #QueryParam("bar") double bar,
#QueryParam("object") MyComplex object) throws WebServiceException {
...
}
}
Sending serialized objects as parameters would probably quickly touch the 2KB URL-limit imposed by Internet Explorer. Would you recommend using POST in these cases, and would I need to change much in the function definitions?
After digging a bit I quickly found out there are basically two options:
Option 1
You pass a "wrapper object" containing all the other parameters to the service. You might need to annotate this wrapper class with JAXB annotations like #XmlRootElement in order for this to work with the Jettison based provider, but if you use Jackson in stead there is no need. Just set the content type to the right type and the right message body reader will be invoked.
This will only work for POST type services of course (AFAIK).
Example
This is just an example of turning the service mentioned in the original question into one using a wrapper object.
#Service("myService")
class RestService {
#POST
#Produces("application/json")
#Path("/fooBar")
public Result fooBar(
/**
* Using "" will inject all form params directly into a ParamsWrapper
* #see http://cxf.apache.org/docs/jax-rs-basics.html
*/
#FormParam("") FooBarParamsWrapper wrapper
) throws WebServiceException {
doSomething(wrapper.foo);
}
}
class ParamsWrapper {
double foo, bar;
MyComplexObject object;
}
Option 2
You can provide some special string format that you pack your objects into and then implement either a constructor taking a string, a static valueOf(String s) or a static fromString(String s) in the class that will take this string and create an object from it. Or quite similar, create a ParameterHandler that does exactly the same.
AFAIK, only the second version will allow you to call your services from a browser using JSONP (since JSONP is a trick restricted to GET). I chose this route to be able to pass arrays of complex objects in the URI.
As an example of how this works, take the following domain class and service
Example
#GET
#Path("myService")
public void myService(#QueryParam("a") MyClass [] myVals) {
//do something
}
class MyClass {
public int foo;
public int bar;
/** Deserializes an Object of class MyClass from its JSON representation */
public static MyClass fromString(String jsonRepresentation) {
ObjectMapper mapper = new ObjectMapper(); //Jackson's JSON marshaller
MyClass o= null;
try {
o = mapper.readValue(jsonRepresentation, MyClass.class );
} catch (IOException e) {
throw new WebApplicationException()
}
return o;
}
}
A URI http://my-server.com/myService?a={"foo":1, "bar":2}&a={"foo":100, "bar":200} would in this case be deserialized into an array composed of two MyClass objects.
2019 comment:
Seeing that this answer still gets some hits in 2019, I feel I should comment. In hindsight, I would not recomment option 2, as going through these steps just to be able to be able to do GET calls adds complexity that's probably not worth it. If your service takes such complex input, you will probably not be able to utilize client side caching anyway, due to the number of permutations of your input. I'd just go for configuring proper Cross-Origin-Sharing (CORS) headers on the server and POST the input. Then focus on caching whatever you can on the server.
The accepted answer is missing #BeanParam. See
https://docs.jboss.org/resteasy/docs/3.0-rc-1/javadocs/javax/ws/rs/BeanParam.html
for further details. It allows you to define query params inside a wrapper object.
E.g.
public class TestPOJO {
#QueryParam("someQueryParam")
private boolean someQueryParam;
public boolean isSomeQueryParam() {
return someQueryParam;
}
public boolean setSomeQueryParam(boolean value) {
this.someQueryParam = value;
}
}
... // inside the Resource class
#GET
#Path("test")
public Response getTest(#BeanParam TestPOJO testPOJO) {
...
}
the best and simplest solution is to send your object as a json string and in server side implement a method which will decode that json and map to the specified object as per your need.. and yes it`s better to use POST.