cublasSaxpy computes y' = a * x + y, where x and y are vectors and a is scalar.
It turns out I need to compute y' = a * y + x instead. I'm not seeing how to twist the cuBLAS library into doing that.
(Of course, I could compute y' = a * y, then y' = y' + x, but y' is read too often in that case. And I could write my own CUDA code to do it, but then it's likely not anywhere near as fast as the cuBLAS code. I'm just surprised there's no apparent way to do "saypx" directly.)
[Added] There are functions similar to "saxpby" in Intel's version of cblas, which would do what I need. But oddly enough, that's not in cuBLAS.
[Added #2] It looks like I can use the cudnnAddTensor function, with some aliasing of descriptors (I have a FilterDescriptor that points to the tensor, which AddTensor won't accept, but I should be able to alias a TensorDescriptor to the same memory and shape.)
There isn't a way I am aware of to do what you are asking in CUBLAS, nor in standard BLAS. What you have found in MKL is an extension added by Intel, but I don't recall seeing something similar in other host and accelerator BLAS implementations.
The good news is that your assertion that "I could write my own CUDA code to do it, but then it's likely not anywhere near as fast as the cuBLAS code", is untrue, at least for an operation as trivial as saxpy. Even a naïve implementation of saxpy will get very close to CUBLAS because there really aren't that many was to read two arrays, perform an FMAD and write back the result. As long as you get memory coalescing correct, it is pretty simple to write performant code. For example:
#include <vector>
#include <algorithm>
#include <cassert>
#include <iostream>
#include <cmath>
#include "cublas_v2.h"
typedef enum
{
AXPY = 0,
AXPBY = 1
} saxpy_op_t;
__device__ __host__ __inline__
float axpby_op(float y, float x, float a)
{
return a * y + x;
}
__device__ __host__ __inline__
float axpy_op(float y, float x, float a)
{
return y + a * x;
}
template<typename T>
class pitched_accessor
{
T * p;
size_t pitch;
public:
__host__ __device__
pitched_accessor(T *p_, size_t pitch_) : p(p_), pitch(pitch_) {};
__host__ __device__
T& operator[](size_t idx) { return p[pitch*idx]; };
__host__ __device__
const T& operator[](size_t idx) const { return p[pitch*idx]; };
};
template<saxpy_op_t op>
__global__
void saxpy_kernel(pitched_accessor<float> y, pitched_accessor<float> x,
const float a, const unsigned int N1)
{
unsigned int idx = threadIdx.x + blockIdx.x * blockDim.x;
unsigned int stride = gridDim.x * blockDim.x;
#pragma unroll 8
for(; idx < N1; idx += stride) {
switch (op) {
case AXPY:
y[idx] = axpy_op(y[idx], x[idx], a);
break;
case AXPBY:
y[idx] = axpby_op(y[idx], x[idx], a);
break;
}
}
}
__host__ void saxby(const unsigned int N, const float a,
float *x, int xinc, float *y, int yinc)
{
int gridsize, blocksize;
cudaOccupancyMaxPotentialBlockSize(&gridsize, &blocksize, saxpy_kernel<AXPBY>);
saxpy_kernel<AXPBY><<<gridsize, blocksize>>>(pitched_accessor<float>(y, yinc),
pitched_accessor<float>(x, xinc), a, N);
}
__host__ void saxpy(const unsigned int N, const float a,
float *x, int xinc, float *y, int yinc)
{
int gridsize, blocksize;
cudaOccupancyMaxPotentialBlockSize(&gridsize, &blocksize, saxpy_kernel<AXPY>);
saxpy_kernel<AXPY><<<gridsize, blocksize>>>(pitched_accessor<float>(y, yinc),
pitched_accessor<float>(x, xinc), a, N);
}
void check_result(std::vector<float> &yhat, float result, float tolerance=1e-5f)
{
auto it = yhat.begin();
for(; it != yhat.end(); ++it) {
float err = std::fabs(*it - result);
assert( err < tolerance );
}
}
int main()
{
const int N = 1<<22;
std::vector<float> x_h(N);
std::vector<float> y_h(N);
const float a = 2.f, y0 = 1234.f, x0 = 532.f;
std::fill(y_h.begin(), y_h.end(), y0);
std::fill(x_h.begin(), x_h.end(), x0);
float *x_d, *y_d;
size_t sz = sizeof(float) * size_t(N);
cudaMalloc((void **)&x_d, sz);
cudaMalloc((void **)&y_d, sz);
cudaMemcpy(x_d, &x_h[0], sz, cudaMemcpyHostToDevice);
{
cudaMemcpy(y_d, &y_h[0], sz, cudaMemcpyHostToDevice);
saxby(N, a, x_d, 1, y_d, 1);
std::vector<float> yhat(N);
cudaMemcpy(&yhat[0], y_d, sz, cudaMemcpyDeviceToHost);
check_result(yhat, axpby_op(y0, x0, a));
}
{
cudaMemcpy(y_d, &y_h[0], sz, cudaMemcpyHostToDevice);
saxpy(N, a, x_d, 1, y_d, 1);
std::vector<float> yhat(N);
cudaMemcpy(&yhat[0], y_d, sz, cudaMemcpyDeviceToHost);
check_result(yhat, axpy_op(y0, x0, a));
}
{
cublasHandle_t handle;
cublasCreate(&handle);
cudaMemcpy(y_d, &y_h[0], sz, cudaMemcpyHostToDevice);
cublasSaxpy(handle, N, &a, x_d, 1, y_d, 1);
std::vector<float> yhat(N);
cudaMemcpy(&yhat[0], y_d, sz, cudaMemcpyDeviceToHost);
check_result(yhat, axpy_op(y0, x0, a));
cublasDestroy(handle);
}
return int(cudaDeviceReset());
}
This demonstrates that a very simple axpy kernel can be easily adapted to perform both the standard operation and the version you want, and run within 10% of the runtime of CUBLAS on the compute 5.2 device I tested it on:
$ nvcc -std=c++11 -arch=sm_52 -Xptxas="-v" -o saxby saxby.cu -lcublas
ptxas info : 0 bytes gmem
ptxas info : Compiling entry function '_Z12saxpy_kernelIL10saxpy_op_t0EEv16pitched_accessorIfES2_fj' for 'sm_52'
ptxas info : Function properties for _Z12saxpy_kernelIL10saxpy_op_t0EEv16pitched_accessorIfES2_fj
0 bytes stack frame, 0 bytes spill stores, 0 bytes spill loads
ptxas info : Used 17 registers, 360 bytes cmem[0]
ptxas info : Compiling entry function '_Z12saxpy_kernelIL10saxpy_op_t1EEv16pitched_accessorIfES2_fj' for 'sm_52'
ptxas info : Function properties for _Z12saxpy_kernelIL10saxpy_op_t1EEv16pitched_accessorIfES2_fj
0 bytes stack frame, 0 bytes spill stores, 0 bytes spill loads
ptxas info : Used 17 registers, 360 bytes cmem[0]
$ nvprof ./saxby
==26806== NVPROF is profiling process 26806, command: ./saxby
==26806== Profiling application: ./saxby
==26806== Profiling result:
Time(%) Time Calls Avg Min Max Name
54.06% 11.190ms 5 2.2381ms 960ns 2.9094ms [CUDA memcpy HtoD]
40.89% 8.4641ms 3 2.8214ms 2.8039ms 2.8310ms [CUDA memcpy DtoH]
1.73% 357.59us 1 357.59us 357.59us 357.59us void saxpy_kernel<saxpy_op_t=1>(pitched_accessor<float>, pitched_accessor<float>, float, unsigned int)
1.72% 355.15us 1 355.15us 355.15us 355.15us void saxpy_kernel<saxpy_op_t=0>(pitched_accessor<float>, pitched_accessor<float>, float, unsigned int)
1.60% 332.21us 1 332.21us 332.21us 332.21us void axpy_kernel_val<float, int=0>(cublasAxpyParamsVal<float>)
Related
I want to add 128-bit vectors with carry. My 128-bit version (addKernel128 in the code below) is twice slower than the basic 32-bit version (addKernel32 below).
Do I have memory coalescing problems ? How can I get better performance ?
#include "cuda_runtime.h"
#include "device_launch_parameters.h"
#include <iostream>
#define UADDO(c, a, b) asm volatile("add.cc.u32 %0, %1, %2;" : "=r"(c) : "r"(a) , "r"(b));
#define UADDC(c, a, b) asm volatile("addc.cc.u32 %0, %1, %2;" : "=r"(c) : "r"(a) , "r"(b));
__global__ void addKernel32(unsigned int *c, const unsigned int *a, const unsigned int *b, const int size)
{
int tid = blockIdx.x * blockDim.x + threadIdx.x;
while (tid < size)
{
c[tid] = a[tid] + b[tid];
tid += blockDim.x * gridDim.x;
}
}
__global__ void addKernel128(unsigned *c, const unsigned *a, const unsigned *b, const int size)
{
int tid = blockIdx.x * blockDim.x + threadIdx.x;
while (tid < size / 4)
{
uint4 a4 = ((const uint4 *)a)[tid],
b4 = ((const uint4 *)b)[tid],
c4;
UADDO(c4.x, a4.x, b4.x)
UADDC(c4.y, a4.y, b4.y) // add with carry
UADDC(c4.z, a4.z, b4.z) // add with carry
UADDC(c4.w, a4.w, b4.w) // add with carry (no overflow checking for clarity)
((uint4 *)c)[tid] = c4;
tid += blockDim.x * gridDim.x;
}
}
int main()
{
const int size = 10000000; // 10 million
unsigned int *d_a, *d_b, *d_c;
cudaMalloc((void**)&d_a, size * sizeof(int));
cudaMalloc((void**)&d_b, size * sizeof(int));
cudaMalloc((void**)&d_c, size * sizeof(int));
cudaMemset(d_a, 1, size * sizeof(int)); // dummy init just for the example
cudaMemset(d_b, 2, size * sizeof(int)); // dummy init just for the example
cudaMemset(d_c, 0, size * sizeof(int));
int nbThreads = 512;
int nbBlocks = 1024; // for example
cudaEvent_t start, stop;
cudaEventCreate(&start);
cudaEventCreate(&stop);
cudaEventRecord(start);
addKernel128<<<nbBlocks, nbThreads>>>(d_c, d_a, d_b, size);
cudaEventRecord(stop);
cudaEventSynchronize(stop);
float m = 0;
cudaEventElapsedTime(&m, start, stop);
cudaFree(d_c);
cudaFree(d_b);
cudaFree(d_a);
cudaDeviceReset();
printf("Elapsed = %g\n", m);
return 0;
}
Timing CUDA code on a WDDM GPU can be quite difficult for a variety of reasons. Most of these revolve around the fact that the GPU is being managed as a display device by Windows, and this can introduce a variety of artifacts into the timing. One example is that the windows driver and WDDM will batch work for the GPU, and may interleave display work in the middle of CUDA GPU work.
if possible, time your cuda code on linux, or else on a windows GPU
in TCC mode.
for performance, always build without the -G switch. In visual studio, this usually corresponds to building the release, not the debug version of the project.
To get a good performance comparison, it's usually advisable to do some "warm up runs" before actually measuring the timing results. These will eliminate "start-up" and other one-time measurement issues, are you are more likely to get sensible results. You may also wish to run your code a number of times and average the results.
It's also usually advisable to compile with an arch flag that corresponds to your GPU, so for example -arch=sm_20 for a cc2.0 GPU.
I am trying to call cudaMemsetAsync from kernel (so called "dynamic parallelism"). But no matter what value I use, it always set memory to 0.
Here is my test code:
#include "cuda_runtime.h"
#include "device_launch_parameters.h"
#include "cuda_device_runtime_api.h"
#include <stdio.h>
const int size = 5;
__global__ void kernel(int *c)
{
cudaMemsetAsync(c, 0x7FFFFFFF, size * 4, NULL);
}
int main()
{
cudaError_t cudaStatus;
int c[size] = { 12, 12, 12, 12, 12 };
int *dev_c = 0;
cudaStatus = cudaSetDevice(0);
cudaStatus = cudaMalloc((void**)&dev_c, size * sizeof(int));
cudaStatus = cudaMemcpy(dev_c, c, size * sizeof(int), cudaMemcpyHostToDevice);
kernel <<< 1, 1 >>>(dev_c);
cudaStatus = cudaMemcpy(c, dev_c, size * sizeof(int), cudaMemcpyDeviceToHost);
cudaFree(dev_c);
cudaStatus = cudaDeviceReset();
printf("%d\n", cudaStatus);
printf("{%d,%d,%d,%d,%d}\n", c[0], c[1], c[2], c[3], c[4]);
return 0;
}
And if I run it, I got output like this:
>nvcc -run kernel.cu -gencode=arch=compute_35,code=\"sm_35,compute_35\" -rdc=true -lcudadevrt
kernel.cu
Creating library a.lib and object a.exp
0
{0,0,0,0,0}
When I call memory set, I use value 0x7FFFFFFF. I'm expecting non-zero numbers, but it always shows zero.
Is this a bug? or I did something wrong? I'm using CUDA 8.0
I can confirm this appears not to work in CUDA 8 on the systems I tested it with.
If you want a single thread to perform the operation, you can use memset directly in device code (it, like memcpy, has been supported forever). The kernel will emit a byte sized loop inline within your kernel and the operation will be handled by each running thread.
If you want a dynamic parallelism style memset operation, then the easiest thing is to make your own. A trivial (and very, very lightly tested) implementation in the code you posted might look like this:
#include <cstring>
#include <cstdio>
const int size = 5;
__global__ void myMemset_kernel(void* p, unsigned char val, size_t sz)
{
size_t tid = threadIdx.x + blockDim.x * blockIdx.x;
unsigned char* _p = (unsigned char*)p;
for(; tid < sz; tid += blockDim.x * gridDim.x) {
_p[tid] = val;
}
}
__device__ void myMemset(void* p, unsigned int val, size_t sz, cudaStream_t s=NULL)
{
const dim3 blocksz(256,1,1);
size_t nblocks = (sz + blocksz.x -1) / blocksz.x;
unsigned charval = val & 0xff;
myMemset_kernel<<< dim3(nblocks,1,1), blocksz, 0, s >>>(p, charval, sz);
}
__global__ void kernel(int *c)
{
cudaStream_t s;
cudaStreamCreateWithFlags(&s, cudaStreamNonBlocking);
myMemset(c, 0x7FFFFFFF, size * 4, s);
cudaDeviceSynchronize();
}
int main()
{
int c[size];
int *dev_c;
memset(&c[0], 0xffffff0c, size * sizeof(int));
printf("{%08x,%08x,%08x,%08x,%08x}\n", c[0], c[1], c[2], c[3], c[4]);
cudaMalloc((void**)&dev_c, size * sizeof(int));
cudaMemcpy(dev_c, c, size * sizeof(int), cudaMemcpyHostToDevice);
kernel <<< 1, 1 >>>(dev_c);
cudaMemcpy(c, dev_c, size * sizeof(int), cudaMemcpyDeviceToHost);
cudaFree(dev_c);
printf("{%08x,%08x,%08x,%08x,%08x}\n", c[0], c[1], c[2], c[3], c[4]);
return 0;
}
which compiles and does this:
$ nvcc -rdc=true -arch=sm_52 -o memset memset.cu -lcudadevrt
$ ./memset
{0c0c0c0c,0c0c0c0c,0c0c0c0c,0c0c0c0c,0c0c0c0c}
{ffffffff,ffffffff,ffffffff,ffffffff,ffffffff}
A final point -- note the values above and read this question and answer. In your code, it is not possible to use cudaMemset to apply a value of 0x7FFFFFFF. Although the value argument is an unsigned integer, cudaMemset and its relatives work like regular memset and set byte values. Only the least significant byte of the 32 bit argument is used to set values. If your objective is to set 32 bit values, then you will need to make your own version of memset for that purpose anyway.
While playing with CUBLAS matrix multiplication sample I realised that nvprof profiler shows an extra call of cudaMemcpy Host to Device.
While 2 appear in source code, 3 actual calls are issued.
Why would that be? Is it an intrinsic effect of using CUBLAS?
Code from CUDA CUBLAS sample:
compiled with flags: -lcublas -I/usr/local/cuda-7.5/samples/common/inc
//////////////////////////////////////////////////////////////////////////
// Utilities and system includes
#include <assert.h>
#include <helper_string.h> // helper for shared functions common to CUDA Samples
// CUDA runtime
#include <cuda_runtime.h>
#include <cublas_v2.h>
// CUDA and CUBLAS functions
#include <helper_functions.h>
#include <helper_cuda.h>
#ifndef min
#define min(a,b) ((a < b) ? a : b)
#endif
#ifndef max
#define max(a,b) ((a > b) ? a : b)
#endif
typedef struct _matrixSize // Optional Command-line multiplier for matrix sizes
{
unsigned int uiWA, uiHA, uiWB, uiHB, uiWC, uiHC;
} sMatrixSize;
////////////////////////////////////////////////////////////////////////////////
//! Compute reference data set matrix multiply on CPU
//! C = A * B
//! #param C reference data, computed but preallocated
//! #param A matrix A as provided to device
//! #param B matrix B as provided to device
//! #param hA height of matrix A
//! #param wB width of matrix B
////////////////////////////////////////////////////////////////////////////////
void
matrixMulCPU(float *C, const float *A, const float *B, unsigned int hA, unsigned int wA, unsigned int wB)
{
for (unsigned int i = 0; i < hA; ++i)
for (unsigned int j = 0; j < wB; ++j)
{
double sum = 0;
for (unsigned int k = 0; k < wA; ++k)
{
double a = A[i * wA + k];
double b = B[k * wB + j];
sum += a * b;
}
C[i * wB + j] = (float)sum;
}
}
// Allocates a matrix with random float entries.
void randomInit(float *data, int size)
{
for (int i = 0; i < size; ++i)
data[i] = rand() / (float)RAND_MAX;
}
void printDiff(float *data1, float *data2, int width, int height, int iListLength, float fListTol)
{
printf("Listing first %d Differences > %.6f...\n", iListLength, fListTol);
int i,j,k;
int error_count=0;
for (j = 0; j < height; j++)
{
if (error_count < iListLength)
{
printf("\n Row %d:\n", j);
}
for (i = 0; i < width; i++)
{
k = j * width + i;
float fDiff = fabs(data1[k] - data2[k]);
if (fDiff > fListTol)
{
if (error_count < iListLength)
{
printf(" Loc(%d,%d)\tCPU=%.5f\tGPU=%.5f\tDiff=%.6f\n", i, j, data1[k], data2[k], fDiff);
}
error_count++;
}
}
}
printf(" \n Total Errors = %d\n", error_count);
}
void initializeCUDA(int argc, char **argv, int &devID, int &iSizeMultiple, sMatrixSize &matrix_size)
{
// By default, we use device 0, otherwise we override the device ID based on what is provided at the command line
cudaError_t error;
devID = 0;
if (checkCmdLineFlag(argc, (const char **)argv, "device"))
{
devID = getCmdLineArgumentInt(argc, (const char **)argv, "device");
error = cudaSetDevice(devID);
if (error != cudaSuccess)
{
printf("cudaSetDevice returned error code %d, line(%d)\n", error, __LINE__);
exit(EXIT_FAILURE);
}
}
// get number of SMs on this GPU
error = cudaGetDevice(&devID);
if (error != cudaSuccess)
{
printf("cudaGetDevice returned error code %d, line(%d)\n", error, __LINE__);
exit(EXIT_FAILURE);
}
if (checkCmdLineFlag(argc, (const char **)argv, "sizemult"))
{
iSizeMultiple = getCmdLineArgumentInt(argc, (const char **)argv, "sizemult");
}
iSizeMultiple = min(iSizeMultiple, 10);
iSizeMultiple = max(iSizeMultiple, 1);
cudaDeviceProp deviceProp;
error = cudaGetDeviceProperties(&deviceProp, devID);
if (error != cudaSuccess)
{
printf("cudaGetDeviceProperties returned error code %d, line(%d)\n", error, __LINE__);
exit(EXIT_FAILURE);
}
printf("GPU Device %d: \"%s\" with compute capability %d.%d\n\n", devID, deviceProp.name, deviceProp.major, deviceProp.minor);
// use a larger block size for Fermi and above
int block_size = (deviceProp.major < 2) ? 16 : 32;
matrix_size.uiWA = 3 * block_size * iSizeMultiple;
matrix_size.uiHA = 4 * block_size * iSizeMultiple;
matrix_size.uiWB = 2 * block_size * iSizeMultiple;
matrix_size.uiHB = 3 * block_size * iSizeMultiple;
matrix_size.uiWC = 2 * block_size * iSizeMultiple;
matrix_size.uiHC = 4 * block_size * iSizeMultiple;
printf("MatrixA(%u,%u), MatrixB(%u,%u), MatrixC(%u,%u)\n",
matrix_size.uiHA, matrix_size.uiWA,
matrix_size.uiHB, matrix_size.uiWB,
matrix_size.uiHC, matrix_size.uiWC);
if( matrix_size.uiWA != matrix_size.uiHB ||
matrix_size.uiHA != matrix_size.uiHC ||
matrix_size.uiWB != matrix_size.uiWC)
{
printf("ERROR: Matrix sizes do not match!\n");
exit(-1);
}
}
////////////////////////////////////////////////////////////////////////////////
//! Run a simple test matrix multiply using CUBLAS
////////////////////////////////////////////////////////////////////////////////
int matrixMultiply(int argc, char **argv, int devID, sMatrixSize &matrix_size)
{
cudaDeviceProp deviceProp;
checkCudaErrors(cudaGetDeviceProperties(&deviceProp, devID));
// use a larger block size for Fermi and above
int block_size = (deviceProp.major < 2) ? 16 : 32;
// set seed for rand()
srand(2006);
// allocate host memory for matrices A and B
unsigned int size_A = matrix_size.uiWA * matrix_size.uiHA;
unsigned int mem_size_A = sizeof(float) * size_A;
float *h_A = (float *)malloc(mem_size_A);
unsigned int size_B = matrix_size.uiWB * matrix_size.uiHB;
unsigned int mem_size_B = sizeof(float) * size_B;
float *h_B = (float *)malloc(mem_size_B);
// set seed for rand()
srand(2006);
// initialize host memory
randomInit(h_A, size_A);
randomInit(h_B, size_B);
// allocate device memory
float *d_A, *d_B, *d_C;
unsigned int size_C = matrix_size.uiWC * matrix_size.uiHC;
unsigned int mem_size_C = sizeof(float) * size_C;
// allocate host memory for the result
float *h_C = (float *) malloc(mem_size_C);
float *h_CUBLAS = (float *) malloc(mem_size_C);
checkCudaErrors(cudaMalloc((void **) &d_A, mem_size_A));
checkCudaErrors(cudaMalloc((void **) &d_B, mem_size_B));
checkCudaErrors(cudaMemcpy(d_A, h_A, mem_size_A, cudaMemcpyHostToDevice));
checkCudaErrors(cudaMemcpy(d_B, h_B, mem_size_B, cudaMemcpyHostToDevice));
checkCudaErrors(cudaMalloc((void **) &d_C, mem_size_C));
// setup execution parameters
dim3 threads(block_size, block_size);
dim3 grid(matrix_size.uiWC / threads.x, matrix_size.uiHC / threads.y);
// create and start timer
printf("Computing result using CUBLAS...");
// execute the kernel
int nIter = 30;
// CUBLAS version 2.0
{
const float alpha = 1.0f;
const float beta = 0.0f;
cublasHandle_t handle;
cudaEvent_t start, stop;
checkCudaErrors(cublasCreate(&handle));
//Perform warmup operation with cublas
checkCudaErrors(cublasSgemm(handle, CUBLAS_OP_N, CUBLAS_OP_N, matrix_size.uiWB, matrix_size.uiHA, matrix_size.uiWA, &alpha, d_B, matrix_size.uiWB, d_A, matrix_size.uiWA, &beta, d_C, matrix_size.uiWB));
// Allocate CUDA events that we'll use for timing
checkCudaErrors(cudaEventCreate(&start));
checkCudaErrors(cudaEventCreate(&stop));
// Record the start event
checkCudaErrors(cudaEventRecord(start, NULL));
for (int j = 0; j < nIter; j++)
{
//note cublas is column primary!
//need to transpose the order
checkCudaErrors(cublasSgemm(handle, CUBLAS_OP_N, CUBLAS_OP_N, matrix_size.uiWB, matrix_size.uiHA, matrix_size.uiWA, &alpha, d_B, matrix_size.uiWB, d_A, matrix_size.uiWA, &beta, d_C, matrix_size.uiWB));
}
printf("done.\n");
// Record the stop event
checkCudaErrors(cudaEventRecord(stop, NULL));
// Wait for the stop event to complete
checkCudaErrors(cudaEventSynchronize(stop));
float msecTotal = 0.0f;
checkCudaErrors(cudaEventElapsedTime(&msecTotal, start, stop));
// Compute and print the performance
float msecPerMatrixMul = msecTotal / nIter;
double flopsPerMatrixMul = 2.0 * (double)matrix_size.uiHC * (double)matrix_size.uiWC * (double)matrix_size.uiHB;
double gigaFlops = (flopsPerMatrixMul * 1.0e-9f) / (msecPerMatrixMul / 1000.0f);
printf(
"Performance= %.2f GFlop/s, Time= %.3f msec, Size= %.0f Ops\n",
gigaFlops,
msecPerMatrixMul,
flopsPerMatrixMul);
// copy result from device to host
checkCudaErrors(cudaMemcpy(h_CUBLAS, d_C, mem_size_C, cudaMemcpyDeviceToHost));
// Destroy the handle
checkCudaErrors(cublasDestroy(handle));
}
// compute reference solution
printf("Computing result using host CPU...");
float *reference = (float *)malloc(mem_size_C);
matrixMulCPU(reference, h_A, h_B, matrix_size.uiHA, matrix_size.uiWA, matrix_size.uiWB);
printf("done.\n");
// check result (CUBLAS)
bool resCUBLAS = sdkCompareL2fe(reference, h_CUBLAS, size_C, 1.0e-6f);
if (resCUBLAS != true)
{
printDiff(reference, h_CUBLAS, matrix_size.uiWC, matrix_size.uiHC, 100, 1.0e-5f);
}
printf("Comparing CUBLAS Matrix Multiply with CPU results: %s\n", (true == resCUBLAS) ? "PASS" : "FAIL");
printf("\nNOTE: The CUDA Samples are not meant for performance measurements. Results may vary when GPU Boost is enabled.\n");
// clean up memory
free(h_A);
free(h_B);
free(h_C);
free(reference);
checkCudaErrors(cudaFree(d_A));
checkCudaErrors(cudaFree(d_B));
checkCudaErrors(cudaFree(d_C));
// cudaDeviceReset causes the driver to clean up all state. While
// not mandatory in normal operation, it is good practice. It is also
// needed to ensure correct operation when the application is being
// profiled. Calling cudaDeviceReset causes all profile data to be
// flushed before the application exits
cudaDeviceReset();
if (resCUBLAS == true)
{
return EXIT_SUCCESS; // return value = 1
}
else
{
return EXIT_FAILURE; // return value = 0
}
}
////////////////////////////////////////////////////////////////////////////////
// Program main
////////////////////////////////////////////////////////////////////////////////
int main(int argc, char **argv)
{
printf("[Matrix Multiply CUBLAS] - Starting...\n");
int devID = 0, sizeMult = 5;
sMatrixSize matrix_size;
initializeCUDA(argc, argv, devID, sizeMult, matrix_size);
int matrix_result = matrixMultiply(argc, argv, devID, matrix_size);
return matrix_result;
}
The additional memory transfer seems to be caused by the CUBLAS library and is triggered by a call to cublasInit. You can confirm this by profiling the following code:
#include <cublas_v2.h>
int main()
{
cublasHandle_t handle;
cublasCreate(&handle);
cudaDeviceReset();
return 0;
}
which nvprof reports as calling cudaMemcpy:
$ nvprof ./a.out
==9536== NVPROF is profiling process 9536, command: ./a.out
==9536== Profiling application: ./a.out
==9536== Profiling result:
Time(%) Time Calls Avg Min Max Name
100.00% 1.1190us 1 1.1190us 1.1190us 1.1190us [CUDA memcpy HtoD]
==9536== API calls:
Time(%) Time Calls Avg Min Max Name
76.51% 348.53ms 1 348.53ms 348.53ms 348.53ms cudaFree
23.26% 105.97ms 1 105.97ms 105.97ms 105.97ms cudaDeviceReset
0.09% 420.25us 178 2.3600us 125ns 103.52us cuDeviceGetAttribute
0.08% 349.37us 2 174.69us 110.59us 238.78us cuDeviceTotalMem
0.04% 202.10us 3 67.366us 9.3750us 109.43us cudaMalloc
0.01% 55.217us 2 27.608us 24.529us 30.688us cuDeviceGetName
0.00% 14.365us 1 14.365us 14.365us 14.365us cudaMemcpy
0.00% 10.016us 16 626ns 434ns 2.0440us cudaEventCreateWithFlags
0.00% 4.5000us 11 409ns 271ns 1.2730us cudaDeviceGetAttribute
0.00% 3.4510us 4 862ns 251ns 2.3370us cuDeviceGetCount
0.00% 2.3200us 4 580ns 281ns 1.0350us cuDeviceGet
0.00% 1.3600us 1 1.3600us 1.3600us 1.3600us cudaGetDevice
0.00% 630ns 1 630ns 630ns 630ns cuInit
0.00% 339ns 1 339ns 339ns 339ns cuDriverGetVersion
I doubt that anyone without access to the current CUBLAS source will be able to explain why initialising the CUBLAS library triggers a host to device transfer, but that seems to be the cause of your observation.
What is the difference between the following two functions?
__device__ inline void comparator_volatile(volatile float &A, volatile float &B, uint dir) {
float t;
if ((A > B) == dir) {
t = A;
A = B;
B = t;
}
}
__device__ inline void comparator(float &A, float &B, uint dir) {
float t;
if ((A > B) == dir) {
t = A;
A = B;
B = t;
}
__threadfence();
}
Could anyone help me?
I implement BitonicSort in some different versions based on CUDA SDK version.
For ATOMIC version (bitonicSortAtomic), I tried to use __threadfence() in __syncblocks_atomic to maintain memory consistency. But it doesn't work (the output is incorrect). I have to call comparator_volatile instead of comparator, then I get correct result. Any idea?
The BitonicSort benchmark:
// (C) Copyright 2013, University of Illinois. All Rights Reserved
#include <stdlib.h>
#include <stdio.h>
#include "parboil.h"
#define THREADS 256
#define BLOCKS 32
#define NUM_VALS 2*THREADS*BLOCKS
__device__ volatile int mutex = 0;
__device__ inline void __syncblocks_atomic(int goal) {
__syncthreads();
// __threadfence();
int tx = threadIdx.x;
if (tx == 0) {
atomicAdd((int *)&mutex, 1);
while(g_mutex != goal) {}
}
__syncthreads();
}
__device__ inline void comparator(float &A, float &B, uint dir) {
float t;
if ((A > B) == dir) {
t = A;
A = B;
B = t;
}
}
__device__ inline void comparator_volatile(volatile float &A, volatile float &B, uint dir) {
float t;
if ((A > B) == dir) {
t = A;
A = B;
B = t;
}
}
#ifdef NAIVE
__global__ void bitonicSortNaive(float *src, int stride, int size) {
unsigned int tid = threadIdx.x + blockDim.x * blockIdx.x;
uint dir = (tid & (size / 2)) == 0;
unsigned int pos = 2*tid - (tid & (stride - 1));
comparator(src[pos], src[pos+stride], dir);
}
#endif
#ifdef ATOMIC
__global__ void bitonicSortAtomic(float *src, int length) {
uint numBlocks = gridDim.x * gridDim.y * gridDim.z;
uint goalVal = 0;
uint tid = threadIdx.x + blockDim.x * blockIdx.x;
for(uint size=2; size<=length; size<<=1) {
for(uint stride=size>>1; stride>0; stride=stride>>1) {
uint dir = (tid & (size / 2)) == 0;
uint pos = 2*tid - (tid & (stride - 1));
comparator_volatile(src[pos], src[pos+stride], dir);
if(stride>THREADS || (stride==1 && size>=THREADS)) {
goalVal += numBlocks;
__syncblocks_atomic(goalVal);
}
else
__syncthreads();
} // end for stride
} // end for size
}
#endif
int main() {
printf("[BENCH] Bitonic Sort %d elements\n", NUM_VALS);
printf("[BENCH] Xuhao Chen <cxh#illinois.edu>\n");
#ifdef NAIVE
printf("[BENCH] Naive version\n");
#endif
#ifdef ATOMIC
printf("[BENCH] Atomic Barrier\n");
#endif
float *values = (float*) malloc( NUM_VALS * sizeof(float));
array_init(values, NUM_VALS);
float *dev_values;
size_t size = NUM_VALS * sizeof(float);
cudaMalloc((void**) &dev_values, size);
cudaMemcpy(dev_values, values, size, cudaMemcpyHostToDevice);
dim3 blocks(BLOCKS,1);
dim3 threads(THREADS,1);
cudaDeviceSynchronize();
#ifdef NAIVE
int j, k;
for (k = 2; k <= NUM_VALS; k <<= 1) {
for (j=k>>1; j>0; j=j>>1) {
bitonicSortNaive<<<blocks, threads>>>(dev_values, j, k);
}
}
#endif
#ifdef ATOMIC
bitonicSortAtomic<<<blocks, threads>>>(dev_values, NUM_VALS);
#endif
cudaDeviceSynchronize();
cudaMemcpy(values, dev_values, size, cudaMemcpyDeviceToHost);
cudaFree(dev_values);
free(values);
}
__syncblocks_atomic is a function to implement global barrier. Since there is inter-block communication, I have to keep data consistency.
The CUDA programming guide states:
If a variable located in
global or shared memory is declared as volatile, the compiler assumes that its value
can be changed or used at any time by another thread and therefore any reference to
this variable compiles to an actual memory read or write instruction.
This basically means that the memory will be flushed immediately as you assign a value to the variable, and will be fetched directly from the memory (with no cache) when you try to read its value.
In you first code sample, since both A and B are volatile, 6 actual memory instructions are generated. One read/write each time you use either A or B. The good point is that other threads will be able to see that modifications earlier, while they are made. The downside is that the execution will be slower, because the caches will be disabled.
In your second code sample, on the other side, the GPU is authorized to use caches to accelerate its execution, until the end of the function, when it's forced to issue a memory write. If both A and B are already cached, only 2 memory writes are issued. The downside is that other threads might only be able to see the changed value after the fence.
Another thing you should consider is that operations are not atomic.
If other threads try to access A and B while your function is executing, they might see a partial execution of the function, in both cases. In the second code sample, this is a bit less likely to happen, because the thread will probably use its cached value, and flush the final values at once (anyway, you should not rely on this).
Also, volatile works as a faster version of __threadfence() among threads in the same warp (because threads in a warp act synchronously).
I found some difficulty when I try to access a global array from function that's executed from device:
float globTemp[3][3] = "some value in here";
__device__ float* globTemp_d;
__global__ void compute(int *a, int w)
{
int x = threadIdx.x + blockDim.x * blockIdx.x;
int y = threadIdx.y + blockDim.y * blockIdx.y;
int i = y*w+x;
if(x<3 && y<3)
a[i] = 1+globTemp_d[i];
}
int hostFunc(){
float *a_d;
cudaMalloc((void**)&a_d, 3*3*sizeof(int));
cudaMalloc((void**)&globTemp_d, 3*3*sizeof(int));
cudaMemcpy(globTemp_d,globTemp, 3*3*sizeof(float), cudaMemcpyHostToDevice);
compute<<<1,1>>>(a_d,3);
cudaMemcpy(a,a_d, 3*3*sizeof(float), cudaMemcpyDeviceToHost);
}
However, I get seg fault when i try to access globTemp_d[i]. Am I doing something wrong in here?
There are a variety of problems with your code:
Your grid is a 1D grid of 1D threadblocks (in fact you are launching a single block of 1 thread) but your kernel is written as if it were expecting a 2D threadblock structure (using .x and .y built-in variables). A single thread won't get the work done certainly, and a 1D threadblock won't work with your kernel code.
__device__ variables are not accessed with cudaMalloc and cudaMemcpy. We use a different set of API calls like cudaMemcpyToSymbol.
You're not doing any cuda error checking which is always recommended when you're having difficulty. You should do cuda error checking on both API calls and kernel calls.
You're mixing float variables (a_d ) with int variables in the kernel parameters (int *a) so I don't think this code would compile without at least a warning. And that can lead to strange behavior of course if you ignore it.
This is the closest I could come to your code while fixing all the errors:
#include <stdio.h>
__device__ float* globTemp_d;
__global__ void compute(float *a, int w)
{
int x = threadIdx.x + blockDim.x * blockIdx.x;
int y = threadIdx.y + blockDim.y * blockIdx.y;
int i = (y*w)+x;
if((x<3) && (y<3))
a[i] = 1.0f+globTemp_d[i];
}
int main(){
float *a_d, *d_globTemp;
float globTemp[3][3] = {0.1f, 0.2f, 0.3f, 0.4f, 0.5f, 0.6f, 0.7f, 0.8f, 0.9f};
float a[(3*3)];
dim3 threads(3,3);
dim3 blocks(1);
cudaMalloc((void**)&a_d, 3*3*sizeof(float));
cudaMalloc((void**)&d_globTemp, 3*3*sizeof(float));
cudaMemcpy(d_globTemp,globTemp, 3*3*sizeof(float), cudaMemcpyHostToDevice);
cudaMemcpyToSymbol(globTemp_d, &d_globTemp, sizeof(float *));
compute<<<blocks,threads>>>(a_d,3);
cudaMemcpy(a,a_d, 3*3*sizeof(float), cudaMemcpyDeviceToHost);
printf("results:\n");
for (int i = 0; i<(3*3); i++)
printf("a[%d] = %f\n", i, a[i]);
return 0;
}
This code can be simplified by dispensing with the __device__ variable and just passing d_globTemp as a parameter to the kernel, and using it in place of references to globTemp_d. However I did not make that simplification.