ScalaJson implicit Write, found: Any required: play.api.libs.json.Json.JsValueWrapper - json

I am building a web app using Scala / Play Framework and Reactive Mongo and I want the models to be defined in the database instead of having them hardcoded.
To do so, I am writing a class EntityInstance taking a Sequence of FieldInstance :
case class EntityInstance(fields: Seq[FieldInstance])
I am trying to accept fields from any types and to convert them to Json : example
new FieldInstance("name", "John") | json: { "name": "John" }
new FieldInstance("age", 18) | json: { "age": 18 }
At the moment I am trying to accept Strings, Booleans and Integers and if the type is not supported I write some error :
new FieldInstance("profilePicture", new Picture("john.jpg") | json: { "profilePicture": "Unsupported type
I wrote a FieldInstance class taking a fieldName as a String and a value as any type. As soon as that class is instantiated I cast the value to a known type or to the String describing the error.
class FieldInstance(fieldNamec: String, valuec: Any) {
val fieldName = fieldNamec
val value = valuec match {
case v: Int => v
case v: String => v
case v: Boolean => v
case _ => "Unrecognized type"
}
}
object FieldInstance {
implicit val fieldInstanceWrites = new Writes[FieldInstance] {
def writes(fieldInstance: FieldInstance) = Json.obj(
fieldInstance.fieldName -> fieldInstance.value
)
}
}
I created a companion object with an implicit Write to json so I can call "Json.toJson()" on an instance of FieldInstance and get a json as described on my examples above.
I get an error : found: Any required: play.api.libs.json.Json.JsValueWrapper
I understand that it comes from the fact that my value is of type Any but I thought the cast would change that Any to String || Boolean || Int before hitting the Writer.
PS: Ignore the bad naming of the classes, I could not name EntityInstance and FieldInstance, Entity and Field because these as the classes I use to describe my models.

I found a fix to my problem :
The type matching that I was doing in the class should be done in the implicit Write !
class FieldInstance(fieldNamec: String, valuec: Any) {
val fieldName = fieldNamec
val value = valuec
override def toString(): String = "(" + fieldName + "," + value + ")";
}
object FieldInstance {
implicit val fieldInstanceWrites = new Writes[FieldInstance] {
def writes(fieldInstance: FieldInstance) =
fieldInstance.value match {
case v: Int => Json.obj(fieldInstance.fieldName -> v.asInstanceOf[Int])
case v: String => Json.obj(fieldInstance.fieldName -> v.asInstanceOf[String])
case v: Boolean => Json.obj(fieldInstance.fieldName -> v.asInstanceOf[Boolean])
case _ => Json.obj(fieldInstance.fieldName -> "Unsupported type")
}
}
}
This code now allows a user to create an EntityInstance with Fields of Any type :
val ei = new EntityInstance(Seq[FieldInstance](new FieldInstance("name", "George"), new FieldInstance("age", 25), new FieldInstance("married", true)))
println("-- TEST ENTITY INSTANCE TO JSON --")
println(Json.toJson(ei))
prints : {"entity":[{"name":"George"},{"age":25},{"married":true}]}
Here is my EntityInstance code if you are trying to test it :
case class EntityInstance(fields: Seq[FieldInstance])
object EntityInstance {
implicit val EntityInstanceWrites = new Writes[EntityInstance] {
def writes(entityInstance: EntityInstance) =
Json.obj("entity" -> entityInstance.fields)
}
}

It is returning a String, Int or Boolean but Json.obj is expecting the value parameter of type (String, JsValueWrapper)
def obj(fields: (String, JsValueWrapper)*): JsObject = JsObject(fields.map(f => (f._1, f._2.asInstanceOf[JsValueWrapperImpl].field)))
a quick fix could be to convert the matched value v with toJson provided the implicit Writes[T] for type T is available (which they are for String, Int and Boolean)
class FieldInstance(fieldNamec: String, valuec: Any) {
val fieldName = fieldNamec
val value = valuec match {
case v: Int => Json.toJson(v)
case v: String => Json.toJson(v)
case v: Boolean => Json.toJson(v)
case _ => Json.toJson("Unrecognized type")
}
}
If you'd like to see which DefaultWrites are available you can browse them in the play.api.libs.json package in trait DefaultWrites
for example:
/**
* Serializer for Boolean types.
*/
implicit object BooleanWrites extends Writes[Boolean] {
def writes(o: Boolean) = JsBoolean(o)
}

Related

Scala Play: List to Json-Array

I've got a List which holds some Personalization-objects. The latter is defined like this:
sealed case class Personalization(firstname: String, lastname: String, keycardId: String)
I need to map this list to a Json-Array structure which has to look like this:
"personalization": [
{
"id": "firstname",
"value": "John"
},
{
"id": "lastname",
"value": "Doe"
}...
I am struggling with the part of mapping the field information to id/value pairs. Normally, I would create a play.api.libs.json.Format out of the Personalization class and let it map automatically -> Json.format[Personalization] - but this time, I need to create an array where an entry can hold n attributes.
Therefore I am asking for advice, if there is a possibility to use the Scala Play-Framework?
Any input is much appreciated, thank you!
Writing as such JSON representation is not quite complex, using Writes.transform.
import play.api.libs.json._
case class Personalization(firstname: String, lastname: String, keycardId: String) // No need to seal a case class
implicit def writes: Writes[Personalization] = {
val tx: JsValue => JsValue = {
case JsObject(fields) => Json.toJson(fields.map {
case (k, v) => Json.obj("id" -> k, "value" -> v)
})
case jsUnexpected => jsUnexpected // doesn't happen with OWrites
}
Json.writes[Personalization].transform(tx)
}
Which can be tested as bellow.
val personalization = Personalization(
firstname = "First",
lastname = "Last",
keycardId = "Foo")
val jsonRepr = Json.toJson(personalization)
// => [{"id":"firstname","value":"First"},{"id":"lastname","value":"Last"},{"id":"keycardId","value":"Foo"}]
Reading is a little bit tricky:
implicit def reads: Reads[Personalization] = {
type Field = (String, Json.JsValueWrapper)
val fieldReads = Reads.seq(Reads[Field] { js =>
for {
id <- (js \ "id").validate[String]
v <- (js \ "value").validate[JsValue]
} yield id -> v
})
val underlying = Json.reads[Personalization]
Reads[Personalization] { js =>
js.validate(fieldReads).flatMap { fields =>
Json.obj(fields: _*).validate(underlying)
}
}
}
Which can be tested as bellow.
Json.parse("""[
{"id":"firstname","value":"First"},
{"id":"lastname","value":"Last"},
{"id":"keycardId","value":"Foo"}
]""").validate[Personalization]
// => JsSuccess(Personalization(First,Last,Foo),)
Note that is approach can be used for any case class format.
Probably it is possible to do it a more elegant way I did, but you can use the following snippet:
case class Field(id: String, value: String)
object Field {
implicit val fieldFormatter: Format[Field] = Json.format[Field]
}
sealed case class Personalization(firstname: String, lastname: String, keycardId: String)
object Personalization {
implicit val personalizationFormatter: Format[Personalization] = new Format[Personalization] {
override def reads(json: JsValue): JsResult[Personalization] =
Try {
val data = (json \ "personalization").as[JsValue]
data match {
case JsArray(value) =>
val fields = value.map(_.as[Field]).map(f => f.id -> f.value).toMap
val firstname = fields.getOrElse("firstname", throw new IllegalArgumentException("Mandatory field firstname is absent."))
val lastname = fields.getOrElse("lastname", throw new IllegalArgumentException("Mandatory field lastname is absent."))
val keycardId = fields.getOrElse("keycardId", throw new IllegalArgumentException("Mandatory field keycardId is absent."))
Personalization(firstname, lastname, keycardId)
case _ => throw new IllegalArgumentException("Incorrect json format for Personalization.")
}
}.toEither.fold(e => JsError(e.getMessage), JsSuccess(_))
override def writes(o: Personalization): JsValue = {
val fields = List(Field("firstname", o.firstname), Field("lastname", o.lastname), Field("keycardId", o.keycardId))
JsObject(List("personalization" -> Json.toJson(fields)))
}
}
}
It converts {"personalization":[{"id":"firstname","value":"John"},{"id":"lastname","value":"Doe"},{"id":"keycardId","value":"1234"}]} to Personalization(John,Doe,1234) and vice versa

Using Shapeless HList to easily build Json Decoder

I am working on trying to write my own little lightweight toy Json library, and I am running into a roadblock trying to come up with an easy way to specify an Encoder/Decoder. I think Ive got a really nice dsl syntax, Im just not sure how to pull it off. I think it might be possible using Shapeless HList, but Ive never used it before, so Im drawing a blank as to how it would be done.
My thought was to chain these has calls together, and build up some sort of chain of HList[(String, J: Mapper)], and then if it is possible to have it behind the scenes try and convert a Json to a HList[J]?
Here is part of the implementation, along with how I imagine using it:
trait Mapper[J] {
def encode(j: J): Json
def decode(json: Json): Either[Json, J]
}
object Mapper {
def strict[R]: IsStrict[R] =
new IsStrict[R](true)
def lenient[R]: IsStrict[R] =
new IsStrict[R](false)
class IsStrict[R](strict: Boolean) {
def has[J: Mapper](at: String): Builder[R, J] =
???
}
class Builder[R, T](strict: Boolean, t: T) {
def has[J: Mapper](at: String): Builder[R, J] =
???
def is(decode: T => R)(encode: R => Json): Mapper[R] =
???
}
}
Mapper
.strict[Person]
.has[String]("firstName")
.has[String]("lastName")
.has[Int]("age")
.is {
case firstName :: lastName :: age :: HNil =>
new Person(firstName, lastName, age)
} { person =>
Json.Object(
"firstName" := person.firstName,
"lastName" := person.lastName,
"age" := person.age
)
}
There is a wonderful resource to learn how to use shapeless(HLIST plus LabelledGeneric) for that purpose:
Dave Gurnell´s The Type Astronaut’s Guide to Shapeless
In your case, given a product type like:
case class Person(firstName: String, lastName: String, age: Int)
The compiler should access to the names and the values of an instance of that type. The explanation about how the compiler is able to create a JSON representation at compile time is well described in the book.
In your example, you must use LabelledGeneric and try to create a generic encoder/decoder. It is a type class that creates a representation of your types as a HList where each element corresponds to a property.
For example, if you create a LabeledGeneric for your Person type
val genPerson = LabelledGeneric[Person]
the compiler infers the following type:
/*
shapeless.LabelledGeneric[test.shapeless.Person]{type Repr = shapeless.::[String with shapeless.labelled.KeyTag[Symbol with shapeless.tag.Tagged[String("firstName")],String],shapeless.::[String with shapeless.labelled.KeyTag[Symbol with shapeless.tag.Tagged[String("lastName")],String],shapeless.::[Int with shapeless.labelled.KeyTag[Symbol with shapeless.tag.Tagged[String("age")],Int],shapeless.HNil]]]}
*/
So, the names and the values are already represented using Scala types and now the compiler can derive JSON encoder/decoder instances at compile time. The code below shows the steps to create a generic JSON encoder(a summary from the chapter 5 of the book) that you can customize.
First step is to create a JSON algebraic data type:
sealed trait JsonValue
case class JsonObject(fields: List[(String, JsonValue)]) extends JsonValue
case class JsonArray(items: List[JsonValue]) extends JsonValue
case class JsonString(value: String) extends JsonValue
case class JsonNumber(value: Double) extends JsonValue
case class JsonBoolean(value: Boolean) extends JsonValue
case object JsonNull extends JsonValue
The idea behind all of this is that the compiler can take your product type and builds a JSON encoder object using the native ones.
A type class to encode your types:
trait JsonEncoder[A] {
def encode(value: A): JsonValue
}
For a first check, you can create three instances that would be necessary for the Person type:
object Instances {
implicit def StringEncoder : JsonEncoder[String] = new JsonEncoder[String] {
override def encode(value: String): JsonValue = JsonString(value)
}
implicit def IntEncoder : JsonEncoder[Double] = new JsonEncoder[Double] {
override def encode(value: Double): JsonValue = JsonNumber(value)
}
implicit def PersonEncoder(implicit strEncoder: JsonEncoder[String], numberEncoder: JsonEncoder[Double]) : JsonEncoder[Person] = new JsonEncoder[Person] {
override def encode(value: Person): JsonValue =
JsonObject("firstName" -> strEncoder.encode(value.firstName)
:: ("lastName" -> strEncoder.encode(value.firstName))
:: ("age" -> numberEncoder.encode(value.age) :: Nil))
}
}
Create an encode function that injects a JSON encoder instance:
import Instances._
def encode[A](in: A)(implicit jsonEncoder: JsonEncoder[A]) = jsonEncoder.encode(in)
val person = Person("name", "lastName", 25)
println(encode(person))
gives:
JsonObject(List((firstName,JsonString(name)), (lastName,JsonString(name)), (age,JsonNumber(25.0))))
Obviously you would need to create instances for each case class. To avoid that you need a function that returns a generic encoder:
def createObjectEncoder[A](fn: A => JsonObject): JsonObjectEncoder[A] =
new JsonObjectEncoder[A] {
def encode(value: A): JsonObject =
fn(value)
}
It needs a function A -> JsObject as parameter. The intuition behind this is that the compiler uses this function when traversing the HList representation of your type to create the type encoder, as it is described in the HList encoder function.
Then, you must create the HList encoder. That requires an implicit function to create the encoder for the HNil type and another for the HList itself.
implicit val hnilEncoder: JsonObjectEncoder[HNil] =
createObjectEncoder(hnil => JsonObject(Nil))
/* hlist encoder */
implicit def hlistObjectEncoder[K <: Symbol, H, T <: HList](
implicit witness: Witness.Aux[K],
hEncoder: Lazy[JsonEncoder[H]],
tEncoder: JsonObjectEncoder[T]): JsonObjectEncoder[FieldType[K, H] :: T] = {
val fieldName: String = witness.value.name
createObjectEncoder { hlist =>
val head = hEncoder.value.encode(hlist.head)
val tail = tEncoder.encode(hlist.tail)
JsonObject((fieldName, head) :: tail.fields)
}
}
The last thing that we have to do is to create an implicit function that injects an Encoder instance for a Person instance. It leverages the compiler implicit resolution to create a LabeledGeneric of your type and to create the encoder instance.
implicit def genericObjectEncoder[A, H](
implicit generic: LabelledGeneric.Aux[A, H],
hEncoder: Lazy[JsonObjectEncoder[H]]): JsonEncoder[A] =
createObjectEncoder { value => hEncoder.value.encode(generic.to(value))
}
You can code all these definitions inside the Instances object.
import Instances._
val person2 = Person2("name", "lastName", 25)
println(JsonEncoder[Person2].encode(person2))
prints:
JsonObject(List((firstName,JsonString(name)), (lastName,JsonString(lastName)), (age,JsonNumber(25.0))))
Note that you need to include in the HList encoder the Witness instance for Symbol. That allows to access the properties names at runtime. Remember that the LabeledGeneric of your Person type is something like:
String with KeyTag[Symbol with Tagged["firstName"], String] ::
Int with KeyTag[Symbol with Tagged["lastName"], Int] ::
Double with KeyTag[Symbol with Tagged["age"], Double] ::
The Lazy type it is necessary to create encoders for recursive types:
case class Person2(firstName: String, lastName: String, age: Double, person: Person)
val person2 = Person2("name", "lastName", 25, person)
prints:
JsonObject(List((firstName,JsonString(name)), (lastName,JsonString(lastName)), (age,JsonNumber(25.0)), (person,JsonObject(List((firstName,JsonString(name)), (lastName,JsonString(name)), (age,JsonNumber(25.0)))))))
Take a look to libraries like Circe or Spray-Json to see how they use Shapeless for codec derivation.
Try
implicit class StringOp(s: String) {
def :=[A](a: A): (String, A) = s -> a
}
implicit def strToJStr: String => Json.String = Json.String
implicit def dblToJNumber: Double => Json.Number = Json.Number
implicit def intToJNumber: Int => Json.Number = Json.Number(_)
sealed trait Json
object Json {
case class Object(fields: (scala.Predef.String, Json)*) extends Json
case class Array(items: List[Json]) extends Json
case class String(value: scala.Predef.String) extends Json
case class Number(value: Double) extends Json
case class Boolean(value: scala.Boolean) extends Json
case object Null extends Json
}
trait Mapper[J] {
def encode(j: J): Json
def decode(json: Json): Either[Json, J]
}
object Mapper {
implicit val `object`: Mapper[Json.Object] = ???
implicit val array: Mapper[Json.Array] = ???
implicit val stringJson: Mapper[Json.String] = ???
implicit val number: Mapper[Json.Number] = ???
implicit val boolean: Mapper[Json.Boolean] = ???
implicit val `null`: Mapper[Json.Null.type] = ???
implicit val json: Mapper[Json] = ???
implicit val int: Mapper[Int] = ???
implicit val string: Mapper[String] = ???
implicit val person: Mapper[Person] = ???
def strict[R]: IsStrict[R] =
new IsStrict[R](true)
def lenient[R]: IsStrict[R] =
new IsStrict[R](false)
class IsStrict[R](strict: Boolean) {
def has[A: Mapper](at: String): Builder[R, A :: HNil] =
new Builder(strict, at :: Nil)
}
class Builder[R, L <: HList](strict: Boolean, l: List[String]) {
def has[A: Mapper](at: String): Builder[R, A :: L] =
new Builder(strict, at :: l)
def is[L1 <: HList](decode: L1 => R)(encode: R => Json)(implicit
reverse: ops.hlist.Reverse.Aux[L, L1]): Mapper[R] = {
val l1 = l.reverse
???
}
}
}
Unfortunately this needs L1 to be explicitly specified for is
case class Person(firstName: String, lastName: String, age: Int)
Mapper
.strict[Person]
.has[String]("firstName")
.has[String]("lastName")
.has[Int]("age")
.is[String :: String :: Int :: HNil] {
case (firstName :: lastName :: age :: HNil) =>
new Person(firstName, lastName, age)
} { person =>
Json.Object(
"firstName" := person.firstName,
"lastName" := person.lastName,
"age" := person.age
)
}
otherwise it's Error: missing parameter type for expanded function.
The argument types of an anonymous function must be fully known.
One way to improve inference is to move implicit reverse to class Builder but this is less efficient: an HList will be reversed in every step , not only in the last step.
Another way is to introduce helper class
def is(implicit reverse: ops.hlist.Reverse[L]) = new IsHelper[reverse.Out]
class IsHelper[L1 <: HList]{
def apply(decode: L1 => R)(encode: R => Json): Mapper[R] = {
val l1 = l.reverse
???
}
}
but then apply (or other method name) should be explicit
Mapper
.strict[Person]
.has[String]("firstName")
.has[String]("lastName")
.has[Int]("age")
.is.apply {
case (firstName :: lastName :: age :: HNil) =>
new Person(firstName, lastName, age)
} { person =>
Json.Object(
"firstName" := person.firstName,
"lastName" := person.lastName,
"age" := person.age
)
}
otherwise compiler mistreats decode as reverse.

how to read json with an optional field serialized by a missing field, in upickle

I use upickle for serializing json in scalajs. I need to be able to parse optional fields, represented by a null value and by a missing field (standard json on the web).
With OptionPickler, I can accept nullable items.
However, how can I accept missing fields?
this example below handles the null name field, but it fails on the missing address field.
// from http://www.lihaoyi.com/upickle/ -> object OptionPickler
object OptionPickler extends upickle.AttributeTagged {
override implicit def OptionWriter[T: Writer]: Writer[Option[T]] =
implicitly[Writer[T]].comap[Option[T]] {
case None => null.asInstanceOf[T]
case Some(x) => x
}
override implicit def OptionReader[T: Reader]: Reader[Option[T]] = {
new Reader.Delegate[Any, Option[T]](implicitly[Reader[T]].map(Some(_))) {
override def visitNull(index: Int) = None
}
}
}
case class Person(id: Int, name: Option[String], address: Option[String])
implicit val personRW: OptionPickler.ReadWriter[Person] = OptionPickler.macroRW[Person]
val personJson = """{"id": 1, "name": null}"""
println(OptionPickler.read[Person](personJson))
Exception: upickle.core.Abort: missing keys in dictionary: address
I solved this problem. I have case class Request. I can get schema or not from request. I process this request as follows:
import upickle.default.{ReadWriter => RW, _}
case class Request(id: Long, name: String, schema: Option[String])
implicit lazy val deserializer: Reader[Request] =
reader[ujson.Obj].map[Request](json => Request(
read[Long](json("id")),
read[String](json("name")),
if (json.obj.contains("schema")) { Option(read[String](json("schema"))) } else None
)

In Json4s why does an integer field in a JSON object get automatically converted to a String?

If I have a JSON object like:
{
"test": 3
}
Then I would expect that extracting the "test" field as a String would fail because the types don't line up:
import org.json4s._
import org.json4s.jackson.JsonMethods
import org.json4s.JsonAST.JValue
def getVal[T: Manifest](json: JValue, fieldName: String): Option[T] = {
val field = json findField {
case JField(name, _) if name == fieldName => true
case _ => false
}
field.map {
case (_, value) => value.extract[T]
}
}
val json = JsonMethods.parse("""{"test":3}""")
val value: Option[String] = getVal[String](json, "test") // Was Some(3) but expected None
Is this automatic conversion from a JSON numeric to a String expected in Json4s? If so, are there any workarounds for this where the extracted field has to be of the same type that is specified in the type parameter to the extract method?
This is the default nature of most if not all of the parsers. If you request a value of type T and if the value can be safely cast to that specific type then the library would cast it for you. for instance take a look at the typesafe config with the similar nature of casting Numeric field to String.
import com.typesafe.config._
val config = ConfigFactory parseString """{ test = 3 }"""
val res1 = config.getString("test")
res1: String = 3
if you wanted not to automatically cast Integer/Boolean to String you could do something like this manually checking for Int/Boolean types as shown below.
if(Try(value.extract[Int]).isFailure || Try(value.extract[Boolean]).isFailure) {
throw RuntimeException(s"not a String field. try Int or Boolean")
} else {
value.extract[T]
}
One simple workaround is to create a custom serializer for cases where you want "strict" behavior. For example:
import org.json4s._
val stringSerializer = new CustomSerializer[String](_ => (
{
case JString(s) => s
case JNull => null
case x => throw new MappingException("Can't convert %s to String." format x)
},
{
case s: String => JString(s)
}
))
Adding this serializer to your implicit formats ensures the strict behavior:
implicit val formats = DefaultFormats + stringSerializer
val js = JInt(123)
val str = js.extract[String] // throws MappingException

Try to update\fetch Postgres json column into JsValue using anorm [duplicate]

I am using anorm to query and save elements into my postgres database.
I have a json column which I want to read as class of my own.
So for example if I have the following class
case class Table(id: Long, name:String, myJsonColumn:Option[MyClass])
case class MyClass(site: Option[String], user:Option[String])
I am trying to write the following update:
DB.withConnection { implicit conn =>
val updated = SQL(
"""UPDATE employee
|SET name = {name}, my_json_column = {myClass}
|WHERE id = {id}
""".stripMargin)
.on(
'name -> name,
'myClass -> myClass,
'custom -> id
).executeUpdate()
}
}
I also defined a implicit convertor from json to my object
implicit def columnToSocialData: Column[MyClass] = anorm.Column.nonNull[MyClass] { (value, meta) =>
val MetaDataItem(qualified, nullable, clazz) = meta
value match {
case json: org.postgresql.util.PGobject => {
val result = Json.fromJson[MyClass](Json.parse(json.getValue))
result.fold(
errors => Left(TypeDoesNotMatch(s"Cannot convert $value: ${value.asInstanceOf[AnyRef].getClass} to Json for column $qualified")),
valid => Right(valid)
)
}
case _ => Left(TypeDoesNotMatch(s"Cannot convert $value: ${value.asInstanceOf[AnyRef].getClass} to Json for column $qualified"))
}
And the error I get is:
type mismatch;
found : (Symbol, Option[com.MyClass])
required: anorm.NamedParameter
'myClass -> myClass,
^
The solution is just to add the following:
implicit val socialDataToStatement = new ToStatement[MyClass] {
def set(s: PreparedStatement, i: Int, myClass: MyClass): Unit = {
val jsonObject = new org.postgresql.util.PGobject()
jsonObject.setType("json")
jsonObject.setValue(Json.stringify(Json.toJson(myClass)))
s.setObject(i, jsonObject)
}
}
and:
implicit object MyClassMetaData extends ParameterMetaData[MyClass] {
val sqlType = "OTHER"
val jdbcType = Types.OTHER
}