I am completely new to mobile development and i interested to hybrid apps and of course Intel XDK. When i reading Intel XDK's documentations i faced to "runtime" word.
What is mean of this phrase and actually what is it's mean when they saying
Crosswalk is a HTML5 runtime, ...
in their blog post.
Apologize me if I asking one of stackoverflow's stupid questions.
"Runtime" generally refers to the time a program runs, as opposed to other times in the programs life cycle like compile time. Software is typically written, then compiled, then deployed or installed, then run. These different phases are often referred to as "compile time", "install time" and "runtime". E.g. "at compile time, the compiler will ...".
"A runtime" is a software package that is necessary at, well, runtime. E.g. a library, interpreter, virtual machine or other such supporting packages. Crosswalk is a system that takes in HTML 5 "apps" (including HTML, Javascript etc.) and, well, makes them work. Executes them. Runs them. It's essentially a browser engine, but not packaged as a browser, just as a system that can interpret and run HTML 5, which you can embed into whatever other software you want.
So you could write your application in HTML 5; then to make that work like a native desktop application which can be downloaded and installed, you write a tiny Windows application and an OS X application which basically just contains Crosswalk, which runs your actual application inside it, cross-platform.
Run-time - the length of time it takes to execute a software program
The Intel XDK includes the Crosswalk runtime as a supported target of the cloud-based build service.
Crosswalk runtime can be used for creating HTML5 application with a dedicated runtime that can be run on multiple platforms without any dependency for webview. It can be used for creating application that uses HTML5 features like WebRTC, hardware-accelerated WebGL support and bleeding edge HTML5 features.
For more information please follow this resources..
crosswalk-runtime
more resources : Using the Intel XDK “Crosswalk for Android”
Now that TideSDK is effectively dead, I've been looking into alternative 'wrappers' to run HTML/CSS/JS applications as stand-alone desktop applications. The three viable options I have run across so far, are NW.js (formerly node-webkit), brackets-shell, and Electron (formerly atom-shell).
The problem is that there does not appear to be a sufficiently complete comparison between the three in terms of feature set, compatibility, etc. I'm hoping to turn this into a more-or-less canonical thread on the (objective) differences between the three, in particular regarding:
Platform support; operating systems, dependencies, etc.
Language feature support, as far as HTML5, CSS3 and JavaScript are concerned. Think things like "does HTML5 video work, and if yes, what codecs are available?"
Non-standard extra features, such as tray icons, popup notifications, and OS-rendered menu bars.
Extensibility; eg. ability to 'plug in' native code, talk to Node.js, and so on.
Architecture; in particular the architectural differences that affect daily usage as a developer.
Debugging; included development tools, compatibility with commonly used tools like node-inspector, etc.
... and so on.
What are the objective, technical differences that matter when making a choice between them as an application developer?
I did similar research about two months ago, and in the end I went with node-webkit. The biggest upside on node-webkit is node.js and npm. The package management of npm is really nice, and node has well done filesystem access.
Brackets-shell looked interesting, but other than a nice IDE I didn't really get what made this one as good or better than the rest. They are very clear that "The brackets-shell is only maintained for use by the Brackets project ", that screams run away to me.
https://github.com/adobe/brackets-shell#overview
Atom-shell seems to be recently active, but it seems much like brackets in that they are really writing and editor/IDE that just happens to be attached to a webkit runtime. It also is built on top of node.js. This one has the downside of being difficult to search for stuff online without being reminded of your middle school chemistry.
I really don't want an new editor, and most programmers have their favorite already. For the actual application development, they pretty much work the same, and should, since they all use webkit. You basically write 90-95% of it like a website, and then deal with the native parts, and some config.
These things are true for all three of them
platforms - runs on Windows, Mac, and Linux
language support - HTML5, CSS3 and Javascript : since they run javascript you can download and run nearly any library/framework that you want.
The big caveat on webkit is codec support. Typically you will have problems with non-free video codecs, unless you rebuild the dll/so to support them. For example the shipped node-webkit won't play mp4 video.
I've been playing with Atom-Shell over the last few days, and I am loving it so far.
The best part about it is that it's backed by GitHub.. which should allow you to settle into the platform for the long term, especially if it gains a large following. It's also made possible by direct Node.js improvements courtesy of a contract with StrongLoop, who is a major Node.js contributor (they claim to employ more Node.js core developers than any other company, even Joyent).
I've also found it rather comfortable to get started. It took me about a day to learn the structure and get my first proof of concept running. Very cool.
Bullet Points:
Platform support: Windows, Linux, Mac OSX (More Info Here)
Language feature support: HTML5, CSS3, JS via Chromium - so far, zero issues, but I have not tested video specifically.
Native Features: Native App Menus, Task Tray Support, Global Hotkeys, Protocol Handler Support (that I've seen so far)
Extensibility: Excellent Node.js integration, both the client and server can "require" Node.js modules and natives. I've also successfully tested Bower libraries (incl jQuery) without issue.
Architecture: Covered in the other points, but in general its very smooth.
Update (11/25/14): I've not yet found use case for Atom-Shell in any official capacity, but I have used it to build a few small apps for my own use, the most complex being an app that pulls my time logs from my PM software and creates Paypal invoices.
My opinion of the platform remains positive. It's pretty awesome.
On my time invoicing app I successfully brought in Bootstrap 3's Dashboard Example Template and a few node modules (bluebird, Paypal SDK, Teamwork PM Client) to create a mildly complex app. It took me a few days and does its job well.
I really cannot think of anything negative to say about Atom-Shell, its solid, stable, fast, and easy to code for. I hope this helps someone.
Besides fully support Web standards, NW.js supports a list of non-standard features for native app development including:
Protect JS source code by compiling them into machine code: https://github.com/nwjs/nw.js/wiki/Protect-JavaScript-source-code-with-v8-snapshot
Jailed devtools: https://github.com/nwjs/nw.js/wiki/Devtools-jail-feature
Additional security model with which you can do more in DOM: https://github.com/nwjs/nw.js/wiki/Security https://github.com/nwjs/nw.js/wiki/Changes-to-DOM
enhanced file dialog: https://github.com/nwjs/nw.js/wiki/File-dialogs
kiosk mode: https://github.com/nwjs/nw.js/wiki/The-Kiosk-mode
supports for a growing list of chrome.* API, include chrome.webRequest so you can intercept HTTP requests from DOM: https://github.com/nwjs/nw.js/issues/518
support for rich notifications, print preview, many more chrome.* APIs, Chrome Apps and other Chromium features starting from 0.13.0-alpha0
There is much more to see in the wiki including Menu, Tray, etc.
I've been working with brackets-shell for some time now, here are some of my findings:
brackets-shell is primarily developed as a shell under the brackets IDE project, but the project can run any web application. You just need to point it to your own html page. Clint Berry wrote an excellent tutorial about doing just this: http://clintberry.com/2013/html5-desktop-apps-with-brackets-shell/
The project is backed by Adobe and has a lot of activity
Documentation could be better
platform support They support Windows, Mac and Linux. An installer package can also be created. I only tested it on Win and Mac, it works great.
feature support html5, css3, js. Html5 video does not work out of the box, but is very easy to enable (by default the ffmpegsumo.dll is not copied into the installer, if you change the script to copy it it will work).
native features menu bar, 'open file with', file system access. I am not using any of these, as all I need is the communication with the node process.
extensibility a nodejs is built in, and you can communicate with node from your web application. In this way, you can use node to access the filesystem etc.
architecture The project is well set up, keeping a nice separation between the shell project and your own web app running inside it. In your own application, a global appshell object is available which gives you access to the brackets functionality (filesystem access, communication with node process, ...).
One thing to note (if you care), is that the Electron officially does not support Windows Vista. Vista's market share is about halfway between OSX 10.9 and 10.10 (both of which are fully supported by Electron). Vista is also still supported by Microsoft until 2017.
NW.js works fine in Vista, as well as OSX 10.9+. NW.js works on Ubuntu, Debian, Zorin, Manjaro, Arch, and most other Debian based Linux OS's. Electron has refused PR's to fix Ubuntu specific bugs on their platform which is concerning.
NW.js works in XP too. Currently 18% of the market is still on XP. So if you're desktop application is more general purpose or wants to have access to the late adopters still on XP, you're probably better off with NW.js (0.14.7) as Electron only supports Win 7 and up.
If you use NW.js 0.12.3 you can also support OSX 10.6+ and very old versions of Debian based Linux OS's like Ubuntu, and Win XP+. It is recommended that you do special builds just for those legacy systems though and use the newer versions of NW.js for newer OS's.
What would be my best bet for trying to roll my own libraries when I want to launch Minecraft on an ARM device? Standard Mojang repositories only have x86 versions of LWJGL in particular, and trying to overwrite the copies in .minecraft/libraries with armhf version triggered a corrupt file error and a redownload cycle with the x86 version.
I think you are wanting to run Minecraft on mobile? Correct me if this is incorrect, Because LWJGL is already compatible with ARM, it doesn't even care which CPU it is running on (e.g AMD CPUs are ARM) because the two main APIs it is using (Java and OpenGL) both don't either - It even supports all OSs because of this too, it's just preferred that you use 64-bit libraries on 64-bit systems for speed purposes, you can always just use 32-bit even.
I would also like to clear up that Mojang did not make LWJGL so searching their repositories isn't the place to look. Plus if it were possible to simply change the natives they would have done that instead of make it again..
How can we render images, other than *.dds, on to the "DrawingSurface" using DirectX3D in Windows Phone 8?
"CreateXXXTextureFromFile" (where XXX is DDS or WIC) is available but
WIC is not supported for Windows Phone 8.
Any help will be highly appreciated.
WIC is in-fact not supported on WP8. I'm not a DirectX expert (far from it) but as far I understand you have two options:
Change your app to a Mixed XAML+D3D app and use XAML to overlay images on top of your app. obviously that has signifcant performance implications due to the additional intermidary surface required by the GPU.
Convert your images to a format that doesn't require WIC before compile time. The
Texconv tool that ships in the DirectXTex project should be able to support that... http://directxtex.codeplex.com/wikipage?title=Texconv&referringTitle=Documentation
Under windows, there are two main 3D libraries. I am wondering WebGL use which? is it configurable? Is it configurable per browser?
Google Chrome and Firefox will by default make use of ANGLE wrapper to convert OpenGL API calls to Direct3D 9.0 (to achieve better compatibility with most hardware). Users can change this default behavior but it seems to be very inconvenient to override this (currently it's not possible to change this settings programatically).
All other major browsers (on windows) will use OpenGL.
I am wondering WebGL use which?
Depends on the browser and the OS.
is it configurable?
Depends on the browser.
Is it configurable per browser?
You mean JavaScript? No.
But why do you care?
Chrome and Firefox use ANGLE so that they work out of the box on a Windows system with only the default drivers supplied by Microsoft installed. For a proper OpenGL implementation installed the user needs to have downloaded and installed the original drivers from the HW vendor. If not, all you get is a rather crappy OpenGL-1.4 implementation/emulation built upon Direct3D 9.