Mysql, In my matrix, an index is not used - mysql

given this table:
CREATE TABLE `matrix` (
`id` int(10) unsigned NOT NULL AUTO_INCREMENT,
`city1_id` int(10) unsigned NOT NULL DEFAULT '0',
`city2_id` int(10) unsigned NOT NULL DEFAULT '0',
`timeinmin` mediumint(8) unsigned NOT NULL DEFAULT '0',
`distancem` mediumint(8) unsigned NOT NULL DEFAULT '0',
`OWNER` int(10) unsigned NOT NULL DEFAULT '0',
PRIMARY KEY (`id`),
UNIQUE KEY `city12_index` (`city1_id`,`city2_id`),
UNIQUE KEY `city21_index` (`city2_id`,`city1_id`),
KEY `city1_index` (`city1_id`),
KEY `city2_index` (`city2_id`),
KEY `ownerIndex` (`OWNER`),
CONSTRAINT `PK_city_city1` FOREIGN KEY (`city1_id`) REFERENCES `city` (`id`) ON DELETE CASCADE ON UPDATE CASCADE,
CONSTRAINT `PK_city_city2` FOREIGN KEY (`city2_id`) REFERENCES `city` (`id`) ON DELETE CASCADE ON UPDATE CASCADE
) ENGINE=InnoDB AUTO_INCREMENT=5118409 DEFAULT CHARSET=utf8;
there are very huge amount of datas.
This SQL runs very fast:
select count(*) from city_matrix where owner=1
since there is index on "owner"
select count(*) from city_matrix where owner=1 order by id
this also runs very fast. But this:
select count(*) from city_matrix where owner=1 order by city1_id
requires some seconds, BUT there is index on city1_id too!
The explain tells this:
1, 'SIMPLE', 'city_matrix', '', 'ref', 'ownerIndex', 'ownerIndex', '4', 'const', 169724, 100.00, ''

This is a great question. MySQL determines the right index based on many different cases. Its main goal is to find the most suitable index that can retrieve the data fast.
select count(*) from city_matrix where owner=1 order by id
In this query, MySQL determined that where owner=1 reduced the results to a small enough number that ordering by ID was relatively easy. For example, if ID is also a key (primary/unique/index), which I suspect it is, MySQL could take advantage of ID for sorting.
In case of this:
select count(*) from city_matrix where owner=1 order by city1_id
MySQL can still filter out all the records for owner but will take time to shuffle all the city1_id data so that you receive sorted result. Since it took time, show processlist during that time could have showed you that the query was reordering data.
To help MySQL do the job faster, we can use something called a covering index. Covering index has all fields used in the query so that MySQL just has to read through the index to get you the data without having to touch the underlying table. A composite index on owner and city1_id will help MySQL use one single index to filter data, and that same index again to sort data and then do a count on it.
So, let's create the covering index:
create index idx_city_matrix_city1_owner on city_matrix(owner, city1_id)
As you noticed, MySQL took some time to make the index and once the index was ready, it could zip through data pretty quickly to give you counts.
EDIT: It is important to note that when you do count(*) like the statements about do, you don't need ordering. The resultset is scalar - just one value. Ordering by any field does not impact your count. For example, count all the fruits on the table will give you the same results as count all the fruits on the table ordered by its size.

The process for retrieval and index application is as follows:
The intermediate result which is retrieved by MySQL for the key owner is "stored" in a temporary table (either in memory or on disk depending on the size of the result).
Based on histogram data on the intermediate result an index can be applied. If the data is not unique enough, the index can be discarded as not useful (for example: There are only 5 cities in this 169k results).
Work around:
Apply the index with a hint: This is considered poor since it can lead to unwanted index use speeding up one query and slowing down the next one (Yes, an index can make a query slower);
Create a multi column index which contains both the owner and city1_id.
One last remark
An order by on a COUNT(*) always slows down everything since the order by does not change anything of your result.

Related

MySQL query is slower after index create [duplicate]

At first i will write some information about my test table.
This is books table with 665647 rows of data.
Below you can see how it looks.
I made 10 same queries for books with price equal
select * from books where price = 10
Execution time for all 10 queries was 9s 663ms.
After that i created index which you can see here:
i tried to run same 10 queries one more time.
Execution time for them was 21s 996ms.
show index from books;
Showed very wired data for me.
Possible value is just one!
What did i wrong? I was sure indexes are thing that can make our queries faster, not slower.
i found this topic : MySQL index slowing down query
but to be honest i dont really understand this especially Cardinality column
in my table books i have two possible values for price field at this moment
10 and 30 still show index from books; shows 1
#Edit1
SHOW CREATE TABLE books
Result:
CREATE TABLE `books` (
`id` bigint unsigned NOT NULL AUTO_INCREMENT,
`name` varchar(255) COLLATE utf8mb4_unicode_ci NOT NULL,
`description` text COLLATE utf8mb4_unicode_ci NOT NULL,
`isbn` bigint unsigned NOT NULL,
`price` double(8,2) unsigned NOT NULL,
`created_at` timestamp NULL DEFAULT NULL,
`updated_at` timestamp NULL DEFAULT NULL,
`author_id` bigint unsigned NOT NULL,
PRIMARY KEY (`id`),
UNIQUE KEY `books_isbn_unique` (`isbn`),
KEY `books_author_id_foreign` (`author_id`),
KEY `books_price_index` (`price`),
CONSTRAINT `books_author_id_foreign` FOREIGN KEY (`author_id`) REFERENCES `users` (`id`) ON DELETE CASCADE
) ENGINE=InnoDB AUTO_INCREMENT=665648 DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_unicode_ci
#Edit2
I added new index create index nameIndex on books (name)
Which have big Cardinality value.
When i tried to do this query select * from books where name ='Inventore cumque quis.'
Before and after index create i can see the difference in execution time.
But still i dont understand how index'es works. I was sure about one thing - if i create new index in my database is creating new data structure with data which fit to this index.
For example if i have orws with price 10, 30 i got two "Tables" where are rows with these prices.
Is it realistic to have so many rows with the same price? Is it realistic to return 444K rows from a query? I ask these because query optimization is predicated on "normal" data.
An index (eg, INDEX(price)) is useful when looking for a price that occurs a small number of times. In fact, the Optimizer shuns the index if it sees that the value being searched for occurs more than about 20% of the time. Instead, it would simply ignore the index and do what you tested first--simply scan the entire table, ignoring any rows that don't match.
You should be able to see that by doing
EXPLAIN select * from books where price = 10
with and without the index. Alternatively, you can try:
EXPLAIN select * from books IGNORE INDEX(books_price_index) where price = 10
EXPLAIN select * from books FORCE INDEX(books_price_index) where price = 10
But, ... It seems that the Optimizer did not ignore the index. I see that the "cardinality" of price is "1", which implies that there is only one distinct value in that column. This 'statistic' is either incorrect or misleading. Please run this and see what changes:
ANALYZE TABLE books;
This will recompute the stats via a few random probes, and may change that "1" to perhaps "2".
General advice: Beware of benchmarks that run against fabricated data.
Maybe this?
https://stackoverflow.com/questions/755569/why-does-the-cardinality-of-an-index-in-mysql-remain-unchanged-when-i-add-a-new
Cardinality didnt get updated after index was created. Try to run the analyze table command.

MySQL query is slower after index create

At first i will write some information about my test table.
This is books table with 665647 rows of data.
Below you can see how it looks.
I made 10 same queries for books with price equal
select * from books where price = 10
Execution time for all 10 queries was 9s 663ms.
After that i created index which you can see here:
i tried to run same 10 queries one more time.
Execution time for them was 21s 996ms.
show index from books;
Showed very wired data for me.
Possible value is just one!
What did i wrong? I was sure indexes are thing that can make our queries faster, not slower.
i found this topic : MySQL index slowing down query
but to be honest i dont really understand this especially Cardinality column
in my table books i have two possible values for price field at this moment
10 and 30 still show index from books; shows 1
#Edit1
SHOW CREATE TABLE books
Result:
CREATE TABLE `books` (
`id` bigint unsigned NOT NULL AUTO_INCREMENT,
`name` varchar(255) COLLATE utf8mb4_unicode_ci NOT NULL,
`description` text COLLATE utf8mb4_unicode_ci NOT NULL,
`isbn` bigint unsigned NOT NULL,
`price` double(8,2) unsigned NOT NULL,
`created_at` timestamp NULL DEFAULT NULL,
`updated_at` timestamp NULL DEFAULT NULL,
`author_id` bigint unsigned NOT NULL,
PRIMARY KEY (`id`),
UNIQUE KEY `books_isbn_unique` (`isbn`),
KEY `books_author_id_foreign` (`author_id`),
KEY `books_price_index` (`price`),
CONSTRAINT `books_author_id_foreign` FOREIGN KEY (`author_id`) REFERENCES `users` (`id`) ON DELETE CASCADE
) ENGINE=InnoDB AUTO_INCREMENT=665648 DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_unicode_ci
#Edit2
I added new index create index nameIndex on books (name)
Which have big Cardinality value.
When i tried to do this query select * from books where name ='Inventore cumque quis.'
Before and after index create i can see the difference in execution time.
But still i dont understand how index'es works. I was sure about one thing - if i create new index in my database is creating new data structure with data which fit to this index.
For example if i have orws with price 10, 30 i got two "Tables" where are rows with these prices.
Is it realistic to have so many rows with the same price? Is it realistic to return 444K rows from a query? I ask these because query optimization is predicated on "normal" data.
An index (eg, INDEX(price)) is useful when looking for a price that occurs a small number of times. In fact, the Optimizer shuns the index if it sees that the value being searched for occurs more than about 20% of the time. Instead, it would simply ignore the index and do what you tested first--simply scan the entire table, ignoring any rows that don't match.
You should be able to see that by doing
EXPLAIN select * from books where price = 10
with and without the index. Alternatively, you can try:
EXPLAIN select * from books IGNORE INDEX(books_price_index) where price = 10
EXPLAIN select * from books FORCE INDEX(books_price_index) where price = 10
But, ... It seems that the Optimizer did not ignore the index. I see that the "cardinality" of price is "1", which implies that there is only one distinct value in that column. This 'statistic' is either incorrect or misleading. Please run this and see what changes:
ANALYZE TABLE books;
This will recompute the stats via a few random probes, and may change that "1" to perhaps "2".
General advice: Beware of benchmarks that run against fabricated data.
Maybe this?
https://stackoverflow.com/questions/755569/why-does-the-cardinality-of-an-index-in-mysql-remain-unchanged-when-i-add-a-new
Cardinality didnt get updated after index was created. Try to run the analyze table command.

Flat MySQL table with enum-based filters is unexpectedly slow

I have a site where there is an activity feed, similar to how social sites like Facebook have one. It is a "newest first" list that describes actions taken by users. In production, there's about 200k entries in that table.
Since this is going to be asked anyway, I'll first share the full table structure:
CREATE TABLE `karmalog` (
`id` int(11) NOT NULL auto_increment,
`guid` char(36) default NULL,
`user_id` int(11) default NULL,
`user_name` varchar(45) default NULL,
`user_avat_url` varchar(255) default NULL,
`user_sec_id` int(11) default NULL,
`user_sec_name` varchar(45) default NULL,
`user_sec_avat_url` varchar(255) default NULL,
`event` enum('EDIT_PROFILE','EDIT_AVATAR','EDIT_EMAIL','EDIT_PASSWORD','FAV_IMG_ADD','FAV_IMG_ADDED','FAV_IMG_REMOVE','FAV_IMG_REMOVED','FOLLOW','FOLLOWED','UNFOLLOW','UNFOLLOWED','COM_POSTED','COM_POST','COM_VOTE','COM_VOTED','IMG_VOTED','IMG_UPLOAD','LIST_CREATE','LIST_DELETE','LIST_ADMINDELETE','LIST_VOTE','LIST_VOTED','IMG_UPD','IMG_RESTORE','IMG_UPD_LIC','IMG_UPD_MOD','IMG_GEO','IMG_UPD_MODERATED','IMG_VOTE','IMG_VOTED','TAG_FAV_ADD','CLASS_DOWN','CLASS_UP','IMG_DELETE','IMG_ADMINDELETE','IMG_ADMINDELETEFAV','SET_PASSWORD','IMG_RESTORED','IMG_VIEW','FORUM_CREATE','FORUM_DELETE','FORUM_ADMINDELETE','FORUM_REPLY','FORUM_DELETEREPLY','FORUM_ADMINDELETEREPLY','FORUM_SUBSCRIBE','FORUM_UNSUBSCRIBE','TAG_INFO_EDITED','IMG_ADDSPECIE','IMG_REMOVESPECIE','SPECIE_ADDVIDEO','SPECIE_REMOVEVIDEO','EARN_MEDAL','JOIN') NOT NULL,
`event_type` enum('follow','tag','image','class','list','forum','specie','medal','user') NOT NULL,
`active` bit(1) NOT NULL,
`delete` bit(1) NOT NULL default '\0',
`object_id` int(11) default NULL,
`object_cache` text,
`object_sec_id` int(11) default NULL,
`object_sec_cache` text,
`karma_delta` int(11) NOT NULL,
`gold_delta` int(11) NOT NULL,
`newkarma` int(11) NOT NULL,
`newgold` int(11) NOT NULL,
`migrated` int(11) NOT NULL default '0',
`date_created` timestamp NOT NULL default '0000-00-00 00:00:00',
PRIMARY KEY (`id`),
KEY `user_id` (`user_id`),
KEY `user_sec_id` (`user_sec_id`),
KEY `image_id` (`object_id`),
KEY `date_event` (`date_created`,`event`),
KEY `event` (`event`),
KEY `date_created` (`date_created`),
CONSTRAINT `karmalog_ibfk_1` FOREIGN KEY (`user_id`) REFERENCES `user` (`id`) ON DELETE SET NULL,
CONSTRAINT `karmalog_ibfk_2` FOREIGN KEY (`user_sec_id`) REFERENCES `user` (`id`) ON DELETE SET NULL
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
Before optimizing this table, my query had 5 joins and I ran into slow query times. I have denormalized all of that data, so that not a single join is there anymore. So the table and query is flat.
As you can see in the table design, there's an "event" field which is an enum, holding a few dozen possible values. Throughout the site, I show activity feeds based on specific event types. Typically that query looks like this:
SELECT * FROM karmalog as k
WHERE k.event IN ($events) AND k.delete=0
ORDER BY k.date_created DESC, k.id DESC
LIMIT 0,30
What this query does is to find the latest 30 entries in the total set that match any of the events passed in $events, which can be multiple.
Due to removing the joins and having indices on most fields, I was expecting this to perform very well, but it doesn't. On 200k entries, it still takes over 3 seconds and I don't understand why.
Regarding solutions, I know I could archive older entries or partition the table per event type, but that will have quite a code impact, and I first would like to understand why the above is so slow.
As a temporary work-around, I'm now doing this:
SELECT * FROM
(SELECT * FROM karmalog ORDER BY date_created DESC, id DESC LIMIT 0,1000) as karma
WHERE karma.event IN ($events) AND karma.delete=0
LIMIT $page,$pagesize
What this does is to limit the baseset to search in to the latest 1000 entries only, hoping and guessing that there's 30 entries to be found for the filters that I pass in. It's not very robust though. It will not work for more rare events, and it brings pagination issues.
Therefore, I first like to get to the root cause of why my initial query is slow, against my expectation.
Edit: I was asked to share the execution plan. Here's the test query:
EXPLAIN SELECT * FROM karmalog
WHERE event IN ('FAV_IMG_ADD','FOLLOW','COM_POST','IMG_VOTE','LIST_VOTE','JOIN','CLASS_UP','LIST_CREATE','FORUM_REPLY','FORUM_CREATE','FORUM_SUBSCRIBE','IMG_GEO','IMG_ADDSPECIE','SPECIE_ADDVIDEO','EARN_MEDAL') AND karmalog.delete=0
ORDER BY date_created DESC, id DESC
LIMIT 0,36
Execution plan:
id = 1
select_type = SIMPLE
table = karmalog
type = range
possible_keys = event
key = event
key_len = 1
red = NULL
rows = 80519
Extra = Using where; Using filesort
I'm not sure how to read into the above, but I do know that the sort clause really seems to kill this query. With this sorting, it takes 4.3 secs, without 0.03 secs.
SELECT * sometimes slows down ordered queries by a huge amount, so let's start by refactoring your query as follows:
SELECT k.*
FROM karmalog AS k
JOIN (
SELECT id
FROM karmalog
WHERE event IN ($events)
AND delete=0
ORDER BY date_created DESC, id DESC
LIMIT 0,30
) AS m ON k.id = m.id
ORDER BY k.date_created DESC, k.id DESC
This will do your ORDER BY ... LIMIT operation without having to haul the whole table around in the sorting phase. Finally it will look up the appropriate thirty rows from the original table and sort just those again. This might save a whole lot of I/O and in-memory data shuffling.
Second, if id column values are assigned in ascending order as records are inserted, then the use of date_created in your ORDER BY operation is redundant. But MySQL doesn't know that, so leaving it out might help. This will be true if you always use the current date when inserting, and never update the dates.
Third, you might be able to use a compound covering index for the selection (inner) query. This is an index that contains all the fields you need. When you use a covering index, the whole query can be satisfied from the index, and there's no need to bounce back to the original table. This saves disk access time.
Try this compound covering index: (delete, event, id). If you decide you can't get rid of the use of date_created in your ordering, try this instead: (delete, event, date_created, id)
Add a compound index over the two relevant questions. In your table, you can do that by specifying e.g.
KEY `date_created` (`date_created`, `event`)
This key can still be used to satisfy plain old date_created range searching. But in addition to that, the event data is included as well, so the DBS will be able to detect the relevant rows by only looking at the index.
If you want, you can try the other order as well: first event and then date. This might allow some optimization if there are many event types but your filter only contains few. On the other hand, I'm not sure the system will be able to make use of the LIMIT clause in this case, so I'm not certain that this other order will be any help at all.
Edit: I completely missed that your date_event index already has this info. According to your execution plan, though, that one isn't used. Looks like the optimizer is getting things wrong. You could try removing the event index, and perhaps the date index as well, and see what happens then.

Count the number of rows between unix time stamps for each ID

I'm trying to populate some data for a table. The query is being run on a table that contains ~50 million records. The query I'm currently using is below. It counts the number of rows that match the template id and are BETWEEN two unix timestamps:
SELECT COUNT(*) as count FROM `s_log`
WHERE `time_sent` BETWEEN '1346904000' AND '1346993271'
AND `template` = '1'
While the query above does work, performance is rather slow while looping through each template which at times can be in the hundreds. The time stamps are stored as int and are properly indexed. Just to test thing out, I tried running the query below, omitting the time_sent restriction:
SELECT COUNT(*) as count FROM `s_log`
AND `template` = '1'
As expected, it runs very fast, but is obviously not restricting count results inside the correct time frame. How can I obtain a count for a specific template AND restrict that count BETWEEN two unix timestamps?
EXPLAIN:
1 | SIMPLE | s_log | ref | time_sent,template | template | 4 | const | 71925 | Using where
SHOW CREATE TABLE s_log:
CREATE TABLE `s_log` (
`id` int(255) NOT NULL AUTO_INCREMENT,
`email` varchar(255) NOT NULL,
`time_sent` int(25) NOT NULL,
`template` int(55) NOT NULL,
`key` varchar(255) NOT NULL,
`node_id` int(55) NOT NULL,
`status` varchar(55) NOT NULL,
PRIMARY KEY (`id`),
KEY `email` (`email`),
KEY `time_sent` (`time_sent`),
KEY `template` (`template`),
KEY `node_id` (`node_id`),
KEY `key` (`key`),
KEY `status` (`status`),
KEY `timestamp` (`timestamp`)
) ENGINE=MyISAM AUTO_INCREMENT=2078966 DEFAULT CHARSET=latin1
The best index you may have in this case is composite one template + time_sent
CREATE INDEX template_time_sent ON s_log (template, time_sent)
PS: Also as long as all your columns in the query are integer DON'T enclose their values in quotes (in some cases it could lead to issues, at least with older mysql versions)
First, you have to create an index that has both of your columns together (not seperately). Also check your table type, i think it would work great if your table is innoDB.
And lastly, use your WHERE clause in this fashion:
`WHEREtemplate= '1' ANDtime_sent` BETWEEN '1346904000' AND '1346993271'
What this does is first check if template is 1, if it is then it would check for the second condition else skip. This will definitely give you performance-edge
If you have to call the query for each template maybe it would be faster to get all the information with one query call by using GROUP BY:
SELECT template, COUNT(*) as count FROM `s_log`
WHERE `time_sent` BETWEEN 1346904000 AND 1346993271;
GROUP BY template
It's just a guess that this would be faster and you also would have to redesign your code a bit.
You could also try to use InnoDB instead of MyISAM. InnoDB uses a clustered index which maybe performs better on large tables. From the MySQL site:
Accessing a row through the clustered index is fast because the row data is on the same page where the index search leads. If a table is large, the clustered index architecture often saves a disk I/O operation when compared to storage organizations that store row data using a different page from the index record. (For example, MyISAM uses one file for data rows and another for index records.)
There are some questions on Stackoverflow which discuss the performance between InnoDB and MyISAM:
Should I use MyISAM or InnoDB Tables for my MySQL Database?
Migrating from MyISAM to InnoDB
MyISAM versus InnoDB

Optimization of a MySQL view

I want to join two MySQL tables and store it as a view, so I can address this view in a application in stead of querying two tables. But this view occurs to be extremely slow.
This are my tables:
CREATE TABLE spectrumsets (
setid INT(11) NOT NULL,
timestampdt INT(11) NULL DEFAULT NULL,
timestampd INT(10) UNSIGNED NOT NULL,
timestampt INT(10) UNSIGNED NOT NULL,
device INT(11) NOT NULL,
methodname VARCHAR(50) NOT NULL,
PRIMARY KEY (setid),
UNIQUE INDEX setid_idx (setid),
UNIQUE INDEX timestamp_device_idx (timestampd, timestampt, device),
INDEX device_fk (device),
INDEX timestampd_idx (timestampd),
CONSTRAINT device_fk FOREIGN KEY (device)
REFERENCES spectrumdevices (deviceid)
)
COLLATE='utf8_general_ci'
ENGINE=InnoDB
CREATE TABLE spectrumdata (
valueid INT(11) NOT NULL AUTO_INCREMENT,
spectrumset INT(11) NOT NULL,
wavelength DOUBLE NULL DEFAULT NULL,
intensity DOUBLE NULL DEFAULT NULL,
PRIMARY KEY (valueid),
INDEX spectrumset_idx (spectrumset),
CONSTRAINT spectrumset_fk FOREIGN KEY (spectrumset)
REFERENCES spectrumsets (setid)
)
COLLATE='utf8_general_ci'
ENGINE=InnoDB
And this is my view:
SELECT spectrumsets.timestampd,spectrumsets.timestampt,spectrumsets.device,
spectrumdata.wavelength,spectrumdata.intensity
FROM spectrumdata INNER JOIN spectrumsets ON spectrumdata.spectrumset=
spectrumsets.setid
WHERE spectrumdata.wavelength>0
ORDER BY spectrumsets.timestampd,spectrumsets.timestampt,spectrumsets.device,
spectrumdata.wavelength
A select count(*) on my machine takes 385.516 seconds and results into 82923705 records, so a rather large dataset
I already found this link but still don't fully understand what's wrong.
UPDATE:
EXPLAIN gives this results:
"id","select_type","table","type","possible_keys","key","key_len","ref","rows","Extra"
"1","SIMPLE","spectrumsets","index","PRIMARY,setid_idx","timestamp_device_idx","12",NULL,"327177","Using index; Using temporary; Using filesort"
"1","SIMPLE","spectrumdata","ref","spectrumset_idx","spectrumset_idx","4","primprod.spectrumsets.setid","130","Using where"
Explain suggests that the query is hitting the indices for the join (which is good), but then using a temporary table and file sort for the rest of the query.
This is for two reasons:
the where clause isn't hitting the index
the order by clause isn't hitting the index
In a comment, you say that removing the where clause has lead to a big improvement; that suggests you need the compound index on spectrumset, wavelength, assuming wavelength has a decent number of possible values (if it's just 10 values, an index may not do anything).
If you leave the "order by" clause out of your view, it should go a lot faster - and there's a good case for letting sort order be determined by the query extracting data, not the view. I'm guessing most queries will be very selective about the data - limiting to a few timestamps; by embedding the order by in the view, you pay the price for sorting every time.
If you really must have the "order by" in the view, create an index that includes all fields in the order of the "order by", with the join at the front. For instance:
UNIQUE INDEX timestamp_device_idx (set_id, timestampd, timestampt, device),