Reading the data written to s3 by Amazon Kinesis Firehose stream - json

I am writing record to Kinesis Firehose stream that is eventually written to a S3 file by Amazon Kinesis Firehose.
My record object looks like
ItemPurchase {
String personId,
String itemId
}
The data is written to S3 looks like:
{"personId":"p-111","itemId":"i-111"}{"personId":"p-222","itemId":"i-222"}{"personId":"p-333","itemId":"i-333"}
NO COMMA SEPERATION.
NO STARTING BRACKET as in a Json Array
[
NO ENDING BRACKET as in a Json Array
]
I want to read this data get a list of ItemPurchase objects.
List<ItemPurchase> purchases = getPurchasesFromS3(IOUtils.toString(s3ObjectContent))
What is the correct way to read this data?

It boggles my mind that Amazon Firehose dumps JSON messages to S3 in this manner, and doesn't allow you to set a delimiter or anything.
Ultimately, the trick I found to deal with the problem was to process the text file using the JSON raw_decode method
This will allow you to read a bunch of concatenated JSON records without any delimiters between them.
Python code:
import json
decoder = json.JSONDecoder()
with open('giant_kinesis_s3_text_file_with_concatenated_json_blobs.txt', 'r') as content_file:
content = content_file.read()
content_length = len(content)
decode_index = 0
while decode_index < content_length:
try:
obj, decode_index = decoder.raw_decode(content, decode_index)
print("File index:", decode_index)
print(obj)
except JSONDecodeError as e:
print("JSONDecodeError:", e)
# Scan forward and keep trying to decode
decode_index += 1

I also had the same problem, here is how I solved.
replace "}{" with "}\n{"
line split by "\n".
input_json_rdd.map(lambda x : re.sub("}{", "}\n{", x, flags=re.UNICODE))
.flatMap(lambda line: line.split("\n"))
A nested json object has several "}"s, so split line by "}" doesn't solve the problem.

I've had the same issue.
It would have been better if AWS allowed us to set a delimiter but we can do it on our own.
In my use case, I've been listening on a stream of tweets, and once receiving a new tweet I immediately put it to Firehose.
This, of course, resulted in a 1-line file which could not be parsed.
So, to solve this, I have concatenated the tweet's JSON with a \n.
This, in turn, let me use some packages that can output lines when reading stream contents, and parse the file easily.
Hope this helps you.

I think the best ways to tackle this is to first create a properly formatted json file containing well separated json objects within them. In my case I added ',' to the events which was pushed into the firehose. Then After a file is saved in s3, all the files will contain json object separated by some delimitter(comma- in our case). Another thing that must be added are '[' and ']' at the beginning and end of the file. Then you have a proper json file containing multiple json objects. Parsing them will be possible now.

If the input source for the firehose is an Analytics application, this concatenated JSON without a delimiter is a known issue as cited here. You should have a lambda function as here that outputs JSON objects in multiple lines.

I used a transformation Lambda to add a line break at the end of every record
def lambda_handler(event, context):
output = []
for record in event['records']:
# Decode from base64 (Firehose records are base64 encoded)
payload = base64.b64decode(record['data'])
# Read json as utf-8
json_string = payload.decode("utf-8")
# Add a line break
output_json_with_line_break = json_string + "\n"
# Encode the data
encoded_bytes = base64.b64encode(bytearray(output_json_with_line_break, 'utf-8'))
encoded_string = str(encoded_bytes, 'utf-8')
# Create a deep copy of the record and append to output with transformed data
output_record = copy.deepcopy(record)
output_record['data'] = encoded_string
output_record['result'] = 'Ok'
output.append(output_record)
print('Successfully processed {} records.'.format(len(event['records'])))
return {'records': output}

Use this simple Python code.
input_str = '''{"personId":"p-111","itemId":"i-111"}{"personId":"p-222","itemId":"i-222"}{"personId":"p-333","itemId":"i-333"}'''
data_str = "[{}]".format(input_str.replace("}{","},{"))
data_json = json.loads(data_str)
And then (if you want) convert to Pandas.
import pandas as pd
df = pd.DataFrame().from_records(data_json)
print(df)
And this is result
itemId personId
0 i-111 p-111
1 i-222 p-222
2 i-333 p-333

If there's a way to change the way data is written, please separate all the records by a line. That way you can read the data simply, line by line. If not, then simply build a scanner object which takes "}" as a delimiter and use the scanner to read. That would do the job.

You can find the each valid JSON by counting the brackets. Assuming the file starts with a { this python snippet should work:
import json
def read_block(stream):
open_brackets = 0
block = ''
while True:
c = stream.read(1)
if not c:
break
if c == '{':
open_brackets += 1
elif c == '}':
open_brackets -= 1
block += c
if open_brackets == 0:
yield block
block = ''
if __name__ == "__main__":
c = 0
with open('firehose_json_blob', 'r') as f:
for block in read_block(f):
record = json.loads(block)
print(record)

This problem can be solved with a JSON parser that consumes objects one at a time from a stream. The raw_decode method of the JSONDecoder exposes just such a parser, but I've written a library that makes it straightforward to do this with a one-liner.
from firehose_sipper import sip
for entry in sip(bucket=..., key=...):
do_something_with(entry)
I've added some more details in this blog post

In Spark, we had the same problem. We're using the following:
from pyspark.sql.functions import *
#udf
def concatenated_json_to_array(text):
final = "["
separator = ""
for part in text.split("}{"):
final += separator + part
separator = "}{" if re.search(r':\s*"([^"]|(\\"))*$', final) else "},{"
return final + "]"
def read_concatenated_json(path, schema):
return (spark.read
.option("lineSep", None)
.text(path)
.withColumn("value", concatenated_json_to_array("value"))
.withColumn("value", from_json("value", schema))
.withColumn("value", explode("value"))
.select("value.*"))
It works as follows:
Read the data as one string per file (no delimiters!)
Use a UDF to introduce the JSON array and split the JSON objects by introducing a comma. Note: be careful not to break any strings with }{ in them!
Parse the JSON with a schema into DataFrame fields.
Explode the array into separate rows
Expand the value object into column.
Use it like this:
from pyspark.sql.types import *
schema = ArrayType(
StructType([
StructField("type", StringType(), True),
StructField("value", StructType([
StructField("id", IntegerType(), True),
StructField("joke", StringType(), True),
StructField("categories", ArrayType(StringType()), True)
]), True)
])
)
path = '/mnt/my_bucket_name/messages/*/*/*/*/'
df = read_concatenated_json(path, schema)
I've written more details and considerations here: Parsing JSON data from S3 (Kinesis) with Spark. Do not just split by }{, as it can mess up your string data! For example: { "line": "a\"r}{t" }.

You can use below script.
If streamed data size is not over buffer size that you set, each file of s3 have one pair of brackets([]) and comma.
import base64
print('Loading function')
def lambda_handler(event, context):
output = []
for record in event['records']:
print(record['recordId'])
payload = base64.b64decode(record['data']).decode('utf-8')+',\n'
# Do custom processing on the payload here
output_record = {
'recordId': record['recordId'],
'result': 'Ok',
'data': base64.b64encode(payload.encode('utf-8'))
}
output.append(output_record)
last = len(event['records'])-1
print('Successfully processed {} records.'.format(len(event['records'])))
start = '['+base64.b64decode(output[0]['data']).decode('utf-8')
end = base64.b64decode(output[last]['data']).decode('utf-8')+']'
output[0]['data'] = base64.b64encode(start.encode('utf-8'))
output[last]['data'] = base64.b64encode(end.encode('utf-8'))
return {'records': output}

Using JavaScript Regex.
JSON.parse(`[${item.replace(/}\s*{/g, '},{')}]`);

Related

Save json list in a text file

I got a json log file that i rearrange to be correct, after this i am trying to save the results to the same file. The results are a list. but the problem that i am unable to save and will give me the following error:
write() argument must be str, not list
Here is the code it self:
import regex as re
import re
f_name = 'test1.txt'
splitter = r'"Event\d+":{(.*?)}' # a search pattern to capture the stuff in braces
#Open the file as Read.
with open(f_name, 'r') as src:
data = src.readlines()
# tokenize the data source...
tokens = re.findall(splitter, str(data))
#print(tokens)
# now we can operate on the tokens and split them up into key-value pairs and put them into a list
result = []
for token in tokens:
# make an empty dictionary to hold the row elements
line_dict = {}
# we can split the line (token) by comma to get the key-value pairs
pairs = token.split(',')
for pair in pairs:
# another regex split needed here, because the timestamps have colons too
splitter = r'"(.*)"\s*:\s*"(.*)"' # capture two groups of things in quotes on opposite sides of colon
parts = re.search(splitter, pair)
key, value = parts.group(1), parts.group(2)
line_dict[key] = value
# add the dictionary of line elements to the result
result.append(line_dict)
with open(f_name, 'w') as src:
for line in result:
src.write(result)
i.e the code it self was not written by me -> Log file management with python (thanks AirSquid)
Thanks for the assistance, New at Python here.
Tried to import json and use json.dump, also tried to append the text, but in most cases i end up with just [] or empty file.

Convert text based key/value pair to JSON format

I have a text file with a lot of key/value pairs in the given format:
secret_key="XXXXX"
database_password="1234"
timout=30
.
.
.
and list continues...
I want these key/value pairs to be stored in a JSON format so that I can make use of this data in the JSON format. Is there any way of doing this. I mean any website or any method to do it automatically?
The Python 3.8 script below would do the job ◡̈
import json
with open('text', 'r') as fp:
dic = {}
while line:=fp.readline().strip():
key, value = line.split('=')
dic[key] = eval(value)
print(json.dumps(dic))
Note: eval is used to prevent double quotes being escaped.
As I guess that is an .env file. So, I would suggest you try to implement something like this in Python:
import json
import sys
try:
dotenv = sys.argv[1]
except IndexError as e:
dotenv = '.env'
with open(dotenv, 'r') as f:
content = f.readlines()
# removes whitespace chars like '\n' at the end of each line
content = [x.strip().split('=') for x in content if '=' in x]
print(json.dumps(dict(content)))
Reference: https://gist.github.com/GabLeRoux/d6b2c2f7a69ebcd8430ea59c9bcc62c0
*Please let me know if you want to implement it in a different language, such as JavaScript.

Cannot write dict object as correct JSON to file

I try to read JSON from file, get values, transform them and back write to new file.
{
"metadata": {
"info": "important info"
},
"timestamp": "2018-04-06T12:19:38.611Z",
"content": {
"id": "1",
"name": "name test",
"objects": [
{
"id": "1",
"url": "http://example.com",
"properties": [
{
"id": "1",
"value": "1"
}
]
}
]
}
}
Above is a JSON that I read from file.
Below I attach a python program that gets values, creates new JSON and write it to file.
import json
from pprint import pprint
def load_json(file_name):
return json.load(open(file_name))
def get_metadata(json):
return json["metadata"]
def get_timestamp(json):
return json["timestamp"]
def get_content(json):
return json["content"]
def create_json(metadata, timestamp, content):
dct = dict(__metadata=metadata, timestamp=timestamp, content=content)
return json.dumps(dct)
def write_json_to_file(file_name, json_content):
with open(file_name, 'w') as file:
json.dump(json_content, file)
STACK_JSON = 'stack.json';
STACK_OUT_JSON = 'stack-out.json'
if __name__ == '__main__':
json_content = load_json(STACK_JSON)
print("Loaded JSON:")
print(json_content)
metadata = get_metadata(json_content)
print("Metadata:", metadata)
timestamp = get_timestamp(json_content)
print("Timestamp:", timestamp)
content = get_content(json_content)
print("Content:", content)
created_json = create_json(metadata, timestamp, content)
print("\n\n")
print(created_json)
write_json_to_file(STACK_OUT_JSON, created_json)
But the problem is that create json is not correct. Finally as result I get:
"{\"__metadata\": {\"info\": \"important info\"}, \"timestamp\": \"2018-04-06T12:19:38.611Z\", \"content\": {\"id\": \"1\", \"name\": \"name test\", \"objects\": [{\"id\": \"1\", \"url\": \"http://example.com\", \"properties\": [{\"id\": \"1\", \"value\": \"1\"}]}]}}"
It is not that what I want to achieve. It's not correct JSON. What do I wrong?
Solution:
Change the write_json_to_file(...) method like this:
def write_json_to_file(file_name, json_content):
with open(file_name, 'w') as file:
file.write(json_content)
Explanation:
The problem is, that when you're calling write_json_to_file(STACK_OUT_JSON, created_json) at the end of your script, the variable created_json contains a string - it's the JSON representation of the dictionary created in the create_json(...) function. But inside the write_json_to_file(file_name, json_content), you're calling:
json.dump(json_content, file)
You're telling the json module write the JSON representation of variable json_content (which contains a string) into the file. And JSON representation of a string is a single value encapsulated in double-quotes ("), with all the double-quotes it contains escaped by \.
What you want to achieve is to simply write the value of the json_content variable into the file and not have it first JSON-serialized again.
Problem
You're converting a dict into a json and then right before you write it into a file, you're converting it into a json again. When you retry to convert a json to a json it gives you the \" since it's escaping the " since it assumes that you have a value there.
How to solve it?
It's a great idea to read the json file, convert it into a dict and perform all sorts of operations to it. And only when you want to print out an output or write to a file or return an output you convert to a json since json.dump() is expensive, it adds 2ms (approx) of overhead which might not seem much but when your code is running in 500 microseconds it's almost 4 times.
Other Recommendations
After seeing your code, I realize you're coming from a java background and while in java the getThis() or getThat() is a great way to module your code since we represent our code in classes in java, in python it just causes problems in the readability of the code as mentioned in the PEP 8 style guide for python.
I've updated the code below:
import json
def get_contents_from_json(file_path)-> dict:
"""
Reads the contents of the json file into a dict
:param file_path:
:return: A dictionary of all contents in the file.
"""
try:
with open(file_path) as file:
contents = file.read()
return json.loads(contents)
except json.JSONDecodeError:
print('Error while reading json file')
except FileNotFoundError:
print(f'The JSON file was not found at the given path: \n{file_path}')
def write_to_json_file(metadata, timestamp, content, file_path):
"""
Creates a dict of all the data and then writes it into the file
:param metadata: The meta data
:param timestamp: the timestamp
:param content: the content
:param file_path: The file in which json needs to be written
:return: None
"""
output_dict = dict(metadata=metadata, timestamp=timestamp, content=content)
with open(file_path, 'w') as outfile:
json.dump(output_dict, outfile, sort_keys=True, indent=4, ensure_ascii=False)
def main(input_file_path, output_file_path):
# get a dict from the loaded json
data = get_contents_from_json(input_file_path)
# the print() supports multiple args so you don't need multiple print statements
print('JSON:', json.dumps(data), 'Loaded JSON as dict:', data, sep='\n')
try:
# load your data from the dict instead of the methods since it's more pythonic
metadata = data['metadata']
timestamp = data['timestamp']
content = data['content']
# just cumulating your print statements
print("Metadata:", metadata, "Timestamp:", timestamp, "Content:", content, sep='\n')
# write your json to the file.
write_to_json_file(metadata, timestamp, content, output_file_path)
except KeyError:
print('Could not find proper keys to in the provided json')
except TypeError:
print('There is something wrong with the loaded data')
if __name__ == '__main__':
main('stack.json', 'stack-out.json')
Advantages of the above code:
More Modular and hence easily unit testable
Handling of exceptions
Readable
More pythonic
Comments because they are just awesome!

AWS Athena export array of structs to JSON

I've got an Athena table where some fields have a fairly complex nested format. The backing records in S3 are JSON. Along these lines (but we have several more levels of nesting):
CREATE EXTERNAL TABLE IF NOT EXISTS test (
timestamp double,
stats array<struct<time:double, mean:double, var:double>>,
dets array<struct<coords: array<double>, header:struct<frame:int,
seq:int, name:string>>>,
pos struct<x:double, y:double, theta:double>
)
ROW FORMAT SERDE 'org.openx.data.jsonserde.JsonSerDe'
WITH SERDEPROPERTIES ('ignore.malformed.json'='true')
LOCATION 's3://test-bucket/test-folder/'
Now we need to be able to query the data and import the results into Python for analysis. Because of security restrictions I can't connect directly to Athena; I need to be able to give someone the query and then they will give me the CSV results.
If we just do a straight select * we get back the struct/array columns in a format that isn't quite JSON.
Here's a sample input file entry:
{"timestamp":1520640777.666096,"stats":[{"time":15,"mean":45.23,"var":0.31},{"time":19,"mean":17.315,"var":2.612}],"dets":[{"coords":[2.4,1.7,0.3], "header":{"frame":1,"seq":1,"name":"hello"}}],"pos": {"x":5,"y":1.4,"theta":0.04}}
And example output:
select * from test
"timestamp","stats","dets","pos"
"1.520640777666096E9","[{time=15.0, mean=45.23, var=0.31}, {time=19.0, mean=17.315, var=2.612}]","[{coords=[2.4, 1.7, 0.3], header={frame=1, seq=1, name=hello}}]","{x=5.0, y=1.4, theta=0.04}"
I was hoping to get those nested fields exported in a more convenient format - getting them in JSON would be great.
Unfortunately it seems that cast to JSON only works for maps, not structs, because it just flattens everything into arrays:
SELECT timestamp, cast(stats as JSON) as stats, cast(dets as JSON) as dets, cast(pos as JSON) as pos FROM "sampledb"."test"
"timestamp","stats","dets","pos"
"1.520640777666096E9","[[15.0,45.23,0.31],[19.0,17.315,2.612]]","[[[2.4,1.7,0.3],[1,1,""hello""]]]","[5.0,1.4,0.04]"
Is there a good way to convert to JSON (or another easy-to-import format) or should I just go ahead and do a custom parsing function?
I have skimmed through all the documentation and unfortunately there seems to be no way to do this as of now. The only possible workaround is
converting a struct to a json when querying athena
SELECT
my_field,
my_field.a,
my_field.b,
my_field.c.d,
my_field.c.e
FROM
my_table
Or I would convert the data to json using post processing. Below script shows how
#!/usr/bin/env python
import io
import re
pattern1 = re.compile(r'(?<={)([a-z]+)=', re.I)
pattern2 = re.compile(r':([a-z][^,{}. [\]]+)', re.I)
pattern3 = re.compile(r'\\"', re.I)
with io.open("test.csv") as f:
headers = list(map(lambda f: f.strip(), f.readline().split(",")))
for line in f.readlines():
orig_line = line
data = []
for i, l in enumerate(line.split('","')):
data.append(headers[i] + ":" + re.sub('^"|"$', "", l))
line = "{" + ','.join(data) + "}"
line = pattern1.sub(r'"\1":', line)
line = pattern2.sub(r':"\1"', line)
print(line)
The output on your input data is
{"timestamp":1.520640777666096E9,"stats":[{"time":15.0, "mean":45.23, "var":0.31}, {"time":19.0, "mean":17.315, "var":2.612}],"dets":[{"coords":[2.4, 1.7, 0.3], "header":{"frame":1, "seq":1, "name":"hello"}}],"pos":{"x":5.0, "y":1.4, "theta":0.04}
}
Which is a valid JSON
The python code from #tarun almost got me there, but I had to modify it in several ways due to my data. In particular, I have:
json structures saved in Athena as strings
Strings that contain multiple words, and therefore need to be in between double quotes. Some of them contain "[]" and "{}" symbols.
Here is the code that worked for me, hopefully will be useful for others:
#!/usr/bin/env python
import io
import re, sys
pattern1 = re.compile(r'(?<={)([a-z]+)=', re.I)
pattern2 = re.compile(r':([a-z][^,{}. [\]]+)', re.I)
pattern3 = re.compile(r'\\"', re.I)
with io.open(sys.argv[1]) as f:
headers = list(map(lambda f: f.strip(), f.readline().split(",")))
print(headers)
for line in f.readlines():
orig_line = line
#save the double quote cases, which mean there is a string with quotes inside
line = re.sub('""', "#", orig_line)
data = []
for i, l in enumerate(line.split('","')):
item = re.sub('^"|"$', "", l.rstrip())
if (item[0] == "{" and item[-1] == "}") or (item[0] == "[" and item[-1] == "]"):
data.append(headers[i] + ":" + item)
else: #we have a string
data.append(headers[i] + ": \"" + item + "\"")
line = "{" + ','.join(data) + "}"
line = pattern1.sub(r'"\1":', line)
line = pattern2.sub(r':"\1"', line)
#restate the double quotes to single ones, once inside the json
line = re.sub("#", '"', line)
print(line)
This method is not by modifying the Query.
Its by Post Processing For Javascript/Nodejs we can use the npm package athena-struct-parser.
Detailed Answer with Example
https://stackoverflow.com/a/67899845/6662952
Reference - https://www.npmjs.com/package/athena-struct-parser
I used a simple approach to get around the struct -> json Athena limitation. I created a second table where the json columns were saved as raw strings. Using presto json and array functions I was able to query the data and return the valid json string to my program:
--Array transform functions too
select
json_extract_scalar(dd, '$.timestamp') as timestamp,
transform(cast(json_extract(json_parse(dd), '$.stats') as ARRAY<JSON>), x -> json_extract_scalar(x, '$.time')) as arr_stats_time,
transform(cast(json_extract(json_parse(dd), '$.stats') as ARRAY<JSON>), x -> json_extract_scalar(x, '$.mean')) as arr_stats_mean,
transform(cast(json_extract(json_parse(dd), '$.stats') as ARRAY<JSON>), x -> json_extract_scalar(x, '$.var')) as arr_stats_var
from
(select '{"timestamp":1520640777.666096,"stats":[{"time":15,"mean":45.23,"var":0.31},{"time":19,"mean":17.315,"var":2.612}],"dets":[{"coords":[2.4,1.7,0.3], "header":{"frame":1,"seq":1,"name":"hello"}}],"pos": {"x":5,"y":1.4,"theta":0.04}}' as dd);
I know the query will take longer to execute but there are ways to optimize.
I worked around this by creating a second table using the same S3 location, but changed the field's data type to string. The resulting CSV then had the string that Athena pulled from the object in the JSON file and I was able to parse the result.
I also had to adjust the #tarun code, because I had more complex data and nested structures. Here is the solution I've got, I hope it helps:
import re
import json
import numpy as np
pattern1 = re.compile(r'(?<=[{,\[])\s*([^{}\[\],"=]+)=')
pattern2 = re.compile(r':([^{}\[\],"]+|()(?![{\[]))')
pattern3 = re.compile(r'"null"')
def convert_metadata_to_json(value):
if type(value) is str:
value = pattern1.sub('"\\1":', value)
value = pattern2.sub(': "\\1"', value)
value = pattern3.sub('null', value)
elif np.isnan(value):
return None
return json.loads(value)
df = pd.read_csv('test.csv')
df['metadata_json'] = df.metadata.apply(convert_metadata_to_json)

How do I grab info from this json file?

I'm trying to grab some numbers from this json file, but I don't how to do it correctly. This is the json file I am trying to gather information from:
http://stats.nba.com/stats/leaguedashteamstats?Conference=&DateFrom=&DateTo=&Division=&GameScope=&GameSegment=&LastNGames=0&LeagueID=00&Location=&MeasureType=Base&Month=0&OpponentTeamID=0&Outcome=&PORound=0&PaceAdjust=N&PerMode=PerGame&Period=0&PlayerExperience=&PlayerPosition=&PlusMinus=N&Rank=N&Season=2016-17&SeasonSegment=&SeasonType=Regular+Season&ShotClockRange=&StarterBench=&TeamID=0&VsConference=&VsDivision=
I've been trying to get this code to work, but I can't figure it out:
import json
from pprint import pprint
with open('data.json') as data_file:
data = json.load(data_file)
data["rowSet"] ["1610612737"] ["Atlanta Hawks"]
I'm trying to get the statistics from each team.
The following Python script should do it.
#!/usr/bin/env python
import json
with open('leaguedashteamstats.json') as data_file:
data = json.load(data_file)
# extract headers names
headers = data['resultSets'][0]['headers']
# extract raw json rows
raw_rows = data['resultSets'][0]['rowSet']
team_stats = []
for row in raw_rows:
print row[1] # prints team name
# mixes header names and values and prints them out
for (header, value) in zip(headers, row):
print header, value
print '\n'
Both data and code can be seen here:
https://gist.github.com/cevaris/24d0b7d97677667aedb14059a6959da1#file-1-team-stats-output
Disclaimer: this code doesn't contain any validation, but it should lead you in the right direction:
import json
with open('data.json') as data_file:
data = json.load(data_file)
for rs in data.get('resultSets'):
for r_ in [r for r in rs.get('rowSet') if r[1] == 'Atlanta Hawks']:
print(r_)
You basically need to determine specific keys that you are going to loop through, or obtain.
This should hopefully get you to where you need to be.