Below is a json example of Twitter's tweet. It's a large json. What is the best library/method to parse it into a case class in scala?
For instance, in Play Framework 2.x it's possible to do that with it's internal library by defining case classes and implicit conversions, but in this case I don't use Play. Should I?
spray-json seems to be most popular scala json library, but in this case it looks quite disappointing - standard approach seems to be limited to 22 elements and uses pattern matching, which becomes ridiculous in the context of multi nested structure with hundreds of elements. Any ideas?
{
"created_at": "Sat Oct 24 06:44:34 +0000 2015",
"id": 657809891558576132,
"id_str": "657809891558576132",
"text": "RT #M23projects: Kara Walker \"Go to Hell or Atlanta, Whichever Come First\" #victoriamiro #London https://t.co/HapqKa4i0l https://t.co/95G…",
"source": "Twitter for iPhone",
"truncated": false,
"in_reply_to_status_id": null,
"in_reply_to_status_id_str": null,
"in_reply_to_user_id": null,
"in_reply_to_user_id_str": null,
"in_reply_to_screen_name": null,
"user": {
"id": 2792146884,
"id_str": "2792146884",
"name": "Tonbridge School Art",
"screen_name": "ArtTonSchool",
"location": "Tonbridge",
"url": null,
"description": "Tonbridge School is an independent day and boarding school for boys. Tweets by the Art Department.",
"protected": false,
"verified": false,
"followers_count": 187,
"friends_count": 288,
"listed_count": 10,
"favourites_count": 1069,
"statuses_count": 1764,
"created_at": "Fri Sep 05 15:37:43 +0000 2014",
"utc_offset": 3600,
"time_zone": "London",
"geo_enabled": true,
"lang": "en-gb",
"contributors_enabled": false,
"is_translator": false,
"profile_background_color": "C0DEED",
"profile_background_image_url": "http://abs.twimg.com/images/themes/theme1/bg.png",
"profile_background_image_url_https": "https://abs.twimg.com/images/themes/theme1/bg.png",
"profile_background_tile": false,
"profile_link_color": "0084B4",
"profile_sidebar_border_color": "C0DEED",
"profile_sidebar_fill_color": "DDEEF6",
"profile_text_color": "333333",
"profile_use_background_image": true,
"profile_image_url": "http://pbs.twimg.com/profile_images/507921409738543104/V35eZACR_normal.jpeg",
"profile_image_url_https": "https://pbs.twimg.com/profile_images/507921409738543104/V35eZACR_normal.jpeg",
"profile_banner_url": "https://pbs.twimg.com/profile_banners/2792146884/1410119421",
"default_profile": true,
"default_profile_image": false,
"following": null,
"follow_request_sent": null,
"notifications": null
},
"geo": null,
"coordinates": null,
"place": null,
"contributors": null,
"retweeted_status": {
"created_at": "Sat Oct 24 02:27:06 +0000 2015",
"id": 657745100739506176,
"id_str": "657745100739506176",
"text": "Kara Walker \"Go to Hell or Atlanta, Whichever Come First\" #victoriamiro #London https://t.co/HapqKa4i0l https://t.co/95GaLC4XTo",
"source": "Twitter for iPhone",
"truncated": false,
"in_reply_to_status_id": null,
"in_reply_to_status_id_str": null,
"in_reply_to_user_id": null,
"in_reply_to_user_id_str": null,
"in_reply_to_screen_name": null,
"user": {
"id": 999716342,
"id_str": "999716342",
"name": "M23",
"screen_name": "M23projects",
"location": "New York",
"url": "http://M23.co",
"description": "M23's project space + itinerant program promotes new work by new artists. \nhttp://Instagram.com/m23projects",
"protected": false,
"verified": false,
"followers_count": 9150,
"friends_count": 7353,
"listed_count": 174,
"favourites_count": 1354,
"statuses_count": 4666,
"created_at": "Sun Dec 09 17:13:35 +0000 2012",
"utc_offset": -14400,
"time_zone": "Eastern Time (US & Canada)",
"geo_enabled": true,
"lang": "en",
"contributors_enabled": false,
"is_translator": false,
"profile_background_color": "547587",
"profile_background_image_url": "http://pbs.twimg.com/profile_background_images/884257252/e329bbc1b91d695862d5b23a209f2d34.jpeg",
"profile_background_image_url_https": "https://pbs.twimg.com/profile_background_images/884257252/e329bbc1b91d695862d5b23a209f2d34.jpeg",
"profile_background_tile": true,
"profile_link_color": "414A4D",
"profile_sidebar_border_color": "FFFFFF",
"profile_sidebar_fill_color": "DDEEF6",
"profile_text_color": "333333",
"profile_use_background_image": true,
"profile_image_url": "http://pbs.twimg.com/profile_images/458985956830236673/Z_4Bq9PJ_normal.jpeg",
"profile_image_url_https": "https://pbs.twimg.com/profile_images/458985956830236673/Z_4Bq9PJ_normal.jpeg",
"profile_banner_url": "https://pbs.twimg.com/profile_banners/999716342/1398650659",
"default_profile": false,
"default_profile_image": false,
"following": null,
"follow_request_sent": null,
"notifications": null
},
"geo": null,
"coordinates": null,
"place": null,
"contributors": null,
"is_quote_status": false,
"retweet_count": 2,
"favorite_count": 3,
"entities": {
"hashtags": [
{
"text": "London",
"indices": [
74,
81
]
}
],
"urls": [
{
"url": "https://t.co/HapqKa4i0l",
"expanded_url": "http://instagram.com/m23projects",
"display_url": "instagram.com/m23projects",
"indices": [
82,
105
]
}
],
"user_mentions": [
{
"screen_name": "victoriamiro",
"name": "Victoria Miro",
"id": 373924746,
"id_str": "373924746",
"indices": [
58,
71
]
}
],
"symbols": [],
"media": [
{
"id": 657745078413201408,
"id_str": "657745078413201408",
"indices": [
106,
129
],
"media_url": "http://pbs.twimg.com/media/CSDHqfeUkAA4a0Y.jpg",
"media_url_https": "https://pbs.twimg.com/media/CSDHqfeUkAA4a0Y.jpg",
"url": "https://t.co/95GaLC4XTo",
"display_url": "pic.twitter.com/95GaLC4XTo",
"expanded_url": "http://twitter.com/M23projects/status/657745100739506176/photo/1",
"type": "photo",
"sizes": {
"small": {
"w": 340,
"h": 255,
"resize": "fit"
},
"medium": {
"w": 600,
"h": 450,
"resize": "fit"
},
"thumb": {
"w": 150,
"h": 150,
"resize": "crop"
},
"large": {
"w": 1024,
"h": 768,
"resize": "fit"
}
}
}
]
},
"extended_entities": {
"media": [
{
"id": 657745078413201408,
"id_str": "657745078413201408",
"indices": [
106,
129
],
"media_url": "http://pbs.twimg.com/media/CSDHqfeUkAA4a0Y.jpg",
"media_url_https": "https://pbs.twimg.com/media/CSDHqfeUkAA4a0Y.jpg",
"url": "https://t.co/95GaLC4XTo",
"display_url": "pic.twitter.com/95GaLC4XTo",
"expanded_url": "http://twitter.com/M23projects/status/657745100739506176/photo/1",
"type": "photo",
"sizes": {
"small": {
"w": 340,
"h": 255,
"resize": "fit"
},
"medium": {
"w": 600,
"h": 450,
"resize": "fit"
},
"thumb": {
"w": 150,
"h": 150,
"resize": "crop"
},
"large": {
"w": 1024,
"h": 768,
"resize": "fit"
}
}
},
{
"id": 657745085275095040,
"id_str": "657745085275095040",
"indices": [
106,
129
],
"media_url": "http://pbs.twimg.com/media/CSDHq5CUwAAC-6a.jpg",
"media_url_https": "https://pbs.twimg.com/media/CSDHq5CUwAAC-6a.jpg",
"url": "https://t.co/95GaLC4XTo",
"display_url": "pic.twitter.com/95GaLC4XTo",
"expanded_url": "http://twitter.com/M23projects/status/657745100739506176/photo/1",
"type": "photo",
"sizes": {
"small": {
"w": 340,
"h": 453,
"resize": "fit"
},
"medium": {
"w": 600,
"h": 800,
"resize": "fit"
},
"thumb": {
"w": 150,
"h": 150,
"resize": "crop"
},
"large": {
"w": 768,
"h": 1024,
"resize": "fit"
}
}
},
{
"id": 657745085300277248,
"id_str": "657745085300277248",
"indices": [
106,
129
],
"media_url": "http://pbs.twimg.com/media/CSDHq5IVAAAn2YH.jpg",
"media_url_https": "https://pbs.twimg.com/media/CSDHq5IVAAAn2YH.jpg",
"url": "https://t.co/95GaLC4XTo",
"display_url": "pic.twitter.com/95GaLC4XTo",
"expanded_url": "http://twitter.com/M23projects/status/657745100739506176/photo/1",
"type": "photo",
"sizes": {
"small": {
"w": 340,
"h": 453,
"resize": "fit"
},
"medium": {
"w": 600,
"h": 800,
"resize": "fit"
},
"thumb": {
"w": 150,
"h": 150,
"resize": "crop"
},
"large": {
"w": 768,
"h": 1024,
"resize": "fit"
}
}
},
{
"id": 657745085275082752,
"id_str": "657745085275082752",
"indices": [
106,
129
],
"media_url": "http://pbs.twimg.com/media/CSDHq5CUkAAd0oL.jpg",
"media_url_https": "https://pbs.twimg.com/media/CSDHq5CUkAAd0oL.jpg",
"url": "https://t.co/95GaLC4XTo",
"display_url": "pic.twitter.com/95GaLC4XTo",
"expanded_url": "http://twitter.com/M23projects/status/657745100739506176/photo/1",
"type": "photo",
"sizes": {
"small": {
"w": 340,
"h": 255,
"resize": "fit"
},
"medium": {
"w": 600,
"h": 450,
"resize": "fit"
},
"thumb": {
"w": 150,
"h": 150,
"resize": "crop"
},
"large": {
"w": 1024,
"h": 768,
"resize": "fit"
}
}
}
]
},
"favorited": false,
"retweeted": false,
"possibly_sensitive": false,
"filter_level": "low",
"lang": "en"
},
"is_quote_status": false,
"retweet_count": 0,
"favorite_count": 0,
"entities": {
"hashtags": [
{
"text": "London",
"indices": [
91,
98
]
}
],
"urls": [
{
"url": "https://t.co/HapqKa4i0l",
"expanded_url": "http://instagram.com/m23projects",
"display_url": "instagram.com/m23projects",
"indices": [
99,
122
]
}
],
"user_mentions": [
{
"screen_name": "M23projects",
"name": "M23",
"id": 999716342,
"id_str": "999716342",
"indices": [
3,
15
]
},
{
"screen_name": "victoriamiro",
"name": "Victoria Miro",
"id": 373924746,
"id_str": "373924746",
"indices": [
75,
88
]
}
],
"symbols": [],
"media": [
{
"id": 657745078413201408,
"id_str": "657745078413201408",
"indices": [
123,
140
],
"media_url": "http://pbs.twimg.com/media/CSDHqfeUkAA4a0Y.jpg",
"media_url_https": "https://pbs.twimg.com/media/CSDHqfeUkAA4a0Y.jpg",
"url": "https://t.co/95GaLC4XTo",
"display_url": "pic.twitter.com/95GaLC4XTo",
"expanded_url": "http://twitter.com/M23projects/status/657745100739506176/photo/1",
"type": "photo",
"sizes": {
"small": {
"w": 340,
"h": 255,
"resize": "fit"
},
"medium": {
"w": 600,
"h": 450,
"resize": "fit"
},
"thumb": {
"w": 150,
"h": 150,
"resize": "crop"
},
"large": {
"w": 1024,
"h": 768,
"resize": "fit"
}
},
"source_status_id": 657745100739506176,
"source_status_id_str": "657745100739506176",
"source_user_id": 999716342,
"source_user_id_str": "999716342"
}
]
},
"extended_entities": {
"media": [
{
"id": 657745078413201408,
"id_str": "657745078413201408",
"indices": [
123,
140
],
"media_url": "http://pbs.twimg.com/media/CSDHqfeUkAA4a0Y.jpg",
"media_url_https": "https://pbs.twimg.com/media/CSDHqfeUkAA4a0Y.jpg",
"url": "https://t.co/95GaLC4XTo",
"display_url": "pic.twitter.com/95GaLC4XTo",
"expanded_url": "http://twitter.com/M23projects/status/657745100739506176/photo/1",
"type": "photo",
"sizes": {
"small": {
"w": 340,
"h": 255,
"resize": "fit"
},
"medium": {
"w": 600,
"h": 450,
"resize": "fit"
},
"thumb": {
"w": 150,
"h": 150,
"resize": "crop"
},
"large": {
"w": 1024,
"h": 768,
"resize": "fit"
}
},
"source_status_id": 657745100739506176,
"source_status_id_str": "657745100739506176",
"source_user_id": 999716342,
"source_user_id_str": "999716342"
},
{
"id": 657745085275095040,
"id_str": "657745085275095040",
"indices": [
123,
140
],
"media_url": "http://pbs.twimg.com/media/CSDHq5CUwAAC-6a.jpg",
"media_url_https": "https://pbs.twimg.com/media/CSDHq5CUwAAC-6a.jpg",
"url": "https://t.co/95GaLC4XTo",
"display_url": "pic.twitter.com/95GaLC4XTo",
"expanded_url": "http://twitter.com/M23projects/status/657745100739506176/photo/1",
"type": "photo",
"sizes": {
"small": {
"w": 340,
"h": 453,
"resize": "fit"
},
"medium": {
"w": 600,
"h": 800,
"resize": "fit"
},
"thumb": {
"w": 150,
"h": 150,
"resize": "crop"
},
"large": {
"w": 768,
"h": 1024,
"resize": "fit"
}
},
"source_status_id": 657745100739506176,
"source_status_id_str": "657745100739506176",
"source_user_id": 999716342,
"source_user_id_str": "999716342"
},
{
"id": 657745085300277248,
"id_str": "657745085300277248",
"indices": [
123,
140
],
"media_url": "http://pbs.twimg.com/media/CSDHq5IVAAAn2YH.jpg",
"media_url_https": "https://pbs.twimg.com/media/CSDHq5IVAAAn2YH.jpg",
"url": "https://t.co/95GaLC4XTo",
"display_url": "pic.twitter.com/95GaLC4XTo",
"expanded_url": "http://twitter.com/M23projects/status/657745100739506176/photo/1",
"type": "photo",
"sizes": {
"small": {
"w": 340,
"h": 453,
"resize": "fit"
},
"medium": {
"w": 600,
"h": 800,
"resize": "fit"
},
"thumb": {
"w": 150,
"h": 150,
"resize": "crop"
},
"large": {
"w": 768,
"h": 1024,
"resize": "fit"
}
},
"source_status_id": 657745100739506176,
"source_status_id_str": "657745100739506176",
"source_user_id": 999716342,
"source_user_id_str": "999716342"
},
{
"id": 657745085275082752,
"id_str": "657745085275082752",
"indices": [
123,
140
],
"media_url": "http://pbs.twimg.com/media/CSDHq5CUkAAd0oL.jpg",
"media_url_https": "https://pbs.twimg.com/media/CSDHq5CUkAAd0oL.jpg",
"url": "https://t.co/95GaLC4XTo",
"display_url": "pic.twitter.com/95GaLC4XTo",
"expanded_url": "http://twitter.com/M23projects/status/657745100739506176/photo/1",
"type": "photo",
"sizes": {
"small": {
"w": 340,
"h": 255,
"resize": "fit"
},
"medium": {
"w": 600,
"h": 450,
"resize": "fit"
},
"thumb": {
"w": 150,
"h": 150,
"resize": "crop"
},
"large": {
"w": 1024,
"h": 768,
"resize": "fit"
}
},
"source_status_id": 657745100739506176,
"source_status_id_str": "657745100739506176",
"source_user_id": 999716342,
"source_user_id_str": "999716342"
}
]
},
"favorited": false,
"retweeted": false,
"possibly_sensitive": false,
"filter_level": "low",
"lang": "en",
"timestamp_ms": "1445669074321"
}
**UPDATE: ** I guess I should stick to play-json, even more so for performance reasons - http://derekwyatt.org/2014/01/15/benchmarking-spray-json-argonaut-play-json/
You can depends on Play's JSON library by itself:
// build.sbt
libraryDependencies += "com.typesafe.play" % "play-json_2.11" % "X.X.X"
// Tweet.scala
import play.api.libs.json._
case class User(id: String, name: String, ...)
implicit val userFormat = Json.format[User]
case class Tweet(id: String, content: String, user: User)
implicit val tweetFormat = Json.format[Tweet]
This will use play-json's macros to auto-generate the formatters you need to parse JSON into instances of Tweet and User.
Regardless of library you choose you won't find an elegant solution for handling more than 22 fields since that's a limitation of the case class implementation (up until 2.11) rather than any specific design choice by a library.
Related
I have a json date values that I'm adding to the vega-lite for visualization in pie chart. The legends seem to render properly (there's 2 distinct legends for 2020 q3 and 2020 q4). But the pie chart itself doesn't seem to aggregate together. How would I make sure that all the 2020Q4 are grouping together? How do I fix my spec??
pie chart with no aggregation for same data
{
"$schema": "https://vega.github.io/schema/vega-lite/v5.json",
"width": 880,
"height": 376,
"config": {
"range": {
"category": {
"scheme": "tableau20"
}
},
"legend": {
"labelColor": "#333",
"labelFontSize": 11,
"symbolSize": 30,
"symbolType": "circle",
"symbolStrokeWidth": 0,
"titleColor": "#333",
"titleFontSize": 14,
"titlePadding": 10,
"titleFontWeight": 500
},
"autosize": {
"type": "fit",
"contains": "padding"
},
"font": "-apple-system, BlinkMacSystemFont, \"Segoe UI\", Roboto, Helvetica, Arial, sans-serif, \"Apple Color Emoji\", \"Segoe UI Emoji\", \"Segoe UI Symbol\"",
"axisLeft": {
"labelFontSize": 14,
"labelColor": "#333",
"labelLimit": 180,
"titleFontSize": 16,
"titleLimit": 180
},
"style": {
"label": {
"align": "left",
"baseline": "middle",
"dx": 4
},
"cell": {
"stroke": "transparent"
}
}
},
"layer": [
{
"mark": {
"type": "arc",
"innerRadius": {
"expr": "min(width,height)/5"
},
"outerRadius": {
"expr": "min(width,height)/4"
},
"tooltip": true,
"padAngle": 0.01
},
"params": [
{
"name": "highlight",
"select": {
"type": "point",
"on": "mouseover"
}
},
{
"name": "select",
"select": "point"
}
]
},
{
"mark": {
"type": "text",
"radius": {
"expr": "min(width,height)/4+min(width,height)/5/2"
},
"stroke": "#666666",
"limit": {
"expr": "min(width,height)/5"
}
},
"encoding": {
"text": {
"field": "color",
"title": "Due date",
"type": "nominal",
"timeUnit": "yearquarter"
}
}
}
],
"encoding": {
"color": {
"field": "color",
"title": "Due date",
"type": "nominal",
"timeUnit": "yearquarter"
},
"theta": {
"field": "thetaAggregated",
"type": "quantitative",
"title": "Values",
"stack": true
},
"fillOpacity": {
"condition": [
{
"param": "select",
"value": 1
}
],
"value": 0.3
}
},
"transform": [
{
"calculate": "datetime(datum.color.year, datum.color.month, datum.color.date)",
"as": "color"
},
{
"joinaggregate": [
{
"op": "count",
"field": "theta",
"as": "thetaAggregated"
}
],
"groupby": [
"color"
]
}
],
"data": {
"values": [
{
"color": {
"year": 2020,
"month": 9,
"date": 30,
"hours": 17,
"minutes": 0,
"seconds": 0,
"milliseconds": 0
},
"theta": "rec79Wjae6P45XNpl"
},
{
"color": {
"year": 2020,
"month": 9,
"date": 20,
"hours": 17,
"minutes": 0,
"seconds": 0,
"milliseconds": 0
},
"theta": "recrQaNcIH4wueWrT"
},
{
"color": {
"year": 2020,
"month": 8,
"date": 29,
"hours": 17,
"minutes": 0,
"seconds": 0,
"milliseconds": 0
},
"theta": "recwVzB5CNu0E6x9J"
},
{
"color": {
"year": 2020,
"month": 9,
"date": 25,
"hours": 17,
"minutes": 0,
"seconds": 0,
"milliseconds": 0
},
"theta": "recp8FrOTOgSqQlxV"
},
{
"color": {
"year": 2020,
"month": 9,
"date": 5,
"hours": 17,
"minutes": 0,
"seconds": 0,
"milliseconds": 0
},
"theta": "recpgd5QYGyHPz6oC"
},
{
"color": {
"year": 2020,
"month": 10,
"date": 7,
"hours": 16,
"minutes": 0,
"seconds": 0,
"milliseconds": 0
},
"theta": "recerFXuq7ply21Ba"
},
{
"color": {
"year": 2020,
"month": 9,
"date": 18,
"hours": 17,
"minutes": 0,
"seconds": 0,
"milliseconds": 0
},
"theta": "recNfz0B2qasVXfwS"
},
{
"color": {
"year": 2020,
"month": 9,
"date": 12,
"hours": 17,
"minutes": 0,
"seconds": 0,
"milliseconds": 0
},
"theta": "recriiVtRVuueAwTP"
},
{
"color": {
"year": 2020,
"month": 9,
"date": 19,
"hours": 17,
"minutes": 0,
"seconds": 0,
"milliseconds": 0
},
"theta": "recbGumPg7L28cUrh"
},
{
"color": {
"year": 2020,
"month": 9,
"date": 26,
"hours": 17,
"minutes": 0,
"seconds": 0,
"milliseconds": 0
},
"theta": "recrhgU6BXOBYY8F4"
},
{
"color": {
"year": 2020,
"month": 9,
"date": 31,
"hours": 17,
"minutes": 0,
"seconds": 0,
"milliseconds": 0
},
"theta": "recJzAP0NPlzck0aa"
},
{
"color": {
"year": 2020,
"month": 9,
"date": 32,
"hours": 17,
"minutes": 0,
"seconds": 0,
"milliseconds": 0
},
"theta": "rec2spYZGJTOnq32F"
},
{
"color": {
"year": 2020,
"month": 9,
"date": 17,
"hours": 17,
"minutes": 0,
"seconds": 0,
"milliseconds": 0
},
"theta": "recldmzqvJhcZ9oqy"
},
{
"color": {
"year": 2020,
"month": 9,
"date": 25,
"hours": 17,
"minutes": 0,
"seconds": 0,
"milliseconds": 0
},
"theta": "recegvuNEeNoSyyMT"
},
{
"color": {
"year": 2020,
"month": 9,
"date": 4,
"hours": 17,
"minutes": 0,
"seconds": 0,
"milliseconds": 0
},
"theta": "recDwkAeTWQ9KzDXS"
},
{
"color": {
"year": 2020,
"month": 9,
"date": 9,
"hours": 17,
"minutes": 0,
"seconds": 0,
"milliseconds": 0
},
"theta": "recKTwDYDpXsKAiAC"
}
]
}
}
Instead of joinaggregate, you can use aggregate transform as it will help you to generate new data set which you can utilize for the values pie chart. Simply convert the color values using calculate and expressions and then perform aggregation.
Below is the code snippet or refer editor:
{
"$schema": "https://vega.github.io/schema/vega-lite/v5.json",
"width": 880,
"height": 376,
"config": {
"range": {"category": {"scheme": "tableau20"}},
"legend": {
"labelColor": "#333",
"labelFontSize": 11,
"symbolSize": 30,
"symbolType": "circle",
"symbolStrokeWidth": 0,
"titleColor": "#333",
"titleFontSize": 14,
"titlePadding": 10,
"titleFontWeight": 500
},
"autosize": {"type": "fit", "contains": "padding"},
"font": "-apple-system, BlinkMacSystemFont, \"Segoe UI\", Roboto, Helvetica, Arial, sans-serif, \"Apple Color Emoji\", \"Segoe UI Emoji\", \"Segoe UI Symbol\"",
"axisLeft": {
"labelFontSize": 14,
"labelColor": "#333",
"labelLimit": 180,
"titleFontSize": 16,
"titleLimit": 180
},
"style": {
"label": {"align": "left", "baseline": "middle", "dx": 4},
"cell": {"stroke": "transparent"}
}
},
"layer": [
{
"mark": {
"type": "arc",
"innerRadius": {"expr": "min(width,height)/5"},
"outerRadius": {"expr": "min(width,height)/4"},
"tooltip": true,
"padAngle": 0.01
},
"params": [
{"name": "highlight", "select": {"type": "point", "on": "mouseover"}},
{"name": "select", "select": "point"}
]
},
{
"mark": {
"type": "text",
"stroke": "#666666",
"radius": {"expr": "min(width,height)/4+min(width,height)/5/2"},
"limit": {"expr": "min(width,height)/5"}
},
"encoding": {
"text": {"field": "quarterTime", "title": "Due date", "type": "nominal"}
}
}
],
"encoding": {
"color": {"field": "quarterTime", "title": "Due date", "type": "nominal"},
"theta": {
"field": "thetaAggregated",
"type": "quantitative",
"title": "Values",
"stack": true
},
"fillOpacity": {
"condition": [{"param": "select", "value": 1}],
"value": 0.3
}
},
"transform": [
{
"calculate": "datetime(datum.color.year, datum.color.month, datum.color.date)",
"as": "color"
},
{"calculate": "timeFormat(datum.color,'%Y Q%q')", "as": "quarterTime"},
{
"aggregate": [{"op": "count", "field": "theta", "as": "thetaAggregated"}],
"groupby": ["quarterTime"]
}
],
"data": {
"values": [
{
"color": {
"year": 2020,
"month": 9,
"date": 30,
"hours": 17,
"minutes": 0,
"seconds": 0,
"milliseconds": 0
},
"theta": "rec79Wjae6P45XNpl"
},
{
"color": {
"year": 2020,
"month": 9,
"date": 20,
"hours": 17,
"minutes": 0,
"seconds": 0,
"milliseconds": 0
},
"theta": "recrQaNcIH4wueWrT"
},
{
"color": {
"year": 2020,
"month": 8,
"date": 29,
"hours": 17,
"minutes": 0,
"seconds": 0,
"milliseconds": 0
},
"theta": "recwVzB5CNu0E6x9J"
},
{
"color": {
"year": 2020,
"month": 9,
"date": 25,
"hours": 17,
"minutes": 0,
"seconds": 0,
"milliseconds": 0
},
"theta": "recp8FrOTOgSqQlxV"
},
{
"color": {
"year": 2020,
"month": 9,
"date": 5,
"hours": 17,
"minutes": 0,
"seconds": 0,
"milliseconds": 0
},
"theta": "recpgd5QYGyHPz6oC"
},
{
"color": {
"year": 2020,
"month": 10,
"date": 7,
"hours": 16,
"minutes": 0,
"seconds": 0,
"milliseconds": 0
},
"theta": "recerFXuq7ply21Ba"
},
{
"color": {
"year": 2020,
"month": 9,
"date": 18,
"hours": 17,
"minutes": 0,
"seconds": 0,
"milliseconds": 0
},
"theta": "recNfz0B2qasVXfwS"
},
{
"color": {
"year": 2020,
"month": 9,
"date": 12,
"hours": 17,
"minutes": 0,
"seconds": 0,
"milliseconds": 0
},
"theta": "recriiVtRVuueAwTP"
},
{
"color": {
"year": 2020,
"month": 9,
"date": 19,
"hours": 17,
"minutes": 0,
"seconds": 0,
"milliseconds": 0
},
"theta": "recbGumPg7L28cUrh"
},
{
"color": {
"year": 2020,
"month": 9,
"date": 26,
"hours": 17,
"minutes": 0,
"seconds": 0,
"milliseconds": 0
},
"theta": "recrhgU6BXOBYY8F4"
},
{
"color": {
"year": 2020,
"month": 9,
"date": 31,
"hours": 17,
"minutes": 0,
"seconds": 0,
"milliseconds": 0
},
"theta": "recJzAP0NPlzck0aa"
},
{
"color": {
"year": 2020,
"month": 9,
"date": 32,
"hours": 17,
"minutes": 0,
"seconds": 0,
"milliseconds": 0
},
"theta": "rec2spYZGJTOnq32F"
},
{
"color": {
"year": 2020,
"month": 9,
"date": 17,
"hours": 17,
"minutes": 0,
"seconds": 0,
"milliseconds": 0
},
"theta": "recldmzqvJhcZ9oqy"
},
{
"color": {
"year": 2020,
"month": 9,
"date": 25,
"hours": 17,
"minutes": 0,
"seconds": 0,
"milliseconds": 0
},
"theta": "recegvuNEeNoSyyMT"
},
{
"color": {
"year": 2020,
"month": 9,
"date": 4,
"hours": 17,
"minutes": 0,
"seconds": 0,
"milliseconds": 0
},
"theta": "recDwkAeTWQ9KzDXS"
},
{
"color": {
"year": 2020,
"month": 9,
"date": 9,
"hours": 17,
"minutes": 0,
"seconds": 0,
"milliseconds": 0
},
"theta": "recKTwDYDpXsKAiAC"
}
]
}
}
I have the following vega chart:
{
"$schema": "https://vega.github.io/schema/vega-lite/v5.json",
"data": {
"name": "data",
"values": [
{
"action_hidden_size": 128,
"async_envs": true,
"charts_path": "charts/sweep",
"entropy_coef": 0.01,
"env": "BreakoutNoFrameskip-v0",
"episode length": 168.8265306122449,
"episode return": 1.0714285714285714,
"epsilon": 0.0001,
"fps": 427.7912197785782,
"gamma": 0.99,
"gpt": "1558M",
"gradient norm": 0.04117301106452942,
"jit": true,
"lambda_": 1,
"learning_rate": 0.0009,
"log_interval": 100,
"log_level": "INFO",
"logger": "hasura",
"loss": -0.028508108109235764,
"num_envs": 16,
"num_steps": 5,
"resnet": false,
"rnn": false,
"run ID": 1459,
"seed": 0,
"step": 64000,
"subcommand": "sweep",
"sweep_id": 19,
"time": 1625243790.698869,
"training_steps": -1
},
{
"action_hidden_size": 64,
"async_envs": true,
"charts_path": "charts/sweep",
"entropy_coef": 0.01,
"env": "BreakoutNoFrameskip-v0",
"episode length": 178.2111111111111,
"episode return": 1.288888888888889,
"epsilon": 0.00001,
"fps": 437.3014892700601,
"gamma": 0.99,
"gpt": "1558M",
"gradient norm": 0.0920964702963829,
"jit": true,
"lambda_": 1,
"learning_rate": 0.0005,
"log_interval": 100,
"log_level": "INFO",
"logger": "hasura",
"loss": 0.008676287718117237,
"num_envs": 16,
"num_steps": 10,
"resnet": false,
"rnn": false,
"run ID": 1456,
"seed": 0,
"step": 64000,
"subcommand": "sweep",
"sweep_id": 23,
"time": 1625243788.6341043,
"training_steps": -1
},
{
"action_hidden_size": 64,
"async_envs": true,
"charts_path": "charts/sweep",
"entropy_coef": 0.01,
"env": "BreakoutNoFrameskip-v0",
"episode length": 178.75581395348837,
"episode return": 1.430232558139535,
"epsilon": 0.00001,
"fps": 462.03207466360925,
"gamma": 0.99,
"gpt": "1558M",
"gradient norm": 0.041478127241134644,
"jit": true,
"lambda_": 1,
"learning_rate": 0.0005,
"log_interval": 100,
"log_level": "INFO",
"logger": "hasura",
"loss": 0.0075914873741567135,
"num_envs": 16,
"num_steps": 10,
"resnet": false,
"rnn": false,
"run ID": 1452,
"seed": 0,
"step": 64000,
"subcommand": "sweep",
"sweep_id": 23,
"time": 1625243776.3521159,
"training_steps": -1
},
{
"action_hidden_size": 128,
"async_envs": true,
"charts_path": "charts/sweep",
"entropy_coef": 0.01,
"env": "BreakoutNoFrameskip-v0",
"episode length": 161.39583333333334,
"episode return": 0.9166666666666666,
"epsilon": 0.0001,
"fps": 271.2519726477831,
"gamma": 0.99,
"gpt": "1558M",
"gradient norm": 0.0941310003399849,
"jit": true,
"lambda_": 1,
"learning_rate": 0.0009,
"log_interval": 100,
"log_level": "INFO",
"logger": "hasura",
"loss": -0.025099074468016624,
"num_envs": 16,
"num_steps": 5,
"resnet": false,
"rnn": false,
"run ID": 1455,
"seed": 0,
"step": 32000,
"subcommand": "sweep",
"sweep_id": 19,
"time": 1625243760.262077,
"training_steps": -1
},
{
"action_hidden_size": 128,
"async_envs": true,
"charts_path": "charts/sweep",
"entropy_coef": 0.01,
"env": "BreakoutNoFrameskip-v0",
"episode length": 156.8181818181818,
"episode return": 0.8863636363636364,
"epsilon": 0.0001,
"fps": 279.50948832177323,
"gamma": 0.99,
"gpt": "1558M",
"gradient norm": 0.06209081411361694,
"jit": true,
"lambda_": 1,
"learning_rate": 0.0009,
"log_interval": 100,
"log_level": "INFO",
"logger": "hasura",
"loss": -0.02385426126420498,
"num_envs": 16,
"num_steps": 5,
"resnet": false,
"rnn": false,
"run ID": 1459,
"seed": 0,
"step": 32000,
"subcommand": "sweep",
"sweep_id": 19,
"time": 1625243755.579455,
"training_steps": -1
}
]
},
"encoding": {
"x": {
"type": "temporal",
"field": "time"
},
"y": {
"type": "quantitative",
"field": "episode return"
},
"color": {
"type": "nominal",
"field": "run ID"
}
},
"height": 400,
"mark": "line",
"width": 600
}
Here is a link to a vega editor with this chart.
As you can see, the time-stamps do not appear to be rendering correctly. The "time" fields are derived from python's time.time() method. Should I be using a different format?
According to the documentation, vega should accept a "a timestamp number (e.g., 1552199579097)` for "temporal" fields.
I've also looked at this issue which seems to indicate that this should work in the latest Vega, although per that issue, I am not sure if I need a field along the lines of
"format": {
"parse": {
"date": "number"
}
}
Thank you.
Python's time.time() returns a timestamp in seconds since the zero epoch.
Javascript timestamps are expected to be in milliseconds since the zero epoch.
So, to correctly use Python timestamps in vega-lite charts, you'll have to multiply them by 10^6:
"transform": [
{"calculate": "1000000 * datum.time", "as": "time"}
],
I'm new in Ionic development. I'm having a problem retrieving JSON.
"Failed to load https://api.wh.geniussports.com/v1/basketball/competitions/19816/matcheslive?ak=eebd8ae256142ac3fd24bd2003d28782: No 'Access-Control-Allow-Origin' header is present on the requested resource. Origin 'http://localhost:8100' is therefore not allowed access."
Here's my json format
{
"response": {
"meta": {
"version": 1,
"code": 200,
"status": "success",
"request": "http://api.wh.geniussports.com/v1/basketball/competitions/19816/matcheslive?ak=eebd8ae256142ac3fd24bd2003d28782",
"time": 1528177532,
"count": 10,
"limit": 10
},
"data": [
{
"leagueId": 6,
"matchId": 784470,
"competitionId": 19816,
"venueId": 17386,
"poolNumber": 0,
"roundNumber": "1",
"roundDescription": "",
"matchNumber": 1,
"matchStatus": "COMPLETE",
"matchName": "",
"phaseName": "",
"extraPeriodsUsed": 0,
"matchTime": "2017-11-17 19:30:00",
"matchTimeUTC": "2017-11-17 11:30:00",
"enddate": null,
"timeActual": "2017-11-17 19:45:37",
"timeEndActual": "2017-11-17 21:12:10",
"durationActual": 87,
"temperature": 0,
"attendance": 0,
"duration": 120,
"weather": "",
"twitterHashtag": "",
"liveStream": 1,
"matchType": "REGULAR",
"keywords": "",
"ticketURL": "",
"externalId": "920",
"nextMatchId": 0,
"placeIfWon": 0,
"placeIfLost": 0,
"updated": "2017-11-24 11:04:00",
"linkDetail": "/v1/basketball/matches/784470",
"linkDetailLeague": "/v1/basketball/leagues/6",
"venue": {
"venueId": 17386,
"venueName": "Nanhai Gymnasium",
"venueNameInternational": "",
"venueNickname": "Nanhai Gym",
"venueNicknameInternational": "",
"surfaceName": "",
"locationName": "",
"website": "",
"ticketURL": "",
"externalId": "54",
"linkDetailVenue": "/v1/basketball/venues/17386"
},
"leagueName": "ASEAN Basketball League",
"leagueNameInternational": "",
"competitionName": "2017 ASEAN Basketball League",
"competitionNameInternational": "",
"gsId": "",
"competitors": [
{
"competitorType": "TEAM",
"competitorName": "Singapore Slingers",
"competitorId": 88261,
"linkDetailCompetitor": "/v1/basketball/teams/88261",
"scoreString": "59",
"scoreSecondaryString": "",
"completionStatus": "COMPLETE",
"resultPlacing": 0,
"isDrawn": 0,
"isHomeCompetitor": 0,
"teamId": 88261,
"teamName": "Singapore Slingers",
"teamGsId": null,
"teamNameInternational": "",
"teamNickname": "Singapore Slingers",
"teamNicknameInternational": "",
"teamCode": "",
"teamCodeInternational": "",
"website": "",
"internationalReference": "",
"externalId": "74",
"images": {
"logo": {
"L1": {
"size": "L1",
"height": 600,
"width": 600,
"bytes": 45196,
"url": "http://img.wh.sportingpulseinternational.com/5b71cf0a1af51c8376eda43e6ba5bc22L1.jpg"
},
"M1": {
"size": "M1",
"height": 400,
"width": 400,
"bytes": 25005,
"url": "http://img.wh.sportingpulseinternational.com/5b71cf0a1af51c8376eda43e6ba5bc22M1.jpg"
},
"S1": {
"size": "S1",
"height": 200,
"width": 200,
"bytes": 9180,
"url": "http://img.wh.sportingpulseinternational.com/5b71cf0a1af51c8376eda43e6ba5bc22S1.jpg"
},
"T1": {
"size": "T1",
"height": 75,
"width": 75,
"bytes": 2270,
"url": "http://img.wh.sportingpulseinternational.com/5b71cf0a1af51c8376eda43e6ba5bc22T1.jpg"
}
}
},
"clubId": 62,
"clubGsId": null,
"clubName": "Singapore Slingers",
"clubNameInternational": "",
"linkDetailClub": "/v1/basketball/clubs/62"
},
Below is my loadUser function
loadUser(){
this.http.get('http://api.wh.geniussports.com/v1/basketball/competitions/19816/matcheslive?ak=eebd8ae256142ac3fd24bd2003d28782')
.map(res => res.json())
.subscribe(res => {
this.data = data.results;
console.log(data.results);
}, err => {
console.log(err);
});
}
My main goal is to log the data[] array. Please help me
This is the problem with browser, typically its a security concern not to allow other requests which may lead to XSS attack easily. If only for development I suggest you to install a plugin which will disable in your browser plugin
If for production, then you need to configure your API then do this .
I have an extract of tweets in JSON format. I have attached an sample of the data. I would need to convert this JSON into a dataframe.
So far I managed to convert it using the "jsonlite" package:
json_data <- jsonlite::stream_in(file("myjsonfile.txt"))
But it does not load all the information contained in the tweets. For example I only see the user who retweeted but not who posted the tweet.
You can view the json file better using this website by copy pasting the file and selecting format: http://jsonviewer.stack.hu/
The data is coming from the Twitter API (more information on this data available here: https://dev.twitter.com/overview/api/tweets
Thank you in advance for your time and help.
ML_Enthousiast
{"favorited": false, "in_reply_to_status_id_str": null, "in_reply_to_user_id": null, "truncated": false, "in_reply_to_user_id_str": null, "coordinates": null, "retweeted": false, "text": "RT #Antoniotalks: Revenue streams for #OpenData companies!\n#Cloud #StartUp #SMM #AI #IoT #Fintech #BigData #deeplearning #Mpgvip\u2026 ", "retweet_count": 0, "filter_level": "low", "created_at": "Thu Jun 29 18:47:18 +0000 2017", "favorite_count": 0, "retweeted_status": {"favorited": false, "in_reply_to_status_id_str": null, "in_reply_to_user_id": null, "display_text_range": [0, 140], "truncated": true, "in_reply_to_user_id_str": null, "coordinates": null, "retweeted": false, "text": "Revenue streams for #OpenData companies!\n#Cloud #StartUp #SMM #AI #IoT #Fintech #BigData #deeplearning #Mpgvip\u2026 ", "retweet_count": 38, "filter_level": "low", "created_at": "Wed Jun 28 12:45:08 +0000 2017", "favorite_count": 48, "in_reply_to_screen_name": null, "extended_tweet": {"extended_entities": {"media": [{"media_url_https": "", "sizes": {"thumb": {"w": 150, "h": 150, "resize": "crop"}, "large": {"w": 1200, "h": 927, "resize": "fit"}, "medium": {"w": 1200, "h": 927, "resize": "fit"}, "small": {"w": 680, "h": 525, "resize": "fit"}}, "type": "photo", "expanded_url": "", "id": 880044388679901184, "media_url": "http://pbs.twimg.com/media/DDaLtXXXYAAI2eM.jpg", "id_str": "880044388679901184", "display_url": "pic.twitter.com/aw9HeukUYv", "indices": [139, 162], "url": ""}]}, "full_text": "Revenue streams for #OpenData companies!\n#Cloud #StartUp #SMM #AI #IoT #Fintech #BigData #deeplearning #Mpgvip #defstar5 #DataScience #CIO ", "entities": {"user_mentions": [], "hashtags": [{"text": "OpenData", "indices": [20, 29]}, {"text": "Cloud", "indices": [41, 47]}, {"text": "StartUp", "indices": [48, 56]}, {"text": "SMM", "indices": [57, 61]}, {"text": "AI", "indices": [62, 65]}, {"text": "IoT", "indices": [66, 70]}, {"text": "Fintech", "indices": [71, 79]}, {"text": "BigData", "indices": [80, 88]}, {"text": "deeplearning", "indices": [89, 102]}, {"text": "Mpgvip", "indices": [103, 110]}, {"text": "defstar5", "indices": [111, 120]}, {"text": "DataScience", "indices": [121, 133]}, {"text": "CIO", "indices": [134, 138]}], "media": [{"media_url_https": "", "sizes": {"thumb": {"w": 150, "h": 150, "resize": "crop"}, "large": {"w": 1200, "h": 927, "resize": "fit"}, "medium": {"w": 1200, "h": 927, "resize": "fit"}, "small": {"w": 680, "h": 525, "resize": "fit"}}, "type": "photo", "expanded_url": "", "id": 880044388679901184, "media_url": "", "id_str": "880044388679901184", "display_url": "pic.twitter.com/aw9HeukUYv", "indices": [139, 162], "url": ""}], "symbols": [], "urls": []}, "display_text_range": [0, 138]}, "in_reply_to_status_id": null, "source": "Buffer", "id_str": "880044392110796800", "entities": {"user_mentions": [], "hashtags": [{"text": "OpenData", "indices": [20, 29]}, {"text": "Cloud", "indices": [41, 47]}, {"text": "StartUp", "indices": [48, 56]}, {"text": "SMM", "indices": [57, 61]}, {"text": "AI", "indices": [62, 65]}, {"text": "IoT", "indices": [66, 70]}, {"text": "Fintech", "indices": [71, 79]}, {"text": "BigData", "indices": [80, 88]}, {"text": "deeplearning", "indices": [89, 102]}, {"text": "Mpgvip", "indices": [103, 110]}], "symbols": [], "urls": [{"display_url": "twitter.com/i/web/status/8\u2026", "indices": [112, 135], "expanded_url": "", "url": "8H"}]}, "lang": "en", "id": 880044392110796800, "is_quote_status": false, "geo": null, "user": {"screen_name": "Antoniotalks", "profile_background_image_url": "", "profile_image_url": "jpg", "follow_request_sent": null, "profile_background_tile": false, "id": 2445890839, "is_translator": false, "description": "A father & CEO of Recruitd (#imrecruitd). Helping companies magnify their #employer and #recruitment #brand and #jobseekers with the #skillstosucceed.", "listed_count": 198, "favourites_count": 398, "created_at": "Tue Apr 15 19:13:52 +0000 2014", "notifications": null, "profile_background_image_url_https": "https://abs.twimg.com/images/themes/theme1/bg.png", "contributors_enabled": false, "profile_background_color": "C0DEED", "following": null, "friends_count": 6792, "protected": false, "default_profile": true, "profile_use_background_image": true, "name": "Antonio Giugno", "location": "London, England", "geo_enabled": true, "id_str": "2445890839", "utc_offset": -25200, "profile_banner_url": "0", "profile_text_color": "333333", "lang": "en-gb", "statuses_count": 4058, "profile_sidebar_fill_color": "DDEEF6", "default_profile_image": false, "profile_image_url_https": "4433/dVeGYfTX_normal.jpg", "profile_link_color": "1DA1F2", "url": "rnontubein", "verified": false, "profile_sidebar_border_color": "C0DEED", "followers_count": 6323, "time_zone": "Pacific Time (US & Canada)"}, "contributors": null, "possibly_sensitive": false, "place": null}, "in_reply_to_screen_name": null, "timestamp_ms": "1498762038396", "in_reply_to_status_id": null, "source": "Mobile Web (M2)", "id_str": "880497923150286848", "entities": {"user_mentions": [{"screen_name": "Antoniotalks", "id": 2445890839, "id_str": "2445890839", "name": "Antonio Giugno", "indices": [3, 16]}], "hashtags": [{"text": "OpenData", "indices": [38, 47]}, {"text": "Cloud", "indices": [59, 65]}, {"text": "StartUp", "indices": [66, 74]}, {"text": "SMM", "indices": [75, 79]}, {"text": "AI", "indices": [80, 83]}, {"text": "IoT", "indices": [84, 88]}, {"text": "Fintech", "indices": [89, 97]}, {"text": "BigData", "indices": [98, 106]}, {"text": "deeplearning", "indices": [107, 120]}, {"text": "Mpgvip", "indices": [121, 128]}], "symbols": [], "urls": [{"indices": [130, 130], "expanded_url": null, "url": ""}]}, "lang": "en", "id": 880497923150286848, "is_quote_status": false, "geo": null, "user": {"screen_name": "henrymbuguak", "profile_background_image_url": "://abs.twimg.com/images/themes/theme3/bg.gif", "profile_image_url": "://pbs.twimg.com/profile_images/822772556818239489/0yTbHCGj_normal.jpg", "follow_request_sent": null, "profile_background_tile": false, "id": 310697279, "is_translator": false, "description": "I enjoy coding. Visit my github project: :// ://github.com/henrymbuguak", "listed_count": 62, "favourites_count": 978, "created_at": "Sat Jun 04 05:55:09 +0000 2011", "notifications": null, "profile_background_image_url_https": "://abs.twimg.com/images/themes/theme3/bg.gif", "contributors_enabled": false, "profile_background_color": "EDECE9", "following": null, "friends_count": 2540, "protected": false, "default_profile": false, "profile_use_background_image": true, "name": "kiarie henry mbugua", "location": "Njoro, Kenya.", "geo_enabled": false, "id_str": "310697279", "utc_offset": 10800, "profile_banner_url": "://pbs.twimg.com/profile_banners/310697279/1484999353", "profile_text_color": "634047", "lang": "en", "statuses_count": 3775, "profile_sidebar_fill_color": "E3E2DE", "default_profile_image": false, "profile_image_url_https": "//pbs.twimg.com/profile_images/822772556818239489/0yTbHCGj_normal.jpg", "profile_link_color": "088253", "url": null, "verified": false, "profile_sidebar_border_color": "D3D2CF", "followers_count": 2141, "time_zone": "Nairobi"}, "contributors": null, "place": null}
If I read in your data using
indata <- jsonlite::read_json("myjsonfile.json")
then I get all the information contained in the JSON file. It is a nested list so you may need to extract the information you want from one of the elements in the list
> names(indata)
[1] "favorited" "in_reply_to_status_id_str"
[3] "in_reply_to_user_id" "truncated"
[5] "in_reply_to_user_id_str" "coordinates"
[7] "retweeted" "text"
[9] "retweet_count" "filter_level"
[11] "created_at" "favorite_count"
[13] "retweeted_status" "in_reply_to_screen_name"
[15] "timestamp_ms" "in_reply_to_status_id"
[17] "source" "id_str"
[19] "entities" "lang"
[21] "id" "is_quote_status"
[23] "geo" "user"
[25] "contributors" "place"
The information about the user is for example (only a part shown)
> indata$user
$screen_name
[1] "henrymbuguak"
$profile_background_image_url
[1] "://abs.twimg.com/images/themes/theme3/bg.gif"
$profile_image_url
[1] "://pbs.twimg.com/profile_images/822772556818239489/0yTbHCGj_normal.jpg"
$follow_request_sent
NULL
$profile_background_tile
[1] FALSE
$id
[1] 310697279
so you can get the user with indata$user$screen_name
I have a nested JSON. I want it to be read in pandas in order to explore it, but I got errors. When to use read_json method, I got: "Trailing data". It is valid JSON. How to read it in pd? (Tried differently, but did not work). It looks like this:
{
"contributors": null,
"coordinates": null,
"created_at": "Fri May 26 08:54:00 +0000 2017",
"entities": {
"hashtags": [],
"media": [
{
"display_url": "pic.twitter.com/Pm28ORTePl",
"expanded_url": "",
"id": 868027417121751040,
"id_str": "868027417121751040",
"indices": [
94,
117
],
"media_url": "",
"sizes": {
"large": {
"h": 404,
"resize": "fit",
"w": 773
},
"medium": {
"h": 404,
"resize": "fit",
"w": 773
},
"small": {
"h": 355,
"resize": "fit",
"w": 680
},
"thumb": {
"h": 150,
"resize": "crop",
"w": 150
}
},
"type": "photo",
"url": ""
}
],
"symbols": [],
"urls": [
{
"display_url": "",
"expanded_url": "",
"indices": [
70,
93
],
"url": ""
}
],
"user_mentions": []
},
"extended_entities": {
"media": [
{
"display_url": "pic.twitter.com/Pm28ORTePl",
"expanded_url": "1",
"id": 868027417121751040,
"id_str": "868027417121751040",
"indices": [
94,
117
],
"media_url": "",
"media_url_https": "",
"sizes": {
"large": {
"h": 404,
"resize": "fit",
"w": 773
},
"medium": {
"h": 404,
"resize": "fit",
"w": 773
},
"small": {
"h": 355,
"resize": "fit",
"w": 680
},
"thumb": {
"h": 150,
"resize": "crop",
"w": 150
}
},
"type": "photo",
"url": ""
}
]
},
"favorite_count": 1,
"favorited": false,
"geo": null,
"id": 868027425757724672,
"id_str": "868027425757724672",
"in_reply_to_screen_name": null,
"in_reply_to_status_id": null,
"in_reply_to_status_id_str": null,
"in_reply_to_user_id": null,
"in_reply_to_user_id_str": null,
"is_quote_status": false,
"lang": "ru",
"place": null,
"possibly_sensitive": false,
"retweet_count": 0,
"retweeted": false,
"source": "Twitter Web Client",
"text": "\u041f\u0440\u043e\u043f\u0430\u0432\u0448\u0430\u044f \u0432 \u041a\u043e\u043a\u0448\u0435\u0442\u0430\u0443 \u0448\u043a\u043e\u043b\u044c\u043d\u0438\u0446\u0430 \u0436\u0438\u043b\u0430 \u0432 \u0437\u0430\u0431\u0440\u043e\u0448\u0435\u043d\u043d\u043e\u043c \u0434\u043e\u043c\u0435 \u0438 \u0431\u0440\u043e\u0434\u044f\u0436\u043d\u0438\u0447\u0430\u043b\u0430\n",
"truncated": false,
"user": {
"contributors_enabled": false,
"created_at": "Wed May 18 11:59:50 +0000 2011",
"default_profile": true,
"default_profile_image": false,
"description": "\u041a\u0430\u0437\u0430\u0445\u0441\u0442\u0430\u043d\u0441\u043a\u0438\u0439 \u0438\u043d\u0442\u0435\u0440\u043d\u0435\u0442-\u043f\u043e\u0440\u0442\u0430\u043b",
"entities": {
"description": {
"urls": []
},
"url": {
"urls": [
{
"display_url": "",
"expanded_url": "",
"indices": [
0,
22
],
"url": ""
}
]
}
},
"favourites_count": 87,
"follow_request_sent": false,
"followers_count": 17989,
"following": true,
"friends_count": 98,
"geo_enabled": true,
"has_extended_profile": false,
"id": 300811189,
"id_str": "300811189",
"is_translation_enabled": false,
"is_translator": false,
"lang": "ru",
"listed_count": 86,
"location": "\u0410\u043b\u043c\u0430\u0442\u044b",
"name": "",
"notifications": false,
"profile_background_color": "C0DEED",
"profile_background_image_url": "http://abs.twimg.com/images/themes/theme1/bg.png",
"profile_background_image_url_https": "https://abs.twimg.com/images/themes/theme1/bg.png",
"profile_background_tile": false,
"profile_banner_url": "https://pbs.twimg.com/profile_banners/300811189/1489117916",
"profile_image_url": "http://pbs.twimg.com/profile_images/840047424882298881/NxZSyfhM_normal.jpg",
"profile_image_url_https": "https://pbs.twimg.com/profile_images/840047424882298881/NxZSyfhM_normal.jpg",
"profile_link_color": "1DA1F2",
"profile_sidebar_border_color": "C0DEED",
"profile_sidebar_fill_color": "DDEEF6",
"profile_text_color": "333333",
"profile_use_background_image": true,
"protected": false,
"screen_name": "",
"statuses_count": 53011,
"time_zone": "Quito",
"translator_type": "none",
"url": "",
"utc_offset": -18000,
"verified": false
}
}
Sorry, but your JSON is actually not valid, despite your saying it is.
This line:
"media_url": "": "",
Should probably be:
"media_url": "",
At which point, when I added the final bracket } that was outside of your code block, validated as properly formed JSON.