Restful: is there any case we should use xml over json - json

Json is better than xml for sure, i was wondering if there is any case we should use xml instead of json

If speaking in terms of REST, neither is better. Plain XML or plain JSON does not say anything about data transferred in either format. Though if you use well known formats like:
application/atom+xml
application/vnd.collection+json
comparison will boil down to which format suits your needs better.
If you compare XML to JSON from programming language perspective, yes XML adds extra layer between code and data, though nothing special. Oh and XML is little verbose and larger in terms of bytes.

XML has been around for a long time, and there's a lot of tools in place that JSON does not yet have, are not commonplace or ubiquitous.
XML has XSchema, RelaxNG, DTD. JSON does have an equivalent but it's not as common place.
XML has namespacing, which is great for mixing different document types. JSON does have some ideas on how to do namespacing (such as JSON-LD) but doing this correctly tends to take why people tend to enjoy JSON over XML for.
Namespacing in XML is everywhere, which gives you a very standard framework to re-use existing XML schemas for integration.
So I don't want to say, "you should do XML" or "you should do JSON", but I would rather say that if you need to integrate with existing XML systems, or you needs would strongly benefit from features such as namespacing, schemas, linking, re-use of existing XML documents, XSLT, etc... XML might be a better choice.

Related

Equivalent Xml for Json

I came across this service from stackoverflow
https://api.stackexchange.com/2.3/questions?fromdate=1519862400&todate=1522368000&order=desc&sort=activity&site=stackoverflow&tagged=python
I believe the source is from a database. How do I build an Xml to spit me out data in similar format?
I use the below logical lines
xmldoc.Load(xmlFileName);
Newtonsoft.Json.JsonConver.SerializeXmlNode(xmldoc);
Any recommendation of how to build the Xml which is a reverse process? My solutions are heavily dependant on Xml and flatFiles
According to https://api.stackexchange.com/docs the StackExchange API only supports JSON output, not XML. So you will have to convert the JSON to XML.
My own preference is to do this conversion "by hand" using XSLT 3.0 rather than using a standard library, because standard libraries often give you XML that's rather difficult to work with.

What should I read on json and html parsers to build one myself?

I want to create a json and html parser to deepen my knowledge in them (I don't want to reinvent it to be "more efficient", as you could think).
What should I read to succede with it?
P.S: I know about parsing laws, but couldn't find some on json.
P.P.S: C++ implementation is my target.
JSON is specified in RFC 8259 (using EBNF) and ECMA-404 (using railroad diagrams). Since they both define the same grammar, which of the two you use is unimportant; go for the one you fibd easier.
JSON parsing is pretty simple. HTML, on the other hand, is a huge project, made more complicated by the absence of a versioned authoritative standard which makes it a bit of a moving target.
HTML parsing as currently defined by the "living standard" is a procedure which probably cannot be encapsulated in a context-free grammar. No real attempt is made to use grammatical descriptions in the standard, although it is possible to extract at least a lexical grammar, if you ignore the sections dealing with the handling of lexical errors.
Certainly, you could write a parser for a well-behaved subset, but that parser might not cope well with many of the "HTML" documents you will want to process. Personally, for learning purposes, I'd suggest trying your hand at XML. (Also see XML Namespaces].

JSON and HTML trying to understand

According to a post on Stackflow.com called “what’s is JSOn and why would I use it? “web services used XML as their primary data format for transmitting back data, but since JSON appeared, it is preferred method.” Why do must web services use JSON over XML, is because it’s a better method for interchanging?
XML was designed primarily for document formats, e.g. papers in scientific journals. It contains many features that aren't needed for simple data interchange, and these features can get in the way when you are processing XML because they can't be easily represented in Javascript. So the code for processing the XML ends up a lot more complicated than it could be. By contrasts, JSON has an exact match to the data structures Javascript can handle natively. Of course, that problem could in principle be solved by using a language with better XML support than JavaScript - XSLT, for example - but unfortunately XSLT in the browser has never had the same level of investment put into it.
Additionally, for reasons I have never understood, the browser security folks decided that reading JSON from alien web sites (i.e. from a different domain from your HTML page) is safe, but reading XML from alien sites isn't. So if you switch from XML to JSON, you get rid of a lot of cross-site-scripting hassle.
JSON is less verbose and it is sufficient for simple data transmission, i.e. if you do not need any transformations (XSLT).

JSON.stringify versus serialization

Is JSON.stringify( ) equivalent to serialization or effectively serialization or is it just a necessary step towards
serialization?
In other words, is JSON.stringify( ) sufficient but not necessary for serialization? Or is necessary but not sufficient? Or is it neither necessary nor sufficient for serialization of JavaScript objects?
Serialization is the act of converting data into a format that can be written to disk or transmitted over the network (or written on paper if that's what you want). Usually, serialization is transforming objects to text but that's not necessary since there are several serialization formats such as bittorrent's bencoding and the old/ancient standard asn.1 formats which are binary.
JSON is one form of text-based serialization format and is currently very popular due to it's simplicity. It's not the only one though. Other popular formats include XML and CSV.
Due to its popularity and its origin as javascript object literal syntax ES5 introduced JSON.stringify() to generate a JSON string from an object. Previously you had to use libraries or write a recursive descent parser to do the job.
So, is JSON.stringify() enough for serialization? Yes, if the output format you want is JSON. No, if you want other output formats such as XML or CSV or bencode.
There are limitations to the JSON format. One limitation is that JSON cannot encode functions so JSON.stringify() ignores functions/methods when serializing. JSON also can't encode circular references. Most other serialization formats have this limitation as well but since JSON looks like javascript syntax some people assume it can do what javascript object literals can. It can't.
So the relationship between "JSON" and "serialization" is like the relationship between "Toyota Prius" and "car". JSON.stringify() is simply a function that generates JSON strings so I guess that would make it a Toyota factory.
Old question, but the following information may be useful for posterity.
Of course, you can serialise any way you want, including any number of custom methods, but JSON has become an increasingly popular method.
The most obvious benefit of JSON is that it represents objects in the same way that JavaScript object literals do, though it is slightly less flexible. Nevertheless, if you can represent normal data in JavaScript then JSON is a good match.
The most significant feature is that, since it represents objects as well as arrays, it can represent fairly complex & hierarchical data.
For one reason or another, JSON has more-or-less supplanted XML as the preferred serialisation for sending data between the server and browser. It is so useful that many languages include their own JSON functions (PHP, for example, has the better named json_encode & json_decode functions), as do some modern Databases. I myself have found it convenient to use JSON functions to store a more complex data structure in a single field of a database without JavaScript anywhere in sight).
The short answer is yes, for the most part it is a sufficient step to serializing most data (non-binary). It is not, however, necessary as there are alternatives.
Serializing binary data, on the other hand, now that’s another story …
Short answer... Serialize means the same thing as Stringify, IMHO.

What is the difference between YAML and JSON?

What are the differences between YAML and JSON, specifically considering the following things?
Performance (encode/decode time)
Memory consumption
Expression clarity
Library availability, ease of use (I prefer C)
I was planning to use one of these two in our embedded system to store configure files.
Related:
Should I use YAML or JSON to store my Perl data?
Technically YAML is a superset of JSON. This means that, in theory at least, a YAML parser can understand JSON, but not necessarily the other way around.
See the official specs, in the section entitled "YAML: Relation to JSON".
In general, there are certain things I like about YAML that are not available in JSON.
As #jdupont pointed out, YAML is visually easier to look at. In fact the YAML homepage is itself valid YAML, yet it is easy for a human to read.
YAML has the ability to reference other items within a YAML file using "anchors." Thus it can handle relational information as one might find in a MySQL database.
YAML is more robust about embedding other serialization formats such as JSON or XML within a YAML file.
In practice neither of these last two points will likely matter for things that you or I do, but in the long term, I think YAML will be a more robust and viable data serialization format.
Right now, AJAX and other web technologies tend to use JSON. YAML is currently being used more for offline data processes. For example, it is included by default in the C-based OpenCV computer vision package, whereas JSON is not.
You will find C libraries for both JSON and YAML. YAML's libraries tend to be newer, but I have had no trouble with them in the past. See for example Yaml-cpp.
Differences:
YAML, depending on how you use it, can be more readable than JSON
JSON is often faster and is probably still interoperable with more systems
It's possible to write a "good enough" JSON parser very quickly
Duplicate keys, which are potentially valid JSON, are definitely invalid YAML.
YAML has a ton of features, including comments and relational anchors. YAML syntax is accordingly quite complex, and can be hard to understand.
It is possible to write recursive structures in yaml: {a: &b [*b]}, which will loop infinitely in some converters. Even with circular detection, a "yaml bomb" is still possible (see xml bomb).
Because there are no references, it is impossible to serialize complex structures with object references in JSON. YAML serialization can therefore be more efficient.
In some coding environments, the use of YAML can allow an attacker to execute arbitrary code.
Observations:
Python programmers are generally big fans of YAML, because of the use of indentation, rather than bracketed syntax, to indicate levels.
Many programmers consider the attachment of "meaning" to indentation a poor choice.
If the data format will be leaving an application's environment, parsed within a UI, or sent in a messaging layer, JSON might be a better choice.
YAML can be used, directly, for complex tasks like grammar definitions, and is often a better choice than inventing a new language.
Bypassing esoteric theory
This answers the title, not the details as most just read the title from a search result on google like me so I felt it was necessary to explain from a web developer perspective.
YAML uses space indentation, which is familiar territory for Python developers.
JavaScript developers love JSON because it is a subset of JavaScript and can be directly interpreted and written inside JavaScript, along with using a shorthand way to declare JSON, requiring no double quotes in keys when using typical variable names without spaces.
There are a plethora of parsers that work very well in all languages for both YAML and JSON.
YAML's space format can be much easier to look at in many cases because the formatting requires a more human-readable approach.
YAML's form while being more compact and easier to look at can be deceptively difficult to hand edit if you don't have space formatting visible in your editor. Tabs are not spaces so that further confuses if you don't have an editor to interpret your keystrokes into spaces.
JSON is much faster to serialize and deserialize because of significantly less features than YAML to check for, which enables smaller and lighter code to process JSON.
A common misconception is that YAML needs less punctuation and is more compact than JSON but this is completely false. Whitespace is invisible so it seems like there are less characters, but if you count the actual whitespace which is necessary to be there for YAML to be interpreted properly along with proper indentation, you will find YAML actually requires more characters than JSON. JSON doesn't use whitespace to represent hierarchy or grouping and can be easily flattened with unnecessary whitespace removed for more compact transport.
The Elephant in the room: The Internet itself
JavaScript so clearly dominates the web by a huge margin and JavaScript developers prefer using JSON as the data format overwhelmingly along with popular web APIs so it becomes difficult to argue using YAML over JSON when doing web programming in the general sense as you will likely be outvoted in a team environment. In fact, the majority of web programmers aren't even aware YAML exists, let alone consider using it.
If you are doing any web programming, JSON is the default way to go because no translation step is needed when working with JavaScript so then you must come up with a better argument to use YAML over JSON in that case.
This question is 6 years old, but strangely, none of the answers really addresses all four points (speed, memory, expressiveness, portability).
Speed
Obviously this is implementation-dependent, but because JSON is so widely used, and so easy to implement, it has tended to receive greater native support, and hence speed. Considering that YAML does everything that JSON does, plus a truckload more, it's likely that of any comparable implementations of both, the JSON one will be quicker.
However, given that a YAML file can be slightly smaller than its JSON counterpart (due to fewer " and , characters), it's possible that a highly optimised YAML parser might be quicker in exceptional circumstances.
Memory
Basically the same argument applies. It's hard to see why a YAML parser would ever be more memory efficient than a JSON parser, if they're representing the same data structure.
Expressiveness
As noted by others, Python programmers tend towards preferring YAML, JavaScript programmers towards JSON. I'll make these observations:
It's easy to memorise the entire syntax of JSON, and hence be very confident about understanding the meaning of any JSON file. YAML is not truly understandable by any human. The number of subtleties and edge cases is extreme.
Because few parsers implement the entire spec, it's even harder to be certain about the meaning of a given expression in a given context.
The lack of comments in JSON is, in practice, a real pain.
Portability
It's hard to imagine a modern language without a JSON library. It's also hard to imagine a JSON parser implementing anything less than the full spec. YAML has widespread support, but is less ubiquitous than JSON, and each parser implements a different subset. Hence YAML files are less interoperable than you might think.
Summary
JSON is the winner for performance (if relevant) and interoperability. YAML is better for human-maintained files. HJSON is a decent compromise although with much reduced portability. JSON5 is a more reasonable compromise, with well-defined syntax.
GIT and YAML
The other answers are good. Read those first. But I'll add one other reason to use YAML sometimes: git.
Increasingly, many programming projects use git repositories for distribution and archival. And, while a git repo's history can equally store JSON and YAML files, the "diff" method used for tracking and displaying changes to a file is line-oriented. Since YAML is forced to be line-oriented, any small changes in a YAML file are easier to see by a human.
It is true, of course, that JSON files can be "made pretty" by sorting the strings/keys and adding indentation. But this is not the default and I'm lazy.
Personally, I generally use JSON for system-to-system interaction. I often use YAML for config files, static files, and tracked files. (I also generally avoid adding YAML relational anchors. Life is too short to hunt down loops.)
Also, if speed and space are really a concern, I don't use either. You might want to look at BSON.
I find YAML to be easier on the eyes: less parenthesis, "" etc. Although there is the annoyance of tabs in YAML... but one gets the hang of it.
In terms of performance/resources, I wouldn't expect big differences between the two.
Futhermore, we are talking about configuration files and so I wouldn't expect a high frequency of encode/decode activity, no?
Technically YAML offers a lot more than JSON (YAML v1.2 is a superset of JSON):
comments
anchors and inheritance - example of 3 identical items:
item1: &anchor_name
name: Test
title: Test title
item2: *anchor_name
item3:
<<: *anchor_name
# You may add extra stuff.
...
Most of the time people will not use those extra features and the main difference is that YAML uses indentation whilst JSON uses brackets. This makes YAML more concise and readable (for the trained eye).
Which one to choose?
YAML extra features and concise notation makes it a good choice for configuration files (non-user provided files).
JSON limited features, wide support, and faster parsing makes it a great choice for interoperability and user provided data.
If you don't need any features which YAML has and JSON doesn't, I would prefer JSON because it is very simple and is widely supported (has a lot of libraries in many languages). YAML is more complex and has less support. I don't think the parsing speed or memory use will be very much different, and maybe not a big part of your program's performance.
Benchmark results
Below are the results of a benchmark to compare YAML vs JSON loading times, on Python and Perl
JSON is much faster, at the expense of some readability, and features such as comments
Test method
100 sequential runs on a fast machine, average number of seconds
The dataset was a 3.44MB JSON file, containing movie data scraped from Wikipedia
https://raw.githubusercontent.com/prust/wikipedia-movie-data/master/movies.json
Linked to from: https://github.com/jdorfman/awesome-json-datasets
Results
Python 3.8.3 timeit
JSON: 0.108
YAML CLoader: 3.684
YAML: 29.763
Perl 5.26.2 Benchmark::cmpthese
JSON XS: 0.107
YAML XS: 0.574
YAML Syck: 1.050
Perl 5.26.2 Dumbbench (Brian D Foy, excludes outliers)
JSON XS: 0.102
YAML XS: 0.514
YAML Syck: 1.027
From: Arnaud Lauret Book “The Design of Web APIs.” :
The JSON data format
JSON is a text data format based on how the JavaScript programming language describes data but is, despite its name, completely language-independent (see https://www.json.org/). Using JSON, you can describe objects containing unordered name/value pairs and also arrays or lists containing ordered values, as shown in this figure.
An object is delimited by curly braces ({}). A name is a quoted string ("name") and is sep- arated from its value by a colon (:). A value can be a string like "value", a number like 1.23, a Boolean (true or false), the null value null, an object, or an array. An array is delimited by brackets ([]), and its values are separated by commas (,).
The JSON format is easily parsed using any programming language. It is also relatively easy to read and write. It is widely adopted for many uses such as databases, configura- tion files, and, of course, APIs.
YAML
YAML (YAML Ain’t Markup Language) is a human-friendly, data serialization format. Like JSON, YAML (http://yaml.org) is a key/value data format. The figure shows a comparison of the two.
Note the following points:
There are no double quotes (" ") around property names and values in YAML.
JSON’s structural curly braces ({}) and commas (,) are replaced by newlines and
indentation in YAML.
Array brackets ([]) and commas (,) are replaced by dashes (-) and newlines in
YAML.
Unlike JSON, YAML allows comments beginning with a hash mark (#).
It is relatively easy to convert one of those formats into the other. Be forewarned though, you will lose comments when converting a YAML document to JSON.
Since this question now features prominently when searching for YAML and JSON, it's worth noting one rarely-cited difference between the two: license. JSON purports to have a license which JSON users must adhere to (including the legally-ambiguous "shall be used for Good, not Evil"). YAML carries no such license claim, and that might be an important difference (to your lawyer, if not to you).
Sometimes you don't have to decide for one over the other.
In Go, for example, you can have both at the same time:
type Person struct {
Name string `json:"name" yaml:"name"`
Age int `json:"age" yaml:"age"`
}
I find both YAML and JSON to be very effective. The only two things that really dictate when one is used over the other for me is one, what the language is used most popularly with. For example, if I'm using Java, Javascript, I'll use JSON. For Java, I'll use their own objects, which are pretty much JSON but lacking in some features, and convert it to JSON if I need to or make it in JSON in the first place. I do that because that's a common thing in Java and makes it easier for other Java developers to modify my code. The second thing is whether I'm using it for the program to remember attributes, or if the program is receiving instructions in the form of a config file, in this case I'll use YAML, because it's very easily human read, has nice looking syntax, and is very easy to modify, even if you have no idea how YAML works. Then, the program will read it and convert it to JSON, or whatever is preferred for that language.
In the end, it honestly doesn't matter. Both JSON and YAML are easily read by any experienced programmer.
If you are concerned about better parsing speed then storing the data in JSON is the option. I had to parse the data from a location where the file was subject to modification from other users and hence I used YAML as it provides better readability compared to JSON.
And you can also add comments in the YAML file which can't be done in a JSON file.
JSON encodes six data types: Objects (mappings), Arrays, Strings Numbers, Booleans and Null. It is extremely easy for a machine to parse and provides very little flexibility. The specification is about a page and a half.
YAML allows the encoding of arbitrary Python data and other crazy crap (which leads to vulnerabilities when decoding it). It is hard to parse because it offers so much flexibility. The specification for YAML was 86 pages, the last time I checked. YAML syntax is obviously influenced by Python, but maybe they should have been a little more influenced by the Python philosophy on a few points: e.g. “there should be one—and preferably only one—obvious way to do it” and “simple is better than complex.”
The main benefit of YAML over JSON is that it’s easier for humans to read and edit, which makes it a natural choice for configuration files.
These days, I’m leaning towards TOML for configuration files. It’s not as pretty or as flexible as YAML, but it’s easier both for machines and humans to parse. The syntax is (almost) a superset of INI syntax, but it parses out to JSON-like data structures, adding only one additional type: the date type.