cublasDtrsm after LU with pivoting - cuda

I am stuck at a small problem. I've got to solve a linear System A * x = b.
The matrix A gets decomposed by an LU-factorization (LAPACK). As result I get the factorized Matrix and the pivotarray. After that I want to solve the two linear Systems: U * x = y and L * y = b on the GPU with *cublasDtrsm*. But because of the row interchanges from dgetrf in LAPACK I would have to pass the pivot array to cublas. But the *cublasDtrsm*-function don't offers something for this. Without the pivot array I get wrong results.
I already searched for disabling pivoting in LAPACK, but regarding to stability it's not possible. Is there any hint how to solve a linear Equation system with LU-factorization?

If you wanted to use this particular approach (cublas trsm after LAPACK getrf), I believe you should be able to use cublas trsm with the L,U output of LAPACK by rearranging your b vector (or matrix) to match the rearrangement order that LAPACK performed during pivoting. I believe this order is given in the formula for ipiv in the LAPACK documentation:
IPIV
IPIV is INTEGER array, dimension (min(M,N))
The pivot indices; for 1 <= i <= min(M,N), row i of the
matrix was interchanged with row IPIV(i).
Here's a sample code that demonstrates the idea for a simple 3x3 test case with a single RHS vector:
$ cat t853.cu
#include <cstdio>
#include <cstdlib>
#include <cuda_runtime.h>
#include <cublas_v2.h>
#define cudacall(call) \
do \
{ \
cudaError_t err = (call); \
if(cudaSuccess != err) \
{ \
fprintf(stderr,"CUDA Error:\nFile = %s\nLine = %d\nReason = %s\n", __FILE__, __LINE__, cudaGetErrorString(err)); \
cudaDeviceReset(); \
exit(EXIT_FAILURE); \
} \
} \
while (0)
#define cublascall(call) \
do \
{ \
cublasStatus_t status = (call); \
if(CUBLAS_STATUS_SUCCESS != status) \
{ \
fprintf(stderr,"CUBLAS Error:\nFile = %s\nLine = %d\nCode = %d\n", __FILE__, __LINE__, status); \
cudaDeviceReset(); \
exit(EXIT_FAILURE); \
} \
\
} \
while(0)
void LU_device(float *src_d, int n, int *pivot)
{
cublasHandle_t handle;
cublascall(cublasCreate_v2(&handle));
int batchSize = 1;
int *P, *INFO;
cudacall(cudaMalloc<int>(&P,n * batchSize * sizeof(int)));
cudacall(cudaMalloc<int>(&INFO,batchSize * sizeof(int)));
int lda = n;
float *A[] = { src_d };
float **A_d;
cudacall(cudaMalloc<float*>(&A_d,sizeof(A)));
cudacall(cudaMemcpy(A_d,A,sizeof(A),cudaMemcpyHostToDevice));
cublascall(cublasSgetrfBatched(handle,n,A_d,lda,P,INFO,batchSize));
int INFOh = 0;
cudacall(cudaMemcpy(&INFOh,INFO,sizeof(int),cudaMemcpyDeviceToHost));
cudacall(cudaMemcpy(pivot,P,n*batchSize*sizeof(int),cudaMemcpyDeviceToHost));
#ifdef DEBUG_PRINT
for (int qq = 0; qq < n*batchSize; qq++) {printf("pivot[%d] = %d\n", qq, pivot[qq]); }
#endif
if(INFOh == n)
{
fprintf(stderr, "Factorization Failed: Matrix is singular\n");
cudaDeviceReset();
exit(EXIT_FAILURE);
}
cudaFree(P); cudaFree(INFO); cudaFree(A_d); cublasDestroy(handle);
}
void LU(float* src, float* L, float *U, int n, int *pivot)
{
float *src_d;
cudacall(cudaMalloc<float>(&src_d, n*n * sizeof(float)));
cudacall(cudaMemcpy(src_d,src,n*n * sizeof(float),cudaMemcpyHostToDevice));
LU_device(src_d,n,pivot);
cudacall(cudaMemcpy(L,src_d,n * n * sizeof(float),cudaMemcpyDeviceToHost));
cudacall(cudaMemcpy(U,src_d,n * n * sizeof(float),cudaMemcpyDeviceToHost));
for (int i = 0; i < n; i ++){
for (int j = 0; j < i; j++) L[i*n+j] = 0.0;
for (int j = i+1; j < n; j++) U[i*n+j] = 0.0;}
cudaFree(src_d);
}
void rearrange(float *vec, int *pivot, int n, int dir){
#define DIR_FORWARD 0
#define DIR_REVERSE 1
#define SWAP(x,y) {float swaptmp=(*(y)); (*(y))=(*(x)); (*(x))=swaptmp;}
if (dir == DIR_FORWARD)
for (int i = 0; i < n; i++) SWAP((vec+i),(vec+pivot[i]-1))
else
for (int i = n-1; i >= 0; i--) SWAP((vec+i),(vec+pivot[i]-1))
}
void TRSM(float *A, float *x, float *b, int n, cublasFillMode_t uplo, cublasDiagType_t diagt ){
cublasHandle_t handle;
cublascall(cublasCreate_v2(&handle));
float *A_d, *b_d;
cudacall(cudaMalloc<float>(&A_d, n*n * sizeof(float)));
cudacall(cudaMalloc<float>(&b_d, n * sizeof(float)));
cudacall(cudaMemcpy(b_d, b, n*sizeof(float), cudaMemcpyHostToDevice));
cudacall(cudaMemcpy(A_d, A, n*n*sizeof(float), cudaMemcpyHostToDevice));
const float alpha = 1.0f;
cublascall(cublasStrsm(handle, CUBLAS_SIDE_LEFT, uplo, CUBLAS_OP_N, diagt, n, 1, &alpha, A_d, n, b_d, n));
cudacall(cudaMemcpy(x, b_d, n*sizeof(float), cudaMemcpyDeviceToHost));
cudaFree(A_d); cudaFree(b_d); cublasDestroy(handle);
}
void test_solve()
{
// solve Ax=b
// 1. Perform LU on A
// 2. using pivot sequence, rearrange b -> b'
// 3. perform TRSM on Ly=b'
// 4. perform TRSM on Ux=y
// A = |0 1 4 |
// |3 3 9 |
// |4 10 16|
// x = |1|
// |2|
// |3|
// b = |14|
// |36|
// |72|
const int n = 3;
// has 3,2,3 pivot order
float A_col_major[n*n] = { 0, 3, 4,
1, 3, 10,
4, 9, 16 };
float b1[n] = {14, 36, 72};
/* another example - has 3,3,3 pivot order
float A_transpose[n*n] = { 0, 1, 4,
3, 3, 9,
4, 10, 16 };
float b2[n] = {18, 37, 70};
*/
float result_x[n];
int pivot[n];
float L[n*n];
float U[n*n];
float y[n];
//Select matrix by setting "a"
float *a = A_col_major;
float *b = b1;
printf("Input:\n\n");
for(int i=0; i<n; i++)
{
for(int j=0; j<n; j++)
printf("%f\t",a[i*n+j]);
printf("\n");
}
printf("\n\n");
// 1. LU on A
LU(a,L,U,n,pivot);
#ifdef DEBUG_PRINT
printf("L:\n\n");
for(int i=0; i<n; i++)
{
for(int j=0; j<n; j++)
printf("%f\t",L[i*n+j]);
printf("\n");
}
printf("\n\n");
printf("U:\n\n");
for(int i=0; i<n; i++)
{
for(int j=0; j<n; j++)
printf("%f\t",U[i*n+j]);
printf("\n");
}
printf("\n\n");
#endif
// 2. Rearrange b
rearrange(b,pivot,n,DIR_FORWARD);
#ifdef DEBUG_PRINT
for (int i = 0; i < n; i++) printf("b'[%d] = %f\n", i, b[i]);
#endif
// 3. TRSM on Ly=b
TRSM(L, y, b, n, CUBLAS_FILL_MODE_LOWER, CUBLAS_DIAG_UNIT);
// 4. TRSM on Ux=y
TRSM(U, result_x, y, n, CUBLAS_FILL_MODE_UPPER, CUBLAS_DIAG_NON_UNIT);
fprintf(stdout, "Solution:\n\n");
for(int i=0; i<n; i++)
{
printf("%f\n",result_x[i]);
}
}
int main()
{
test_solve();
return 0;
}
$ nvcc -o t853 t853.cu -lcublas
$ ./t853
Input:
0.000000 3.000000 4.000000
1.000000 3.000000 10.000000
4.000000 9.000000 16.000000
Solution:
1.000000
2.000000
3.000000
$
Note that for this simple test case I used cublas getrfBatched to do the matrix LU factorization, rather than LAPACK, but I think it should behave similarly to LAPACK.
Also note that I'm not intending to comment on the "best approaches for linear system solutions" but merely to explain how the approach you mapped out might be made to work.

For permutation on the GPU a permutation matrix can be created out of the given vector and multiplied it with B on the GPU. In fact the permutation vector from LAPACK is meant as an sequential order of swapping steps. So if the n-th line has been touched by the for-loop it will never be touched again. Hence a small Algorithm creates a permutation matrix P out of the vector from *<T>getrf*. With that the linear System L * U * X = P * B will be solved. This leads to the correct results.
void
permutationMatrix ( int const rows, //number of rows of A
int const cols, //number of cols of A
int* permArray, //permutation vector from LAPACK
double* permMatrix) //Memory for permutation matrix
{
int tempPerm [rows]; //holds where the ones later shall be in the Matrix
int swap; //variable for swapping
memset(permMatrix,0, rows * cols * sizeof(double)); //fill permutation Matrix with 0s
memset(tempPerm,0, rows * sizeof(int)); //fill temporary memory with 0s
for (int row = 0; row < rows; row ++)
{
//start value for each temp field is the row-number
if (tempPerm [row] == 0)
{
tempPerm [row] = row + 1;
}
/* rows need to be swapped if rownumber != number
* in permutation vector of LAPACK*/
if (permArray[row] != row + 1)
{
//swap with a line which hasn't already swapped
if (tempPerm[permArray[row]-1] == 0)
{
tempPerm[permArray[row]-1] = tempPerm[row];
tempPerm[row] = permArray[row];
}else{
//swap with an already touched line
swap = tempPerm[permArray[row]-1];
tempPerm[permArray[row]-1] = tempPerm[row];
tempPerm[row] = swap;
}
}
//put the one in place in the permutation matrix
permMatrix[row + (tempPerm[row]-1) * rows] = 1.0;
}
}

Related

CUDA - How to swap device array pointers?

I wrote a function swap to conveniently swap device array pointers, but it is not working, I assume I am swapping local array pointers in the swap function and not the ones I am passing to it.
__global__ void device_add_one(float *A, float *B)
{
for (int index = blockIdx.x * blockDim.x + threadIdx.x;
index < N;
index += blockDim.x * gridDim.x)
{
// just for the example
B[index] = A[index] + 1;
{
}
void swap(float *a, float *b)
{
float *temp = a;
a = b;
b = temp;
}
void loop(float *host_array, int size, int loops)
{
cudaMalloc(&A, (size * sizeof(float));
cudaMalloc(&B, (size * sizeof(float));
cudaMemcpy(A, host_array, (size * sizeof(float), cudaMemcpyHostToDevice);
for (int i = 0; i < loops; i++) {
device_add_one<<< 1, 254 >>>(A, B);
// swap pointers like this does not work
swap(A, B);
/* This works:
float *temp = a;
a = b;
b = temp;
*/
}
cudaMemcpy(host_array, A, (size * sizeof(float), cudaMemcpyDeviceToHost);
}
Your function call method of swapping pointers does not work because you are using pass-by-value. This is an ordinary C/C++ programming concept, not unique to CUDA.
When you pass variables (including pointers, in this case) to a function by value:
void swap(float *a, float *b)
the C pass-by-value mechanism creates a local copy of the function arguments, for use within the function body. Changes to those arguments do not show up in the calling context. To work around this, a simple approach would be pass-by-reference (in C++):
void swap(float* &a, float* &b)
Here is a worked example:
$ cat t393.cu
#include <stdio.h>
const int N = 1000;
float *A, *B;
__global__ void device_add_one(float *A, float *B)
{
for (int index = blockIdx.x * blockDim.x + threadIdx.x;
index < N;
index += blockDim.x * gridDim.x)
{
// just for the example
B[index] = A[index] + 1;
}
}
void swap(float* &a, float* &b){
float *temp = a;
a = b;
b = temp;
}
void loop(float *host_array, int size, int loops)
{
cudaMalloc(&A, size * sizeof(float));
cudaMalloc(&B, size * sizeof(float));
cudaMemcpy(A, host_array, (size * sizeof(float)), cudaMemcpyHostToDevice);
for (int i = 0; i < loops; i++) {
device_add_one<<< 1, 254 >>>(A, B);
// swap pointers
swap(A, B);
//float *temp = A;
//A = B;
//B = temp;
}
cudaMemcpy(host_array, A, (size * sizeof(float)), cudaMemcpyDeviceToHost);
}
int main(){
float *data = (float *)malloc(N*sizeof(float));
for (int i = 0; i<N; i++) data[i] = i & 3; // fill with 0 1 2 3 0 1 2 3...
loop(data, N, 100);
for (int i = 0; i<20; i++) printf("%f ", data[i]);
printf("\n");
return 0;
}
$ nvcc -arch=sm_61 -o t393 t393.cu
$ cuda-memcheck ./t393
========= CUDA-MEMCHECK
100.000000 101.000000 102.000000 103.000000 100.000000 101.000000 102.000000 103.000000 100.000000 101.000000 102.000000 103.000000 100.000000 101.000000 102.000000 103.000000 100.000000 101.000000 102.000000 103.000000
========= ERROR SUMMARY: 0 errors
$

prefix scan for large arrays

I want to write a prefix scan for large arrays using the instruction in GPUgem, It's a homework for my parallel class. I did follow all the steps in the book but still my code's not working. I got it to work for array size 4096 but it's not working for larger arrays. Here is my code :
#include <stdio.h>
#include <sys/time.h>
#define THREADS 1024
typedef int mytype;
__global__ void phaseI(mytype *g_odata, mytype *g_idata, int n, mytype *aux)
{
__shared__ mytype temp[THREADS];
const int tid1 = threadIdx.x;
int offset = 1;
temp[2*tid1] = g_idata[2*tid1]; // load input into shared memory
temp[2*tid1+1] = g_idata[2*tid1+1];
for (int d = THREADS>>1; d > 0; d >>= 1) // build sum in place up the tree
{
__syncthreads();
if (tid1 < d)
{
int ai = offset*(2*tid1+1)-1;
int bi = offset*(2*tid1+2)-1;
temp[bi] += temp[ai];
}
offset *= 2;
}
__syncthreads();
if (tid1 == 0) {
aux[blockIdx.x] = temp[THREADS - 1];
temp[THREADS - 1] = 0;
}
for (int d = 1; d < THREADS; d *= 2) // traverse down tree & build scan
{
offset >>= 1;
__syncthreads();
if (tid1 < d)
{
int ai = offset*(2*tid1+1)-1;
int bi = offset*(2*tid1+2)-1;
mytype t = temp[ai];
temp[ai] = temp[bi];
temp[bi] += t;
}
}
__syncthreads();
g_odata[2*thid] = temp[2*thid]; // write results to device memory
g_odata[2*thid+1] = temp[2*thid+1];
}
__global__ void phaseII(mytype *g_odata, mytype *aux, int n)
{
const int tid1 = threadIdx.x;
const int B = (n / THREADS);
int offset = 1;
for (int d = B>>1; d > 0; d >>= 1) // build sum in place up the tree
{
__syncthreads();
if (tid1 < d)
{
int ai = offset*(2*tid1+1)-1;
int bi = offset*(2*tid1+2)-1;
temp[bi] += temp[ai];
}
offset *= 2;
}
__syncthreads();
if (tid1 == 0 && blockIdx.x == 0) {
aux[B - 1] = 0;
}
for (int d = 1; d < B; d *= 2) // traverse down tree & build scan
{
offset >>= 1;
__syncthreads();
if (tid1 < d)
{
int ai = offset*(2*tid1+1)-1;
int bi = offset*(2*tid1+2)-1;
mytype t = temp[ai];
temp[ai] = temp[bi];
temp[bi] += t;
}
}
__syncthreads();
g_odata[2*thid] += aux[blockIdx.x];
g_odata[2*thid+1] += aux[blockIdx.x];
}
int main(int argc, char *argv[])
{
if (argc != 2) {
printf("usage: %s n\n", argv[0]);
return -1;
}
const int n = atoi(argv[1]);
mytype *h_i, *d_i, *h_o, *d_o, *d_temp;
const int size = n * sizeof(mytype);
h_i = (mytype *)malloc(size);
h_o = (mytype *)malloc(size);
if ((h_i == NULL) || (h_o == NULL)) {
printf("malloc failed\n");
return -1;
}
for (int i = 0; i < n; i++) {
h_i[i] = i;
h_o[i] = 0;
}
cudaMalloc(&d_i, size);
cudaMalloc(&d_temp, (n / THREADS) );
cudaMalloc(&d_o, size);
cudaMemset(d_o, 0, size);
cudaMemset(d_temp, 0, (n / THREADS));
cudaMemcpy(d_i, h_i, size, cudaMemcpyHostToDevice);
int blocks = n / THREADS;
phaseI<<<blocks, THREADS / 2 >>>(d_o, d_i, n, d_temp);
phaseII<<<blocks, THREADS / 2>>>(d_o, d_temp, n);
cudaThreadSynchronize();
cudaMemcpy(h_o, d_o, size, cudaMemcpyDeviceToHost);
printf("\n");
for (int i = 0; i < n ; i++) {
printf(" %d", h_o[i]);
}
printf("\n\n");
return 0;
}
Does anyone have any idea what I'm doing wrong?
One possible error I see in your code is here:
aux[thid] = temp[THREADS];
If your temp array is temp[1024], as you say, and each block has 1024 threads, as you say, then if THREADS is 1024, temp[THREADS] will access your shared memory array out-of-bounds (one past the end.) An array of 1024 elements only has valid indices from 0 to 1023.
Beyond that, it seems like you're asking how to take the last element out of a shared memory array (temp) and place it in a position in a (presumably global) aux array, which has one element for each block.
Here's a fully worked example:
$ cat t831.cu
#include <stdio.h>
#define THREADS 1024
#define BLOCKS 20
__global__ void kernel(int *aux){
__shared__ int temp[THREADS];
temp[threadIdx.x] = threadIdx.x + blockIdx.x;
__syncthreads();
if (threadIdx.x == 0)
aux[blockIdx.x] = temp[THREADS-1];
}
int main(){
int *h_data, *d_data;
const int dsize = BLOCKS*sizeof(int);
h_data=(int *)malloc(dsize);
cudaMalloc(&d_data, dsize);
memset(h_data, 0, dsize);
cudaMemset(d_data, 0, dsize);
kernel<<<BLOCKS, THREADS>>>(d_data);
cudaMemcpy(h_data, d_data, dsize, cudaMemcpyDeviceToHost);
for (int i = 0; i < BLOCKS; i++) printf("%d, ", h_data[i]);
printf("\n");
return 0;
}
$ nvcc -o t831 t831.cu
$ cuda-memcheck ./t831
========= CUDA-MEMCHECK
1023, 1024, 1025, 1026, 1027, 1028, 1029, 1030, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042,
========= ERROR SUMMARY: 0 errors
$

cuda calc distance of two points

Here I want to calculate the distance of each two points, and decide if they are neighbours. here is my simple code in cuda.
__global__ void calcNeighbors(const DataPoint* points,
const float doubleRadius, bool* neighbors) {
int tid = threadIdx.x + blockIdx.x * blockDim.x;
float dis = 0.0f;
while (tid < N) {
DataPoint p1 = points[tid];
for (int i=0; i<N; i++) {
DataPoint p2 = points[i];
dis = 0;
dis += (p1.pfDimens[0]-p2.pfDimens[0]) * (p1.pfDimens[0]-p2.pfDimens[0]) +
(p1.pfDimens[1]-p2.pfDimens[1]) * (p1.pfDimens[1]-p2.pfDimens[1]) +
(p1.pfDimens[2]-p2.pfDimens[2]) * (p1.pfDimens[2]-p2.pfDimens[2]);
if (dis <= doubleRadius) {
neighbors[tid*N+i] = true;
} else {
neighbors[tid*N+i] = false;
}
}
tid += blockDim.x * gridDim.x;
}
}
The DataPoint is a struct is
typedef struct DataPoint {
float pfDimens[3];
} DataPoint;
so here i want to reduce the time, How can i do? I have tried to use memory coalesing and share memory, but i didn't get a good speed up?
===============use share memory==============
__global__ void calcNeighbors2(const DataPoint* points,
const float doubleRadius, bool* neighbors) {
__shared__ DataPoint sharedpoints[threadsPerBlock];
int start = blockIdx.x * blockDim.x;
int len = start+threadIdx.x;
if (len < N) {
sharedpoints[threadIdx.x] = points[len];
}
len = imin(N, blockDim.x + start);
__syncthreads();
int tid = threadIdx.x;
float dis;
while (tid < N) {
DataPoint p1 = points[tid];
for (int i=start; i<len; i++) {
dis = 0;
dis += (p1.pfDimens[0]-sharedpoints[i-start].pfDimens[0]) * (p1.pfDimens[0]-sharedpoints[i-start].pfDimens[0]) +
(p1.pfDimens[1]-sharedpoints[i-start].pfDimens[1]) * (p1.pfDimens[1]-sharedpoints[i-start].pfDimens[1]) +
(p1.pfDimens[2]-sharedpoints[i-start].pfDimens[2]) * (p1.pfDimens[2]-sharedpoints[i-start].pfDimens[2]);
if (dis <= doubleRadius) {
neighbors[i*N+tid] = true;
} else {
neighbors[i*N+tid] = false;
}
}
tid += blockDim.x;
}
}
Here i changed the neighbors[tid*N+i] to neighbors[i*N+tid], it give me amlost 8x speed up on Tesla K10.G2.8GB. But when i use share memory to store some points, it is no use?
There are at least 4 ideas, some of which have already been stated in the comments:
Transform your point distance storage from AoS format:
struct DataPoint {
float pfDimens[3];
};
to SoA format:
struct DataPoint {
float pfDimens_x[NPTS];
float pfDimens_y[NPTS];
float pfDimens_z[NPTS];
};
this will enable full coalescing on loading of the data. In fact, to help with point 4 below, I would just switch to using 3 bare arrays, rather than a structure.
reduce the computation to (slightly less than) half:
for (int i=N-1; i>tid; i--) {
then, either in the thread code itself, or in the host, you can populate the other "half" of the output matrix by copying data.
Transpose the storage in your output matrix, so that you can write a storage operation like this:
neighbors[i*N+tid] = true;
which will nicely coalesce, as opposed to this:
neighbors[tid*N+i] = true;
which will not.
Since your input point data is read only, mark the kernel parameter appropriately:
const float * __restrict__ points_x, const float * __restrict__ points_y, const float * __restrict__ points_z
in some cases, and on some GPUs, this will often lead to a speed-up due to use of the read-only cache. If you really want to get aggressive with caching, and your data array is small enough (4K or less float points), you could put a copy of the point data in global memory as well as a copy in __constant__ memory, and load the "uniform" load you are doing here through constant memory:
DataPoint p2 = c_points[i];
thus you could perform the coalesced load through the read-only cache, the uniform load through the constant cache, and the coalesced store going to ordinary global memory.
On a K40c, on linux/CUDA 7, for N = 4096, the net effect of these changes appears to be about a 3.5x speedup, at the kernel level:
$ cat t749.cu
#include <stdio.h>
#define N 4096
// if N is 16K/3 or less, we can use constant
#define USE_CONSTANT
#define THRESH 0.2f
#define nTPB 256
#define nBLK (N/nTPB+1)
#define cudaCheckErrors(msg) \
do { \
cudaError_t __err = cudaGetLastError(); \
if (__err != cudaSuccess) { \
fprintf(stderr, "Fatal error: %s (%s at %s:%d)\n", \
msg, cudaGetErrorString(__err), \
__FILE__, __LINE__); \
fprintf(stderr, "*** FAILED - ABORTING\n"); \
exit(1); \
} \
} while (0)
#include <time.h>
#include <sys/time.h>
#define USECPSEC 1000000ULL
unsigned long long dtime_usec(unsigned long long start){
timeval tv;
gettimeofday(&tv, 0);
return ((tv.tv_sec*USECPSEC)+tv.tv_usec)-start;
}
struct DataPoint {
float pfDimens[3];
};
__global__ void calcNeighbors(const DataPoint* points,
const float doubleRadius, bool* neighbors) {
int tid = threadIdx.x + blockIdx.x * blockDim.x;
float dis = 0.0f;
while (tid < N) {
DataPoint p1 = points[tid];
for (int i=0; i<N; i++) {
DataPoint p2 = points[i];
dis = 0;
dis += (p1.pfDimens[0]-p2.pfDimens[0]) * (p1.pfDimens[0]-p2.pfDimens[0]) +
(p1.pfDimens[1]-p2.pfDimens[1]) * (p1.pfDimens[1]-p2.pfDimens[1]) +
(p1.pfDimens[2]-p2.pfDimens[2]) * (p1.pfDimens[2]-p2.pfDimens[2]);
if (dis <= doubleRadius) {
neighbors[tid*N+i] = true;
} else {
neighbors[tid*N+i] = false;
}
}
tid += blockDim.x * gridDim.x;
}
}
#ifdef USE_CONSTANT
__constant__ float cpx[N];
__constant__ float cpy[N];
__constant__ float cpz[N];
#endif
__global__ void calcNeighbors2(const float * __restrict__ pts_x, const float * __restrict__ pts_y, const float * __restrict__ pts_z, const float doubleRadius, bool * __restrict__ neighbors) {
int tid = threadIdx.x+blockDim.x*blockIdx.x;
while (tid < N) {
float p1x = pts_x[tid];
float p1y = pts_y[tid];
float p1z = pts_z[tid];
for (int i = N-1; i > tid; i--){
float p2x, p2y, p2z;
#ifdef USE_CONSTANT
p2x = cpx[i];
p2y = cpy[i];
p2z = cpz[i];
#else
p2x = pts_x[i];
p2y = pts_y[i];
p2z = pts_z[i];
#endif
float dis = ((p1x-p2x)*(p1x-p2x)) + ((p1y-p2y)*(p1y-p2y)) + ((p1z-p2z)*(p1z-p2z));
neighbors[i*N+tid] = (dis <= doubleRadius);
}
tid += blockDim.x * gridDim.x;
}
}
int main(){
float *dx, *dy, *dz, *hx, *hy, *hz;
DataPoint *dp, *hp;
bool *dn, *hn1, *hn2;
hx =(float *)malloc(N*sizeof(float));
hy =(float *)malloc(N*sizeof(float));
hz =(float *)malloc(N*sizeof(float));
hp =(DataPoint *)malloc(N*sizeof(DataPoint));
hn1=(bool *)malloc(N*N*sizeof(bool));
hn2=(bool *)malloc(N*N*sizeof(bool));
cudaMalloc(&dx, N*sizeof(float));
cudaMalloc(&dy, N*sizeof(float));
cudaMalloc(&dz, N*sizeof(float));
cudaMalloc(&dp, N*sizeof(DataPoint));
cudaMalloc(&dn, N*N*sizeof(bool));
for (int i =0; i < N; i++){
hx[i] = rand()/(float)RAND_MAX;
hy[i] = rand()/(float)RAND_MAX;
hz[i] = rand()/(float)RAND_MAX;
hp[i].pfDimens[0] = hx[i];
hp[i].pfDimens[1] = hy[i];
hp[i].pfDimens[2] = hz[i];}
cudaMemcpy(dx, hx, N*sizeof(float), cudaMemcpyHostToDevice);
cudaMemcpy(dy, hy, N*sizeof(float), cudaMemcpyHostToDevice);
cudaMemcpy(dz, hz, N*sizeof(float), cudaMemcpyHostToDevice);
cudaMemcpy(dp, hp, N*sizeof(DataPoint), cudaMemcpyHostToDevice);
// warm-up
calcNeighbors<<<nBLK, nTPB>>>(dp, THRESH, dn);
cudaDeviceSynchronize();
cudaMemset(dn, 0, N*N*sizeof(bool));
unsigned long long t1 = dtime_usec(0);
calcNeighbors<<<nBLK, nTPB>>>(dp, THRESH, dn);
cudaDeviceSynchronize();
cudaCheckErrors("kernel 1 error");
t1 = dtime_usec(t1);
cudaMemcpy(hn1, dn, N*N*sizeof(bool), cudaMemcpyDeviceToHost);
// warm-up
calcNeighbors2<<<nBLK, nTPB>>>(dx, dy, dz, THRESH, dn);
cudaDeviceSynchronize();
cudaMemset(dn, 0, N*N*sizeof(bool));
unsigned long long t2 = dtime_usec(0);
calcNeighbors2<<<nBLK, nTPB>>>(dx, dy, dz, THRESH, dn);
cudaDeviceSynchronize();
cudaCheckErrors("kernel 2 error");
t2 = dtime_usec(t2);
cudaMemcpy(hn2, dn, N*N*sizeof(bool), cudaMemcpyDeviceToHost);
cudaCheckErrors("some error");
printf("t1: %fs, t2: %fs\n", t1/(float)USECPSEC, t2/(float)USECPSEC);
// results validation
for (int i = 0; i < N; i++)
for (int j = i+1; j < N; j++)
if (hn1[i*N+j] != hn2[j*N+i]) {printf("mismatch at %d, %d, was: %d, should be: %d\n", i, j, hn2[j*N+i], hn1[i*N+j]); return 1;}
return 0;
}
$ nvcc -arch=sm_35 -o t749 t749.cu
$ ./t749
t1: 0.004903s, t2: 0.001395s
$
In the case of K40c, the limited number of blocks being launched above (16) is a significant impediment to performance, due to latency. If we comment out the USE_CONSTANT define, and change N to 16384, we observe an even higher speedup with the improved kernel:
$ ./t749
t1: 0.267107s, t2: 0.008209s
$
the resultant ~48 blocks being enough to approximately "fill" the K40c which has 15 SMs.
EDIT: now that you've posted a shared memory kernel, I added it to my test case as calcNeighbors3 and compared it's timing performance (as t3). It is almost as fast as my kernel, and it seems to provide the correct result (matches your original kernel) so I'm not sure what your concerns are.
Here's the updated code and test case:
$ cat t749.cu
#include <stdio.h>
#include <math.h>
#define imin(X,Y) ((X)<(Y))?(X):(Y)
#define N 32768
// if N is 16K/3 or less, we can use constant
// #define USE_CONSTANT
#define THRESH 0.2f
#define nTPB 256
#define nBLK (N/nTPB+1)
#define cudaCheckErrors(msg) \
do { \
cudaError_t __err = cudaGetLastError(); \
if (__err != cudaSuccess) { \
fprintf(stderr, "Fatal error: %s (%s at %s:%d)\n", \
msg, cudaGetErrorString(__err), \
__FILE__, __LINE__); \
fprintf(stderr, "*** FAILED - ABORTING\n"); \
exit(1); \
} \
} while (0)
#include <time.h>
#include <sys/time.h>
#define USECPSEC 1000000ULL
unsigned long long dtime_usec(unsigned long long start){
timeval tv;
gettimeofday(&tv, 0);
return ((tv.tv_sec*USECPSEC)+tv.tv_usec)-start;
}
struct DataPoint {
float pfDimens[3];
};
__global__ void calcNeighbors(const DataPoint* points,
const float doubleRadius, bool* neighbors) {
int tid = threadIdx.x + blockIdx.x * blockDim.x;
float dis = 0.0f;
while (tid < N) {
DataPoint p1 = points[tid];
for (int i=0; i<N; i++) {
DataPoint p2 = points[i];
dis = 0;
dis += (p1.pfDimens[0]-p2.pfDimens[0]) * (p1.pfDimens[0]-p2.pfDimens[0]) +
(p1.pfDimens[1]-p2.pfDimens[1]) * (p1.pfDimens[1]-p2.pfDimens[1]) +
(p1.pfDimens[2]-p2.pfDimens[2]) * (p1.pfDimens[2]-p2.pfDimens[2]);
if (dis <= doubleRadius) {
neighbors[tid*N+i] = true;
} else {
neighbors[tid*N+i] = false;
}
}
tid += blockDim.x * gridDim.x;
}
}
#ifdef USE_CONSTANT
__constant__ float cpx[N];
__constant__ float cpy[N];
__constant__ float cpz[N];
#endif
__global__ void calcNeighbors2(const float * __restrict__ pts_x, const float * __restrict__ pts_y, const float * __restrict__ pts_z, const float doubleRadius, bool * __restrict__ neighbors) {
int tid = threadIdx.x+blockDim.x*blockIdx.x;
while (tid < N) {
float p1x = pts_x[tid];
float p1y = pts_y[tid];
float p1z = pts_z[tid];
for (int i = N-1; i > tid; i--){
float p2x, p2y, p2z;
#ifdef USE_CONSTANT
p2x = cpx[i];
p2y = cpy[i];
p2z = cpz[i];
#else
p2x = pts_x[i];
p2y = pts_y[i];
p2z = pts_z[i];
#endif
float dis = ((p1x-p2x)*(p1x-p2x)) + ((p1y-p2y)*(p1y-p2y)) + ((p1z-p2z)*(p1z-p2z));
neighbors[i*N+tid] = (dis <= doubleRadius);
}
tid += blockDim.x * gridDim.x;
}
}
__global__ void calcNeighbors3(const DataPoint* points,
const float doubleRadius, bool* neighbors) {
__shared__ DataPoint sharedpoints[nTPB];
int start = blockIdx.x * blockDim.x;
int len = start+threadIdx.x;
if (len < N) {
sharedpoints[threadIdx.x] = points[len];
}
len = imin(N, blockDim.x + start);
__syncthreads();
int tid = threadIdx.x;
float dis;
while (tid < N) {
DataPoint p1 = points[tid];
for (int i=start; i<len; i++) {
dis = 0;
dis += (p1.pfDimens[0]-sharedpoints[i-start].pfDimens[0]) * (p1.pfDimens[0]-sharedpoints[i-start].pfDimens[0]) +
(p1.pfDimens[1]-sharedpoints[i-start].pfDimens[1]) * (p1.pfDimens[1]-sharedpoints[i-start].pfDimens[1]) +
(p1.pfDimens[2]-sharedpoints[i-start].pfDimens[2]) * (p1.pfDimens[2]-sharedpoints[i-start].pfDimens[2]);
if (dis <= doubleRadius) {
neighbors[i*N+tid] = true;
} else {
neighbors[i*N+tid] = false;
}
}
tid += blockDim.x;
}
}
int main(){
float *dx, *dy, *dz, *hx, *hy, *hz;
DataPoint *dp, *hp;
bool *dn, *hn1, *hn2, *hn3;
hx =(float *)malloc(N*sizeof(float));
hy =(float *)malloc(N*sizeof(float));
hz =(float *)malloc(N*sizeof(float));
hp =(DataPoint *)malloc(N*sizeof(DataPoint));
hn1=(bool *)malloc(N*N*sizeof(bool));
hn2=(bool *)malloc(N*N*sizeof(bool));
hn3=(bool *)malloc(N*N*sizeof(bool));
cudaMalloc(&dx, N*sizeof(float));
cudaMalloc(&dy, N*sizeof(float));
cudaMalloc(&dz, N*sizeof(float));
cudaMalloc(&dp, N*sizeof(DataPoint));
cudaMalloc(&dn, N*N*sizeof(bool));
for (int i =0; i < N; i++){
hx[i] = rand()/(float)RAND_MAX;
hy[i] = rand()/(float)RAND_MAX;
hz[i] = rand()/(float)RAND_MAX;
hp[i].pfDimens[0] = hx[i];
hp[i].pfDimens[1] = hy[i];
hp[i].pfDimens[2] = hz[i];}
cudaMemcpy(dx, hx, N*sizeof(float), cudaMemcpyHostToDevice);
cudaMemcpy(dy, hy, N*sizeof(float), cudaMemcpyHostToDevice);
cudaMemcpy(dz, hz, N*sizeof(float), cudaMemcpyHostToDevice);
cudaMemcpy(dp, hp, N*sizeof(DataPoint), cudaMemcpyHostToDevice);
#ifdef USE_CONSTANT
cudaMemcpyToSymbol(cpx, hx, N*sizeof(float));
cudaMemcpyToSymbol(cpy, hy, N*sizeof(float));
cudaMemcpyToSymbol(cpz, hz, N*sizeof(float));
#endif
// warm-up
calcNeighbors<<<nBLK, nTPB>>>(dp, THRESH, dn);
cudaDeviceSynchronize();
cudaMemset(dn, 0, N*N*sizeof(bool));
unsigned long long t1 = dtime_usec(0);
calcNeighbors<<<nBLK, nTPB>>>(dp, THRESH, dn);
cudaDeviceSynchronize();
cudaCheckErrors("kernel 1 error");
t1 = dtime_usec(t1);
cudaMemcpy(hn1, dn, N*N*sizeof(bool), cudaMemcpyDeviceToHost);
// warm-up
calcNeighbors2<<<nBLK, nTPB>>>(dx, dy, dz, THRESH, dn);
cudaDeviceSynchronize();
cudaMemset(dn, 0, N*N*sizeof(bool));
unsigned long long t2 = dtime_usec(0);
calcNeighbors2<<<nBLK, nTPB>>>(dx, dy, dz, THRESH, dn);
cudaDeviceSynchronize();
cudaCheckErrors("kernel 2 error");
t2 = dtime_usec(t2);
cudaMemcpy(hn2, dn, N*N*sizeof(bool), cudaMemcpyDeviceToHost);
// warm-up
calcNeighbors3<<<nBLK, nTPB>>>(dp, THRESH, dn);
cudaDeviceSynchronize();
cudaMemset(dn, 0, N*N*sizeof(bool));
unsigned long long t3 = dtime_usec(0);
calcNeighbors3<<<nBLK, nTPB>>>(dp, THRESH, dn);
cudaDeviceSynchronize();
cudaCheckErrors("kernel 3 error");
t3 = dtime_usec(t3);
cudaMemcpy(hn3, dn, N*N*sizeof(bool), cudaMemcpyDeviceToHost);
cudaCheckErrors("some error");
printf("t1: %fs, t2: %fs, t3: %fs\n", t1/(float)USECPSEC, t2/(float)USECPSEC, t3/(float)USECPSEC);
// results validation
for (int i = 0; i < N; i++)
for (int j = i+1; j < N; j++)
if (hn1[i*N+j] != hn2[j*N+i]) {printf("1:2 mismatch at %d, %d, was: %d, should be: %d\n", i, j, hn2[j*N+i], hn1[i*N+j]); return 1;}
for (int i = 0; i < N*N; i++)
if (hn1[i] != hn3[i]) {printf("1:3 mismatch at %d, was: %d, should be: %d\n", i, hn1[i], hn3[i]); return 1;}
return 0;
}
$ nvcc -arch=sm_35 -o t749 t749.cu
$ ./t749
t1: 1.260010s, t2: 0.022661s, t3: 0.029632s
$
For this test, I have changed the data set size to 32768 since that is closer to the range you care about. Your shared memory kernel shows about a 42x speedup over your original kernel, and my kernel shows about a 55x speedup, on my K40c.

The Floyd-Warshall algorithm in CUDA

This is the sequential piece of code I am trying to parallelize in CUDA
/*
Sequential (Single Thread) APSP on CPU.
*/
void floyd_sequential(int *mat, const size_t N)
{
for(int k = 0; k < N; k ++)
for(int i = 0; i < N; i ++)
for(int j = 0; j < N; j ++)
{
int i0 = i*N + j;
int i1 = i*N + k;
int i2 = k*N + j;
if(mat[i1] != -1 && mat[i2] != -1)
mat[i0] = (mat[i0] != -1 && mat[i0] < mat[i1] + mat[i2]) ?
mat[i0] : (mat[i1] + mat[i2]);
}
}
This is my CUDA implementation
// ParallelComputing.cpp : Defines the entry point for the console application.
//
#include <stdio.h>
#include <cuda.h>
#include <stdlib.h>
#define DIMENSION 10;
__global__ void gpu_Floyd(int *result, int N)
{
int j,k;
int Row = blockIdx.y * blockDim.y + threadIdx.y;
for(k = 0; k < N; k++)
{
for(j = 0; j < N; j++)
{
int i0 = Row * N + j;
int i1 = Row * N + k;
int i2 = k * N + j;
if(result[i0] != -1 && result[i2] != -1)
result[i0] = (result[i0] != -1 && result[i0] < result[i1] + result[i2]) ?
result[i0] : (result[i1] + result[i2]);
__syncthreads();
}
}
}
void GenMatrix(int *mat, const size_t N)
{
for(int i = 0; i < N*N; i ++)
mat[i] = rand()%32 - 1;
}
bool CmpArray(const int *l, const int *r, const size_t eleNum)
{
for(int i = 0; i < eleNum; i ++)
if(l[i] != r[i])
{
printf("ERROR: l[%d] = %d, r[%d] = %d\n", i, l[i], i, r[i]);
return false;
}
return true;
}
int main(int argc, char **argv)
{
// generate a random matrix.
size_t N = 10;
int *mat = (int*)malloc(sizeof(int)*N*N);
GenMatrix(mat, N);
// compute the reference result.
int *ref = (int*)malloc(sizeof(int)*N*N);
memcpy(ref, mat, sizeof(int)*N*N);
Floyd_sequential(ref, N);
//CUDA Portion
int Grid_Dim_x = 1, Grid_Dim_y = 1;
int noThreads_x, noThreads_y;
int *result = (int*)malloc(sizeof(int)*N*N);
memcpy(result, mat, sizeof(int)*N*N);
int *d_result;
// compute your results
cudaMalloc((void **)&d_result, N*N);
cudaMemcpy(result, N * N, cudaMemcpyHostToDevice);
gpu_Floyd<<<1024, 256>>>(d_result, N);
cudaMemcpy(result, d_result, cudaMemcpyDeviceToHost);
// compare your result with reference result
if(CmpArray(result, ref, N*N))
printf("The matrix matches.\n");
else
printf("The matrix do not match.\n");
free(ref);
free(result);
cudaFree(d_result);
}
However, my output always shows the matrices do not match.
I understand that in CUDA we try to map each element in the matrix to each row. However, I am trying to explore possibilities by mapping each row of the matrix to a thread instead.
As has already been mentioned, your provided GPU code does not compile, so I'm curious how you got to the observation that your output matrices do not match.
Here are some of the problems with your code:
cudaMalloc, just like malloc allocates bytes, so this is not correct:
cudaMalloc((void **)&d_result, N*N);
instead you want this:
cudaMalloc((void **)&d_result, N*N*sizeof(int));
likewise cudaMemcpy, just like memcpy, operates on bytes, and furthermore cudaMemcpy requires 4 parameters so this is not correct:
cudaMemcpy(result, N * N, cudaMemcpyHostToDevice);
instead you probably want this:
cudaMemcpy(d_result, result, N * N*sizeof(int), cudaMemcpyHostToDevice);
and your other cudaMemcpy line needs to be fixed similarly.
I'd also advise doing proper cuda error checking
Your kernel is written as if it's expecting a 2 dimensional thread array, or at least one dimensional in y, whereas you are launching a one dimensional grid in x:
gpu_Floyd<<<1024, 256>>>(d_result, N);
therefore all your kernel built-in variables in y will be 1 or 0 always, and this line of code:
int Row = blockIdx.y * blockDim.y + threadIdx.y;
will evaluate to zero for all threads in your 1-D grid in x.
Your gpu kernel is putting the results in the same matrix as the input data. For sequential code this may or may not matter, but for code that is intended to run in parallel, it can often lead to race conditions, because the order of operations (i.e. order of thread execution) is largely undefined.
Below you will find a canonical, simple implementation of the Floyd-Warshall algorithm in CUDA.
The CUDA code is accompanied with a sequential implementation and both are based on the simplifying assumption that the edges are non-negative. The full, minimum distance paths are also reconstructed in both the cases. Despite the simplifying assumption, it should be possible to grasp the relevant parallelization idea, namely that a two-dimensional thread grid is exploited and that each thread along x is assigned to a matrix column, while each block along y is assigned to a matrix row. In this way, all the columns are loaded by the threadIdx.x == 0 threads of each block in shared memory.
// --- Assumption: graph with positive edges
#include <stdio.h>
#include <string>
#include <map>
#include <iostream>
#include <fstream>
#include "Utilities.cuh"
#define BLOCKSIZE 256
using namespace std;
map<string, int> nameToNum; // --- names of vertices
map<string, map<string, int>> weightMap; // --- weights of edges
/************************/
/* READ GRAPH FROM FILE */
/************************/
int *readGraphFromFile(int &N, char *fileName) {
string vertex1, vertex2;
ifstream graphFile;
int currentWeight;
N = 0; // --- Init the number of found vertices
graphFile.open(fileName); // --- Open the graph file
graphFile >> vertex1; // --- Read first vertex
while(vertex1 != "--END--") { // --- Loop untile end of file has not been found
graphFile >> vertex2; // --- Read second vertex
graphFile >> currentWeight; // --- Read weight between first and second vertex
if (nameToNum.count(vertex1) == 0) { // --- If vertex has not yet been added ...
nameToNum[vertex1] = N; // assign a progressive number to the vertex
weightMap[vertex1][vertex1] = 0; // assign a zero weight to the "self-edge"
N++; // --- Update the found number of vertices
}
if (nameToNum.count(vertex2) == 0) {
nameToNum[vertex2] = N;
weightMap[vertex2][vertex2] = 0;
N++;
}
weightMap[vertex1][vertex2] = currentWeight; // --- Update weight between vertices 1 and 2
graphFile >> vertex1;
}
graphFile.close(); // --- Close the graph file
// --- Construct the array
int *weightMatrix = (int*) malloc(N * N * sizeof(int));
// --- Loop over all the vertex couples in the wights matrix
for (int ii = 0; ii < N; ii++)
for (int jj = 0; jj < N; jj++)
weightMatrix[ii * N + jj] = INT_MAX / 2; // --- Init the weights matrix elements to infinity
map<string, int>::iterator i, j;
// --- Loop over all the vertex couples in the map
// (*i).first and (*j).first are the weight entries of the map, while (*i).second and (*j).second are their corresponding indices
for (i = nameToNum.begin(); i != nameToNum.end(); ++i)
for (j = nameToNum.begin(); j != nameToNum.end(); ++j) {
// --- If there is connection between vertices (*i).first and (*j).first, the update the weight matrix
if (weightMap[(*i).first].count((*j).first) != 0)
weightMatrix[N * (*i).second + (*j).second] = weightMap[(*i).first][(*j).first];
}
return weightMatrix;
}
/************************************/
/* PRINT MINIMUM DISTANCES FUNCTION */
/************************************/
void printMinimumDistances(int N, int *a) {
map<string, int>::iterator i;
// --- Prints all the node labels at the first row
for (i = nameToNum.begin(); i != nameToNum.end(); ++i) printf("\t%s", i->first.c_str());
printf("\n");
i = nameToNum.begin();
// --- Loop over the rows
for (int p = 0; p < N; p++) {
printf("%s\t", i -> first.c_str());
// --- Loop over the columns
for (int q = 0; q < N; q++) {
int dd = a[p * N + q];
if (dd != INT_MAX / 2) printf("%d\t", dd);
else printf("--\t");
}
printf("\n");
i++;
}
}
void printPathRecursive(int row, int col, int *minimumDistances, int *path, int N) {
map<string, int>::iterator i = nameToNum.begin();
map<string, int>::iterator j = nameToNum.begin();
if (row == col) {advance(i, row); printf("%s\t", i -> first.c_str()); }
else {
if (path[row * N + col] == INT_MAX / 2) printf("%row %row %row No path exists\t\n", minimumDistances[row * N + col], row, col);
else {
printPathRecursive(row, path[row * N + col], minimumDistances, path, N);
advance(j, col);
printf("%s\t", j -> first.c_str());
}
}
}
void printPath(int N, int *minimumDistances, int *path) {
map<string, int>::iterator i;
map<string, int>::iterator j;
// --- Loop over the rows
i = nameToNum.begin();
for (int p = 0; p < N; p++) {
// --- Loop over the columns
j = nameToNum.begin();
for (int q = 0; q < N; q++) {
printf("From %s to %s\t", i -> first.c_str(), j -> first.c_str());
printPathRecursive(p, q, minimumDistances, path, N);
printf("\n");
j++;
}
i++;
}
}
/**********************/
/* FLOYD-WARSHALL CPU */
/**********************/
void h_FloydWarshall(int *h_graphMinimumDistances, int *h_graphPath, const int N) {
for (int k = 0; k < N; k++)
for (int row = 0; row < N; row++)
for (int col = 0; col < N; col++) {
if (h_graphMinimumDistances[row * N + col] > (h_graphMinimumDistances[row * N + k] + h_graphMinimumDistances[k * N + col])) {
h_graphMinimumDistances[row * N + col] = (h_graphMinimumDistances[row * N + k] + h_graphMinimumDistances[k * N + col]);
h_graphPath[row * N + col] = h_graphPath[k * N + col];
}
}
}
/*************************/
/* FLOYD-WARSHALL KERNEL */
/*************************/
__global__ void d_FloydWarshall(int k, int *d_graphMinimumDistances, int *d_graphPath, int N) {
int col = blockIdx.x * blockDim.x + threadIdx.x; // --- Each thread along x is assigned to a matrix column
int row = blockIdx.y; // --- Each block along y is assigned to a matrix row
if (col >= N) return;
int arrayIndex = N * row + col;
// --- All the blocks load the entire k-th column into shared memory
__shared__ int d_graphMinimumDistances_row_k;
if(threadIdx.x == 0) d_graphMinimumDistances_row_k = d_graphMinimumDistances[N * row + k];
__syncthreads();
if (d_graphMinimumDistances_row_k == INT_MAX / 2) // --- If element (row, k) = infinity, no update is needed
return;
int d_graphMinimumDistances_k_col = d_graphMinimumDistances[k * N + col];
if(d_graphMinimumDistances_k_col == INT_MAX / 2) // --- If element (k, col) = infinity, no update is needed
return;
int candidateBetterDistance = d_graphMinimumDistances_row_k + d_graphMinimumDistances_k_col;
if (candidateBetterDistance < d_graphMinimumDistances[arrayIndex]) {
d_graphMinimumDistances[arrayIndex] = candidateBetterDistance;
d_graphPath[arrayIndex] = d_graphPath[k * N + col];
}
}
/********/
/* MAIN */
/********/
int main() {
int N = 0; // --- Number of vertices
// --- Read graph array from file
int *h_graphArray = readGraphFromFile(N, "graph2.txt");
printf("\n******************\n");
printf("* Original graph *\n");
printf("******************\n");
printMinimumDistances(N, h_graphArray);
// --- Floyd-Warshall on CPU
int *h_graphMinimumDistances = (int *) malloc(N * N * sizeof(int));
int *h_graphPath = (int *) malloc(N * N * sizeof(int));
memcpy(h_graphMinimumDistances, h_graphArray, N * N * sizeof(int));
for (int k = 0; k < N; k++)
for (int l = 0; l < N; l++)
if (h_graphArray[k * N + l] == INT_MAX / 2) h_graphPath[k * N + l] = INT_MAX / 2;
else h_graphPath[k * N + l] = k;
h_FloydWarshall(h_graphMinimumDistances, h_graphPath, N);
printf("\n*************************\n");
printf("* CPU result: distances *\n");
printf("*************************\n");
printMinimumDistances(N, h_graphMinimumDistances);
printf("\n********************\n");
printf("* CPU result: path *\n");
printf("********************\n");
printPath(N, h_graphMinimumDistances, h_graphPath);
// --- Graph array device allocation and host-device memory transfer
int *d_graphMinimumDistances; gpuErrchk(cudaMalloc(&d_graphMinimumDistances, N * N * sizeof(int)));
gpuErrchk(cudaMemcpy(d_graphMinimumDistances, h_graphArray, N * N * sizeof(int), cudaMemcpyHostToDevice));
int *d_graphPath; gpuErrchk(cudaMalloc(&d_graphPath, N * N * sizeof(int)));
for (int k = 0; k < N; k++)
for (int l = 0; l < N; l++)
if (h_graphArray[k * N + l] == INT_MAX / 2) h_graphPath[k * N + l] = INT_MAX / 2;
else h_graphPath[k * N + l] = k;
gpuErrchk(cudaMemcpy(d_graphPath, h_graphPath, N * N * sizeof(int), cudaMemcpyHostToDevice));
// --- Iterations
for (int k = 0; k < N; k++) {
d_FloydWarshall <<<dim3(iDivUp(N, BLOCKSIZE), N), BLOCKSIZE>>>(k, d_graphMinimumDistances, d_graphPath, N);
#ifdef DEBUG
gpuErrchk(cudaPeekAtLastError());
gpuErrchk(cudaDeviceSynchronize());
#endif
}
// --- Copy results back to the host
gpuErrchk(cudaMemcpy(h_graphMinimumDistances, d_graphMinimumDistances, N * N * sizeof(int), cudaMemcpyDeviceToHost));
gpuErrchk(cudaMemcpy(h_graphPath, d_graphPath, N * N * sizeof(int), cudaMemcpyDeviceToHost));
printf("\n**************\n");
printf("* GPU result *\n");
printf("**************\n");
printMinimumDistances(N, h_graphMinimumDistances);
printf("\n********************\n");
printf("* GPU result: path *\n");
printf("********************\n");
printPath(N, h_graphMinimumDistances, h_graphPath);
}

Matrix Multiplication giving wrong output [duplicate]

This question already has an answer here:
Unable to execute device kernel in CUDA
(1 answer)
Closed 7 years ago.
What I am attempting to do is Multiply Matrix A & Matrix B and then from the product matrix I get the index of the maximum value per column. But unfortunately, only the first 128*128 values of the matrix multiplication are correct while others are just garbage. I do not quite understand how this works. I request you to kindly guide me with this ..
#include<stdio.h>
#include "cuda.h"
#include<stdlib.h>
#define blockD 32
const int wA = 128;
const int hA = 4096;
const int wB = 4096;
const int hB = wA;
main(void){
void MatrixMultiplication(float *, float *, float *, float *);
int size_A = wA * hA * sizeof(float);
int size_B = wB * hB * sizeof(float);
int size_C = wB * hA * sizeof(float);
int size_max = 2 * wB * sizeof(float);
float *M, *N, *P, *C;
// allocate memory on the CPU
M = (float*)malloc(size_A);
N = (float*)malloc(size_B);
P = (float*)malloc(size_max);
C = (float*)malloc(size_C);
// initialize the matrices
for (int y=0; y < hA; y++) {
for (int x=0; x < wA; x++){
M[y*wA + x] = 32; //x + y*wA;
}
}
for (int y=0; y<hB; y++) {
for (int x=0; x<wB; x++){
N[y*wB + x] = 21; //x + y*wB;
}
}
MatrixMultiplication(M, N, P, C);
//Write
FILE *f1;
int i,j;
f1 = fopen("C.txt","w");
for(i = hA - 2 ; i < hA; i ++){
for(j = 0; j < wB; j++){
fprintf(f1,"%d\t",int(C[i*wB + j]));
}
fprintf(f1,"\n");
}
fclose(f1);
// free the memory allocated on the CPU
free( M );
free( N );
free( P );
free( C );
cudaDeviceReset();
return 0;
}
__device__ void MaxFunction(float* Pd, float* max)
{
int x = (threadIdx.x + blockIdx.x * blockDim.x);
int y = (threadIdx.y + blockIdx.y * blockDim.y);
int k = 0;
int temp = 0; int temp_idx = 0;
for (k = 0; k < wB; ++k) {
if(Pd[x*wB + k] > temp){
temp = Pd[x*wB + k];
temp_idx = x*wB + k;
}
}
max[y*2 + 0] = temp;
max[y*2 + 1] = temp_idx;
}
__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, float* max)
{
// declare cache in the shared memory
__shared__ float Mds[blockD][blockD];
__shared__ float Nds[blockD][blockD];
float Pvalue = 0;
// Loop over the Md and Nd block dimension required to compute the Pd element
for (int m = (wA * blockD * blockIdx.y), n = (blockD * blockIdx.x);
m < ((wA * blockD * blockIdx.y)+wA-1);
m += blockD, n += (blockD*hB)){
// collaboratively loading of Md and Nd blocks into shared memory
Mds[threadIdx.y][threadIdx.x] = Md[m + wA * threadIdx.y + threadIdx.x];
Nds[threadIdx.y][threadIdx.x] = Nd[n + wA * threadIdx.y + threadIdx.x];
__syncthreads();
// keep track of the running sum
for (int k = 0; k < blockD; k++)
Pvalue += Mds[threadIdx.y][k] * Nds[k][threadIdx.x];
__syncthreads();
}
// write back to the global memory
int p = hB * blockD * blockIdx.y + blockD * blockIdx.x;
Pd[p + hB * threadIdx.y + threadIdx.x] = Pvalue;
__syncthreads();
MaxFunction(Pd, max);
}
void MatrixMultiplication(float *M, float *N, float *P, float *C) {
int size_A = wA * hA * sizeof(float);
int size_B = wB * hB * sizeof(float);
int size_C = wB * hA * sizeof(float);
int size_max = 2 * wB * sizeof(float);
float *Md, *Nd, *Pd, *max;
// allocate memory on the GPU
cudaMalloc((void**)&Md, size_A);
cudaMalloc((void**)&Nd, size_B);
cudaMalloc((void**)&Pd, size_C);
cudaMalloc((void**)&max, size_max);
// transfer M and N to device memory
cudaMemcpy(Md, M, size_A, cudaMemcpyHostToDevice);
cudaMemcpy(Nd, N, size_B, cudaMemcpyHostToDevice);
// kernel invocation code
dim3 dimBlock(blockD, blockD);
dim3 dimGrid(wA/blockD, hB/blockD);
//Execute Kernel
MatrixMulKernel<<<dimGrid, dimBlock>>>( Md, Nd, Pd, max);
// transfer P from device
cudaMemcpy(P, max, size_max, cudaMemcpyDeviceToHost);
cudaMemcpy(C, Pd, size_C, cudaMemcpyDeviceToHost);
// free the memory allocated on the GPU
cudaFree(Md);
cudaFree(Nd);
cudaFree(Pd);
cudaFree(max);
}
In your code you seem to have more than one problem. One of the problems is, in place of this:
dim3 dimGrid(wA/blockD, hB/blockD);
You should have this:
dim3 dimGrid(wB/blockD, hA/blockD);
Ultimately you need one thread in your grid for each output point. Your formulation was giving you a grid of 4 blocks by 4 blocks, whereas you need a grid of 128 blocks by 128 blocks.
The other problem I found with your code was in these lines in the kernel:
int p = hB * blockD * blockIdx.y + blockD * blockIdx.x;
Pd[p + hB * threadIdx.y + threadIdx.x] = Pvalue;
They are not indexing properly through the output array. Rather than try to sort it out using your scheme, I used this instead:
Pd[(threadIdx.x + (blockIdx.x * blockDim.x)) + ((threadIdx.y + (blockIdx.y * blockDim.y))*(gridDim.x*blockDim.x))] = Pvalue;
When I made the above two changes to your code, I got what I believe are correct results throughout the array. And it took about 32 seconds on my machine to run it. (Note that I haven't tried fixing your original max-finding code -- see below for a better approach.)
Based on your previous question, you seemed to be concerned about speed. If you want to do fast matrix multiply, you should use cublas. The following code shows how to use cublas to multiply two ordinary C-style matrices (they don't have to be square). I've also included a column-max finding kernel that will be fast when the number of columns is large (say, over 500 or so. You have 4096 columns in your example). For small numbers of columns, there may be quicker ways to perform this function, but small numbers of columns also suggests that the overall problem size may be small and so speed (of this piece of code) will not really be an issue.
Here's the code:
#include <stdio.h>
#include <cublas_v2.h>
#define VERBOSE 1
#define nTPB 64
#define ROW_A 4
#define COL_A 4
#define ROW_B COL_A
#define COL_B 4
#define ROW_C ROW_A
#define COL_C COL_B
#define SIZ_A (ROW_A*COL_A)
#define SIZ_B (ROW_B*COL_B)
#define SIZ_C (ROW_C*COL_C)
// error check macros
#define cudaCheckErrors(msg) \
do { \
cudaError_t __err = cudaGetLastError(); \
if (__err != cudaSuccess) { \
fprintf(stderr, "Fatal error: %s (%s at %s:%d)\n", \
msg, cudaGetErrorString(__err), \
__FILE__, __LINE__); \
fprintf(stderr, "*** FAILED - ABORTING\n"); \
exit(1); \
} \
} while (0)
// for CUBLAS V2 API
#define cublasCheckErrors(fn) \
do { \
cublasStatus_t __err = fn; \
if (__err != CUBLAS_STATUS_SUCCESS) { \
fprintf(stderr, "Fatal cublas error: %d (at %s:%d)\n", \
(int)(__err), \
__FILE__, __LINE__); \
fprintf(stderr, "*** FAILED - ABORTING\n"); \
exit(1); \
} \
} while (0)
__global__ void col_max(float *mat, float *max, unsigned int *midx, unsigned int rows, unsigned int cols){
int idx = threadIdx.x + blockDim.x*blockIdx.x;
if (idx < cols){
float tempmax = mat[idx];
unsigned int tempmidx = 0;
for (int i = 1; i< rows; i++)
if (mat[idx + (i*cols)] > tempmax){
tempmax = mat[idx + (i*cols)];
tempmidx = i;}
max[idx] = tempmax;
midx[idx] = tempmidx;
}
}
int main(){
float *h_A, *h_B, *h_C, *d_A, *d_B, *d_C, *h_max, *d_max;
unsigned int *h_idx, *d_idx;
h_A = (float *)malloc(SIZ_A*sizeof(float));
if (h_A==0) {printf("malloc fail\n"); return -1;}
h_B = (float *)malloc(SIZ_B*sizeof(float));
if (h_B==0) {printf("malloc fail\n"); return -1;}
h_C = (float *)malloc(SIZ_C*sizeof(float));
if (h_C==0) {printf("malloc fail\n"); return -1;}
h_max = (float *)malloc(COL_C*sizeof(float));
if (h_max==0) {printf("malloc fail\n"); return -1;}
h_idx = (unsigned int*)malloc(COL_C*sizeof(unsigned int));
if (h_idx==0) {printf("malloc fail\n"); return -1;}
cudaMalloc((void **)&d_A, SIZ_A*sizeof(float));
cudaMalloc((void **)&d_B, SIZ_B*sizeof(float));
cudaMalloc((void **)&d_C, SIZ_C*sizeof(float));
cudaMalloc((void **)&d_max, COL_C*sizeof(float));
cudaMalloc((void **)&d_idx, COL_C*sizeof(unsigned int));
cudaCheckErrors("cuda malloc fail");
// initialize data
for (int i=0; i< SIZ_A; i++) h_A[i] = (float)(i+1);
for (int i=0; i< SIZ_B; i++) h_B[i] = (float)(i+2);
cudaMemcpy(d_A, h_A, SIZ_A*sizeof(float), cudaMemcpyHostToDevice);
cudaMemcpy(d_B, h_B, SIZ_B*sizeof(float), cudaMemcpyHostToDevice);
cudaCheckErrors("cuda memcpy 1 fail");
const float alpha = 1.0f;
const float beta = 0.0f;
cublasHandle_t handle;
cublasCheckErrors(cublasCreate(&handle));
// C = A*B
// due to cublas expecting column-major storage, parameters
// are scrambled
cublasCheckErrors(cublasSgemm(handle, CUBLAS_OP_N, CUBLAS_OP_N, COL_B, ROW_A, COL_A, &alpha, d_B, COL_B, d_A, COL_A, &beta, d_C, COL_C));
cudaMemcpy(h_C, d_C, SIZ_C*sizeof(float), cudaMemcpyDeviceToHost);
cudaCheckErrors("cuda memcpy 2 fail");
col_max<<<(COL_C + nTPB - 1)/nTPB, nTPB>>>(d_C, d_max, d_idx, ROW_C, COL_C);
cudaCheckErrors("kernel launch fail");
cudaMemcpy(h_max, d_max, COL_C*sizeof(float), cudaMemcpyDeviceToHost);
cudaMemcpy(h_idx, d_idx, COL_C*sizeof(unsigned int), cudaMemcpyDeviceToHost);
cudaCheckErrors("cuda memcpy 3 fail/kernel fail");
if (VERBOSE){
printf("A: \n");
for (int i=0; i< ROW_A; i++){
for (int j=0; j< COL_A; j++)
printf("%7.5G", h_A[j+(i*COL_A)]);
printf("\n");}
printf("B: \n");
for (int i=0; i< ROW_B; i++){
for (int j=0; j< COL_B; j++)
printf("%7.5G", h_B[j+(i*COL_B)]);
printf("\n");}
printf("C = A*B: \n");
for (int i=0; i< ROW_C; i++){
for (int j=0; j< COL_C; j++)
printf("%7.5G", h_C[j+(i*COL_C)]);
printf("\n");}
printf("COLUMN MAX:\n");
for (int i=0; i< COL_C; i++)
printf("%7.5G", h_max[i]);
printf("\nCOLUMN MAX IDX:\n");
for (int i=0; i< COL_C; i++)
printf("%7d", h_idx[i]);
}
printf("\n finished!\n");
return 0;
}
Here's what I used to compile:
$ nvcc -arch=sm_20 -O3 -o t221 t221.cu -lcublas
And here's the sample output:
$ cuda-memcheck ./t221
========= CUDA-MEMCHECK
A:
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
B:
2 3 4 5
6 7 8 9
10 11 12 13
14 15 16 17
C = A*B:
100 110 120 130
228 254 280 306
356 398 440 482
484 542 600 658
COLUMN MAX:
484 542 600 658
COLUMN MAX IDX:
3 3 3 3
finished!
========= ERROR SUMMARY: 0 errors
$
When I extended my code to handle the same sizes you indicated, (A = 4096x128, B=128x4096) it took about 1 second on my machine. So it's much faster than your code. However, when I take your code and comment out your call to MaxFunction in the kernel, it also only takes about 1 second to compute the matrix multiply result. So if you wanted to keep your matrix multiply code (i.e. not use cublas) you could break the code into 2 kernels, and use your multiply routine in the first kernel with my max-finding routine (col_max) in the second kernel, and also probably get a pretty fast result.
As #talonmies indicated, if you are running on a windows machine, be sure you are aware of the ramifications of windows TDR. (search that in the upper right corner search box if needed)