What happens when I give an offset to a "temporary register" in MIPS - mips

For example:
$t0 = A
$t1 = B
$t2 = C
If I do the following command
lw $t1, 4($t0)
would it load $t2 into $t1?

As long as your temporary registers are next to each other in memory.
i.e.
Reference: $t1 $t2
Mem Blocks: [byte][byte][byte][byte][byte][byte][byte][byte]...
Programs like Logisim should have the registers packed tightly.
Helpful page here from UC Berkeley.

If I do the following command
lw $t1, 4($t0)
would it load $t2 into $t1?
No, it would not. The lw instruction is used to load data from memory, not to copy the value of one register into another register. To quote from the MIPS manual:
LW rt, offset(base) MIPS32 (MIPS I)
Purpose:
To load a word from memory as a signed value
Description: rt ← memory[base+offset]
The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched,
sign-extended to the GPR register length if necessary, and placed in GPR rt. The 16-bit signed offset is added to the
contents of GPR base to form the effective address.
In other words, what lw $t1, 4($t0) does is form an effective address by adding the value of $t0 with the value 4, and load a word (four bytes) from that address into register $t1.

Related

how can I know number of instruction access?

I'm studying computer architecture. I'm confused about some quiz.
when executing n instructions in load-store arch.
lw $t0, 32($s3)
add $t0, $s2, $t0
sw $t0, 48($s3)
then what is number of memory access, and number of instruction access?
I think num of memory access is 2 and num of instruction access is 3. Is it right?
Yes it's right, Just for the sake of understanding it better here is some explanation.
MIPS using load word instruction lw to read data word from memory into register and
store word sw to write a word in memory.
lw $t0, 32($s3)
This load a word from memory into register $t0
add $t0, $s2, $t0
This means you are on the register side no memory involved.
sw $t0, 48($s3) This store a word in memory.
You are using 3 instruction which two of them involve with memory access

Write into next byte of a register

I understand that registers in memory are 32 bits. I also understand that lb will load contents from memory into the lower 8 bits of a register, and that if I did
lb $t1, $a3
lb $t1, 4($a3)
The second lb command will overwrite the contents loaded in the first. However, is there a way to write into the second byte of a register (loading from a different part in memory, so not two bytes right next to each other) and preserve the information of the first byte?
I am assuming what you want to use here is lbu (load byte unsigned) and not lb because you don't want the register to be sign extended (e.g. copying the byte AA in the register will result in 000000AA, and not FFFFFFAA).
If you want to write to the second byte of a register you can first use lbu to load the byte from memory to another register, then shift left 8 bits, and addu it to the original register.
For example:
lbu $t1, $a3 # 0x000000AA
lbu $t2, 4($a3) # 0x000000BB
sll $t2, $t2, 8 # 0x000000BB -> 0x0000BB00
addu $t1, $t1, $t2 # 0x000000AA + 0x0000BB00 = 0x0000BBAA

Using Memory Mapped I/O to load a 2-digit integer in MIPS Assembly

I am working with MIPS Assembly in the Mars simulator and I am attempting to set it up so that I can enter any 2-digit number (ex: 24) into the Keyboard and Display MMIO Simulator and then take it from MMIO addresses and put it into my registers for manipulation. This technique will use polling, which I understand to some degree.
I can load individual characters and place their ascii value into my registers using the following code (inside .text):
main:
lui $t0, 0xFFFF #$t0 = 0xFFFF0000
poll: # polling procedure
lw $t1, 0($t0)
andi $t1, $t1, 0x0001
beq $t1, $zero, poll
lw $a0, 4($t0) # load word into register $a0
Is it possible in this case for MMIO to treat the input as an immediate and to take in two at once? If not, then are there any known workarounds to this? Thanks.

How does 'alignment of memory operands' help MIPS to be pipelined?

How does 'alignment of memory operands' help MIPS to be pipelined?
The book says:
Fourth, as discussed in Chapter 2, operands must be aligned in memory. Hence,
we need not worry about a single data transfer instruction requiring two data
memory accesses; the requested data can be transferred between processor and
memory in a single pipeline stage.
I think I understand that one data transfer instruction does not require two or more data memory aaccesses.
However, I am not sure what does it have to do with the alignment of memory operands.
Thanks, in advance!
The lw instruction requires that the memory address be word aligned.
Therefore, to access an unaligned word, one would need to access the two word boundaries that the required word intersects and mask out the necessary bytes.
For example, suppose you desire to load a word stored at address 0x2. 0x2 is not word aligned, so you would need to load the half word stored at 0x2 and the half-word stored at 0x4.
To do so, one might write:
lh $t0 2($zero)
lh $t1 4($zero)
sll $t1 $t1 16
or $t2 $t0 $t1
This only gets more complicated if you want to load for example a word stored at address 0x3:
# load first byte
lb $t0 3($zero)
# load second word, mask out first 3 bytes
lw $t1 4($zero)
lui $t2 0x0000FFFF
ori $t2 $t2 0xFFFFFFFF
or $t1 $t1 $t2
# combine
sll $t1 $t1 8
or $t2 $t0 $t1
So, it can be seen that the requirement for word alignment doesn't help MIPS to be pipelined, but rather that access to unaligned words requires excess memory accesses — this is a limitation of the ISA.

MIPS How to branch to a 32-bit address?

I am trying to branch to an address:
bne $t0, $0, 0x7813a21c
However, this is incorrect because bne only allocates 16-bits to the immediate
How can I branch to a direct 32-bit address? Is there a way to branch from a value in a register?
You have to use JR to jump to an address stored in a register.
To preform this type of operation you will need a jump statement. You have to tell the code to jump control context to the exact line you wish to specify. This is example syntax: j offset Where in your address is the offset.
Here is a link that better reviews what you have to do. Check out the section on jump. These are the types of jump available. One of them is what you need: j offset, jal offset, jr $rs, jalr $rs
Here is the link:
http://www.cs.umd.edu/class/sum2003/cmsc311/Notes/Mips/jump.html
Good luck
We can load 32-bit addresss to the register (e.g. $t1) in 2 steps:
Load the upper 16 bits by lui (Load Upper Immediate).
Load the lower 16 bits by ori (Or Immediate).
NOTE: It is work because lui fills the lower 16 bits with 0s, so bitwise OR load the lower 16 bits (n | 0 = n);
In code below if $t0 is equal to 0 we do skip jr instruction.
Or if $t0 is not equal to 0 we do not skip jr instruction (or we do jump).
beq $t0, $0, SKIP
# load 0x7813a21c to $t0
lui $t1, 0x7813 # load the upper 16 bits
# Now $t1 = 0x78130000
ori $t1, $1, 0xa21c # load the lower 16 bits
# Now $t1 = 0x7813A21C
jr $t1 # as #Matt Eckert said
SKIP: