This question already has answers here:
Copying a struct containing pointers to CUDA device
(3 answers)
Closed 7 years ago.
This is the first time I am implementing structures in CUDA. In the following program I am copying a structure to the GPU and performing a basic operation on the data, and copying back the result to the Host.
#include<stdio.h>
inline cudaError_t checkCuda(cudaError_t result)
{
#if defined(DEBUG) || defined(_DEBUG)
if (result != cudaSuccess) {
fprintf(stderr, "CUDA Runtime Error: %sn", cudaGetErrorString(result));
assert(result == cudaSuccess);
}
#endif
return result;
}
typedef struct myStruct {
int* a;
int b;
}MyStruct;
__global__ void structOperation(MyStruct *d_data){
int idx = threadIdx.x;
d_data->a[idx] += 10;
}
int main(){
MyStruct *h_data, *d_data, *out_data;
size_t structSize = sizeof(MyStruct);
size_t intSize = sizeof(int);
h_data = (MyStruct *) malloc(structSize * 1);
h_data->b = 32;
h_data->a = (int *)malloc(intSize * h_data->b);
out_data = (MyStruct *) malloc(structSize * 1);
out_data->b = 32;
out_data->a = (int *)malloc(intSize * out_data->b);
for(int i = 0; i<32; i++){
h_data->a[i] = i;
}
//Memory allocation for the Struct
checkCuda(cudaMalloc(&d_data, sizeof(MyStruct) * 1));
checkCuda(cudaMalloc(&(d_data->a), sizeof(int) * 32));
checkCuda(cudaMemcpy(&d_data, &h_data, sizeof(MyStruct) * 1, cudaMemcpyHostToDevice));
checkCuda(cudaMemcpy(&(d_data->a), &(h_data->a), sizeof(int) * 32, cudaMemcpyHostToDevice));
structOperation<<<1,32>>>(d_data);
checkCuda(cudaMemcpy(&out_data, &d_data, sizeof(myStruct) * 1, cudaMemcpyDeviceToHost));
//cudaMemcpy(&(out_data->a), &(d_data->a), sizeof(int) * d_data->b, cudaMemcpyDeviceToHost);
printf("\nDataElements : ");
for(int i = 0; i<32; i++){
printf(" %d",out_data->a[i]);
}
printf("\n");
}
I am getting 'Segmentation Fault' as the result of execution. I guess I am operating the structure incorrectly. What is the proper way to implement?
There are several invalid memory access in the provided code.
Accessing device memory (allocated using cudaMalloc) from host like d_data->a will cause undefined behavior (segmentation fault etc.).
cudaMemcpy takes pointers as arguments, not address of pointer. So cudaMemcpy(&d_data, &h_data... should be replaced with cudaMemcpy(d_data, h_data....
Allocating a device object with a device pointer as a member is a bit tricky. It can be achieved as follows:
Allocate a temporary host object (MyStruct temp).
Allocate device memory to the member we want on device (cudaMalloc(&temp.a, bytes)).
Allocate device object (cudaMalloc(&d_data, sizeof(MyStruct)).
Copy temporary host object to the device object (cudaMemcpy(d_data, &temp, sizeof(MyStruct), cudaMemcpyHostToDevice)).
Keep in mind that when you modify the contents of d_data->a on the device, temp.a will also be modified because they are actually pointing to same memory location on device.
Your final main function will look something like this:
int main(){
MyStruct *h_data, *d_data, *out_data;
size_t structSize = sizeof(MyStruct);
size_t intSize = sizeof(int);
h_data = (MyStruct *) malloc(structSize * 1);
h_data->b = 32;
h_data->a = (int *)malloc(intSize * h_data->b);
out_data = (MyStruct *) malloc(structSize * 1);
out_data->b = 32;
out_data->a = (int *)malloc(intSize * out_data->b);
for(int i = 0; i<32; i++){
h_data->a[i] = i;
}
//Create temporary MyStruct object on host and allocate memory to its member "a" on device
MyStruct temp;
temp.b = h_data->b;
checkCuda(cudaMalloc(&temp.a, 32 * sizeof(int)));
//Copy host data to temp.a
checkCuda(cudaMemcpy(temp.a, h_data->a, 32 * sizeof(int), cudaMemcpyHostToDevice));
//Memory allocation for the device MyStruct
checkCuda(cudaMalloc(&d_data, sizeof(MyStruct) * 1));
//Copy actual object to device
checkCuda(cudaMemcpy(d_data, &temp, sizeof(MyStruct) * 1, cudaMemcpyHostToDevice));
structOperation<<<1,32>>>(d_data);
//temp.a will be updated after kernel launch
checkCuda(cudaMemcpy(out_data->a, temp.a, 32 * sizeof(int), cudaMemcpyDeviceToHost));
printf("\nDataElements : ");
for(int i = 0; i<32; i++)
{
printf(" %d",out_data->a[i]);
}
printf("\n");
checkCuda(cudaFree(temp.a));
checkCuda(cudaFree(d_data));
free(h_data->a);
free(out_data->a);
free(h_data);
free(out_data);
}
Related
i'm a beginner in cuda programming. I'm trying an own easy code but it's not working and I don't know what else to do.
My code:
#include <mpi.h>
#include <cuda.h>
#include <stdio.h>
#include <sys/wait.h>
// Prototypes
__global__ void helloWorld(char*);
__device__ int getGlobalIdx_2D_2D();
// Host function
int main(int argc, char** argv)
{
unsigned int i, N, gridX, gridY, blockX, blockY;
N = 4096000;
char *str = (char *) malloc(N*sizeof(char));
for(i=0; i < N; i++) str[i]='c';
MPI_Init (&argc, &argv);
char *d_str;
size_t size = (size_t) N*sizeof(char);
cudaMalloc((void**)&d_str, size);
cudaMemcpy(d_str, str, size, cudaMemcpyHostToDevice);
gridX = 100;
gridY = 10;
blockX = blockY = 64;
dim3 dimGrid(gridX, gridY); // 4096 chars per block
dim3 dimBlock(blockX, blockY); // one thread per character, 2D
printf("dimGrid(%d, %d)\t", gridX, gridY);
printf("dimBlock(%d, %d)\t", blockX, blockY);
helloWorld<<< dimGrid, dimBlock >>>(d_str);
cudaMemcpy(str, d_str, size, cudaMemcpyDeviceToHost);
cudaThreadSynchronize();
MPI_Barrier (MPI_COMM_WORLD);
cudaFree(d_str);
printf("\nRes:\n");
for(i = 0; i < N; i++) printf("\t[%u] %c\n", i, str[i]);
MPI_Finalize ();
free(str);
return 0.0;
}
// Device kernel
__global__ void helloWorld(char* str)
{
// determine where in the thread grid we are
int pos = getGlobalIdx_2D_2D();
if (pos % 2 == 0) str[pos] -= 2;
else str[pos] += 8;
}
__device__ int getGlobalIdx_2D_2D()
{
int blockId = blockIdx.x + blockIdx.y * gridDim.x;
int threadId = blockId * (blockDim.x * blockDim.y) +
(threadIdx.y * blockDim.x) + threadIdx.x;
return threadId;
}
My desired output is: jajajajajajaja... x4096000
I've read that '%' operation is not efficient, but I don't think is the problem there.
Thanks!
You are performing absolutely no CUDA error checking, it is really beneficial to do so. Once you enable it you can find that block dimensions 64 x 64 are invalid as it results into 4096 threads within one block, which is not a valid configuration.
Does anyone know what is the maximum supported size for cub::scan ? I got core dump for input sizes over 500 million. I wanted to make sure I'm not doing anything wrong...
Here is my code:
#define CUB_STDERR
#include <stdio.h>
#include "cub/util_allocator.cuh"
#include "cub/device/device_scan.cuh"
#include <sys/time.h>
using namespace cub;
bool g_verbose = false; // Whether to display input/output to console
CachingDeviceAllocator g_allocator(true); // Caching allocator for device memory
typedef int mytype;
/**
* Solve inclusive-scan problem
*/
static void solve(mytype *h_in, mytype *h_cpu, int n)
{
mytype inclusive = 0;
for (int i = 0; i < n; ++i) {
inclusive += h_in[i];
h_cpu[i] = inclusive;
}
}
static int compare(mytype *h_cpu, mytype *h_o, int n)
{
for (int i = 0; i < n; i++) {
if (h_cpu[i] != h_o[i]) {
return i + 1;
}
}
return 0;
}
/**
* Main
*/
int main(int argc, char** argv)
{
cudaSetDevice(0);
struct timeval start, end;
int num_items = 1073741824;
const int repetitions = 5;
mytype *h_in, *h_out, *h_cpu;
const int size = num_items * sizeof(mytype);
// Allocate host arrays
h_in = (mytype *)malloc(size);
h_out = (mytype *)malloc(size);
h_cpu = (mytype *)malloc(size);
// Initialize problem and solution
for (int i = 0; i < num_items; i++) {
h_in[i] = i;
h_out[i] = 0;
h_cpu[i] = 0;
}
solve(h_in, h_cpu, num_items);
// Allocate problem device arrays
mytype *d_in = NULL;
CubDebugExit(g_allocator.DeviceAllocate((void**)&d_in, sizeof(mytype) * num_items));
// Initialize device input
CubDebugExit(cudaMemcpy(d_in, h_in, sizeof(mytype) * num_items, cudaMemcpyHostToDevice));
// Allocate device output array
mytype *d_out = NULL;
CubDebugExit(g_allocator.DeviceAllocate((void**)&d_out, sizeof(mytype) * num_items));
// Allocate temporary storage
void *d_temp_storage = NULL;
size_t temp_storage_bytes = 0;
CubDebugExit(DeviceScan::InclusiveSum(d_temp_storage, temp_storage_bytes, d_in, d_out, num_items));
CubDebugExit(g_allocator.DeviceAllocate(&d_temp_storage, temp_storage_bytes));
// Run
gettimeofday(&start, NULL);
for (long i = 0; i < repetitions; i++)
DeviceScan::InclusiveSum(d_temp_storage, temp_storage_bytes, d_in, d_out, num_items);
cudaThreadSynchronize();
gettimeofday(&end, NULL);
double ctime = end.tv_sec + end.tv_usec / 1000000.0 - start.tv_sec - start.tv_usec / 1000000.0;
cudaMemcpy(h_out, d_out, sizeof(mytype) * num_items, cudaMemcpyDeviceToHost);
int cmp = compare(h_cpu, h_out, num_items);
printf("%d\t", num_items);
if (!cmp)
printf("\t%7.4fs \n", ctime);
printf("\n");
if (h_in) delete[] h_in;
if (h_out) delete[] h_out;
if (h_cpu) delete[] h_cpu;
if (d_in) CubDebugExit(g_allocator.DeviceFree(d_in));
if (d_out) CubDebugExit(g_allocator.DeviceFree(d_out));
if (d_temp_storage) CubDebugExit(g_allocator.DeviceFree(d_temp_storage));
printf("\n\n");
return 0;
}
The problem is here:
const int size = num_items * sizeof(mytype);
And it can be fixed by changing it to:
const size_t size = num_items * sizeof(mytype);
The value of num_items in the code is over 1 Billion. When we multiply that by sizeof(mytype) we are multiplying it by 4, so the result is over 4 Billion. This value cannot be stored in an int variable. If you try to use it anyway like that, then your subsequent host code will do bad things. This problem (the core dump) actually has nothing to do with CUDA. The code would core dump if you removed all the CUB elements.
When I modify the line of code above, and compile for the correct GPU (e.g. -arch=sm_35 in my case, or -arch=sm_52 for a Titan X GPU), then I get the correct answer (and no seg fault/core dump).
In general, the correct starting point when chasing a seg fault/core dump type error, is to recognize that this error arises from host code and you should attempt to localize the exact line of source code that is generating this error. This can be done trivially/tediously by putting many printf statements in your code, until you identify the line of your code after which you don't see any printf output, or by using a host code debugger, such as gdb on linux.
Also note that this code as written will require slightly more than 12GB of memory on the host, and slightly more than 8GB of memory on the GPU, so it will only run properly in such settings.
For reference, here is the fixed code (based on what OP posted here):
#define CUB_STDERR
#include <stdio.h>
#include "cub/util_allocator.cuh"
#include "cub/device/device_scan.cuh"
#include <sys/time.h>
using namespace cub;
bool g_verbose = false; // Whether to display input/output to console
CachingDeviceAllocator g_allocator(true); // Caching allocator for device memory
typedef int mytype;
/**
* Solve inclusive-scan problem
*/
static void solve(mytype *h_in, mytype *h_cpu, int n)
{
mytype inclusive = 0;
for (int i = 0; i < n; ++i) {
inclusive += h_in[i];
h_cpu[i] = inclusive;
}
}
static int compare(mytype *h_cpu, mytype *h_o, int n)
{
for (int i = 0; i < n; i++) {
if (h_cpu[i] != h_o[i]) {
return i + 1;
}
}
return 0;
}
/**
* Main
*/
int main(int argc, char** argv)
{
cudaSetDevice(0);
struct timeval start, end;
int num_items = 1073741824;
const int repetitions = 5;
mytype *h_in, *h_out, *h_cpu;
const size_t size = num_items * sizeof(mytype);
// Allocate host arrays
h_in = (mytype *)malloc(size);
h_out = (mytype *)malloc(size);
h_cpu = (mytype *)malloc(size);
// Initialize problem and solution
for (int i = 0; i < num_items; i++) {
h_in[i] = i;
h_out[i] = 0;
h_cpu[i] = 0;
}
solve(h_in, h_cpu, num_items);
// Allocate problem device arrays
mytype *d_in = NULL;
CubDebugExit(g_allocator.DeviceAllocate((void**)&d_in, sizeof(mytype) * num_items));
// Initialize device input
CubDebugExit(cudaMemcpy(d_in, h_in, sizeof(mytype) * num_items, cudaMemcpyHostToDevice));
// Allocate device output array
mytype *d_out = NULL;
CubDebugExit(g_allocator.DeviceAllocate((void**)&d_out, sizeof(mytype) * num_items));
// Allocate temporary storage
void *d_temp_storage = NULL;
size_t temp_storage_bytes = 0;
CubDebugExit(DeviceScan::InclusiveSum(d_temp_storage, temp_storage_bytes, d_in, d_out, num_items));
CubDebugExit(g_allocator.DeviceAllocate(&d_temp_storage, temp_storage_bytes));
// Run
gettimeofday(&start, NULL);
for (long i = 0; i < repetitions; i++)
DeviceScan::InclusiveSum(d_temp_storage, temp_storage_bytes, d_in, d_out, num_items);
cudaThreadSynchronize();
gettimeofday(&end, NULL);
double ctime = end.tv_sec + end.tv_usec / 1000000.0 - start.tv_sec - start.tv_usec / 1000000.0;
cudaMemcpy(h_out, d_out, sizeof(mytype) * num_items, cudaMemcpyDeviceToHost);
int cmp = compare(h_cpu, h_out, num_items);
printf("%d\t", num_items);
if (!cmp)
printf("\t%7.4fs \n", ctime);
printf("\n");
if (h_in) delete[] h_in;
if (h_out) delete[] h_out;
if (h_cpu) delete[] h_cpu;
if (d_in) CubDebugExit(g_allocator.DeviceFree(d_in));
if (d_out) CubDebugExit(g_allocator.DeviceFree(d_out));
if (d_temp_storage) CubDebugExit(g_allocator.DeviceFree(d_temp_storage));
printf("\n\n");
return 0;
}
I have a simple program to calculate square root, loop unrolling was done as
loop unrolling
#include <stdio.h>
#include <cuda.h>
__global__ void square(float *a, int N,int idx);
// Kernel that executes on the CUDA device
__global__ void first(float *arr, int N)
{
int idx = 2*(blockIdx.x * blockDim.x + threadIdx.x);
int n=N;
//printf("%d\n",n);
for(int q=0;q<2;q++)
{
if(N<2000)
{
arr[idx+q] = arr[idx+q] * arr[idx+q];
}
}
}
// main routine that executes on the host
int main(void)
{
clock_t start = clock(),diff;
float *a_h, *a_d; // Pointer to host & device arrays
const int N = 1000; // Number of elements in arrays
size_t size = N * sizeof(float);
a_h = (float *)malloc(size); // Allocate array on host
cudaMalloc((void **) &a_d, size); // Allocate array on device
// Initialize host array and copy it to CUDA device
for (int i=0; i<N; i++) a_h[i] = (float)i;
cudaMemcpy(a_d, a_h, size, cudaMemcpyHostToDevice);
// Do calculation on device:
int block_size = 4;
//int n_blocks = N/block_size + (N%block_size == 0 ? 0:1);
first <<< 4, 128 >>> (a_d, N);
//cudaThreadSynchronize();
// Retrieve result from device and store it in host array
cudaMemcpy(a_h, a_d, sizeof(float)*N, cudaMemcpyDeviceToHost);
// Print results
for (int i=0; i<N; i++) printf("%d %f\n", i, a_h[i]);
// Cleanup
free(a_h); cudaFree(a_d);
diff = clock() - start;
int msec = diff * 1000 / CLOCKS_PER_SEC;
printf("Time taken %d seconds %d milliseconds\n", msec/1000, msec%1000);
}
then realizing that the loop calculation can be minimized with dynamic parallelism .
unrolling with dynamic parallelism was implemented as
unrolling with dynamic parallelism
#include <stdio.h>
#include <cuda.h>
__global__ void square(float *a, int N,int idx);
// Kernel that executes on the CUDA device
__global__ void first(float *arr, int N)
{
int idx = 2*(blockIdx.x * blockDim.x + threadIdx.x);
int n=N;
square <<< 1,2 >>> (arr, n,idx);
}
__global__ void square(float *a, int N,int idx)
{
int tdx = blockIdx.x * blockDim.x + threadIdx.x;
printf("%d\n",N);
if(N<2000)
{
a[tdx+idx] = a[tdx+idx] * a[tdx+idx];
}
}
// main routine that executes on the host
int main(void)
{
clock_t start = clock(),diff;
float *a_h, *a_d; // Pointer to host & device arrays
const int N = 1000; // Number of elements in arrays
size_t size = N * sizeof(float);
a_h = (float *)malloc(size); // Allocate array on host
cudaMalloc((void **) &a_d, size); // Allocate array on device
// Initialize host array and copy it to CUDA device
for (int i=0; i<N; i++) a_h[i] = (float)i;
cudaMemcpy(a_d, a_h, size, cudaMemcpyHostToDevice);
// Do calculation on device:
int block_size = 4;
//int n_blocks = N/block_size + (N%block_size == 0 ? 0:1);
first <<< 4, 128 >>> (a_d, N);
//cudaThreadSynchronize();
// Retrieve result from device and store it in host array
cudaMemcpy(a_h, a_d, sizeof(float)*N, cudaMemcpyDeviceToHost);
// Print results
for (int i=0; i<N; i++) printf("%d %f\n", i, a_h[i]);
// Cleanup
free(a_h); cudaFree(a_d);
diff = clock() - start;
int msec = diff * 1000 / CLOCKS_PER_SEC;
printf("Time taken %d seconds %d milliseconds\n", msec/1000, msec%1000);
}
the implementation of dynamic parallelism with unrolling takes more time for executio than only unrolling. Aren,t we suppose to improve execution time with dynamic parallelism in such case?
Dynamic parallelism is mainly useful in cases where you have parallelism that is dynamic. That is: cases where you don't know how much parallelism you're going to need until you've done some calculation. Rather than transfer data back to the host which is then instantly fed into parameterising another launch, you launch from within the kernel. In this pattern, with memcpys between kernel launches avoided, you'll see speedup.
In your example above this is not the case. You could have just launched twice as many threads from the host. There's nothing dynamic required as there's no parallelism available there that you didn't know about at the time of the first kernel launch.
Furthermore, performance requirements for kernels launched using dynamic parallelism are similar to that of those launched from the host. You have to launch a reasonable amount of work or the launch latency will dominate your computation time.
I have an array of numbers as {1,2,3,4,5,6,7,8,9,10} and I want to separate even and odd numbers as:
even = {2,4,6,8}
and:
odd = {1,3,5,7}
I am aware of atomic operations in CUDA, and also aware that the output is not expected to suffer from race conditions. I don't want to use atomic operations. How can I achieve this without using atomic keywords?
CODE:
#include <stdio.h>
#include <cuda.h>
// Kernel that executes on the CUDA device
__global__ void square_array(float *total,float *even,float *odd, int N)
{
int idx = blockIdx.x * blockDim.x + threadIdx.x;
int a=total[idx];
if ((a%2)==0)
{
for (int i=0;i<=idx;i++)
{
int b = even[i];
if(b==0)
{
even[i] = total[idx];
break;
}
}
}
else
{
for (int i=0;i<idx;i++)
{
int c = odd[i];
odd[i] = total[idx];
break;
}
}
}
// main routine that executes on the host
int main(void)
{
float *total_h,*even_h, *odd_h,*total_d, *even_d,*odd_d; // Pointer to host & device arrays
const int N = 10; // Number of elements in arrays
size_t size = N * sizeof(float);
total_h = (float *)malloc(size); // Allocate array on host
even_h = (float *)malloc(size); // Allocate array on host
odd_h = (float *)malloc(size); // Allocate array on host
cudaMalloc((void **) &total_d, size);
cudaMalloc((void **) &even_d, size);
cudaMemset(even_d,0,size);
cudaMalloc((void **) &odd_d, size); // Allocate array on device
cudaMemset(odd_d,0,size);
// Initialize host array and copy it to CUDA device
for (int i=0; i<N; i++) total_h[i] = (float)i+1;
cudaMemcpy(total_d, total_h, size, cudaMemcpyHostToDevice);
// Do calculation on device:
square_array <<< 1,10 >>> (total_d,even_d,odd_d, N);
// Retrieve result from device and store it in host array
cudaMemcpy(even_h, even_d, sizeof(float)*N, cudaMemcpyDeviceToHost);
cudaMemcpy(odd_h, odd_d, sizeof(float)*N, cudaMemcpyDeviceToHost);
// Print results
printf("total Numbers\n");
for (int i=0; i<N; i++) printf("%f\n",total_h[i]);
printf("EVEN Numbers\n");
for (int i=0; i<N; i++) printf("%f\n",even_h[i]);
printf("ODD Numbers\n");
for (int i=0; i<N; i++) printf("%f\n",odd_h[i]);
// Cleanup
free(total_h);
free(even_h);
free(odd_h);
cudaFree(total_d);
cudaFree(even_d);
cudaFree(odd_d);
}
OUTPUT:
As suggested by Jared Hoberock, it would be much more easy to use the efficient partitioning algorithm available in CUDA Thrust instead of starting the development of a partitioning routine of your own. Below, please find a complete worked example.
#include <thrust\device_vector.h>
#include <thrust\partition.h>
#include <thrust\execution_policy.h>
struct is_even { __host__ __device__ bool operator()(const int &x) { return (x % 2) == 0; } };
void main() {
const int N = 10;
thrust::host_vector<int> h_data(N);
for (int i=0; i<N; i++) h_data[i] = i;
thrust::device_vector<int> d_data(h_data);
thrust::device_vector<int> d_evens(N/2);
thrust::device_vector<int> d_odds(N/2);
thrust::partition_copy(d_data.begin(), d_data.end(), d_evens.begin(), d_odds.begin(), is_even());
printf("Even numbers\n");
for (int i=0; i<N/2; i++) {
int val = d_evens[i];
printf("evens[%i] = %i\n",i,val);
}
printf("Odd numbers\n");
for (int i=0; i<N/2; i++) {
int val = d_odds[i];
printf("odds[%i] = %i\n",i,val);
}
}
when i tested the following example, i found that by increasing the blocksPerGrid and threadsPerBlock the Kernel delay increase
such that if
int threadsPerBlock = 1;
int blocksPerGrid = 1;
blocksPerGrid and threadsPerBlock equal 1 the delay of the kernel = .0072 ms
but when i make the following it the delay become higher = .049 ms
int threadsPerBlock = 1024;
int blocksPerGrid = (N+threadsPerBlock-1) / threadsPerBlock;
where
N = 50000; //the no. of array elements
on the following the complete VecAdd example. you can test it
// Includes
#include <stdio.h>
#include <cutil_inline.h>
#include <shrQATest.h>
// Variables
float* h_A;
float* h_B;
float* h_C;
float* d_A;
float* d_B;
float* d_C;
bool noprompt = false;
// Functions
void CleanupResources(void);
void RandomInit(float*, int);
void ParseArguments(int, char**);
// Device code
__global__ void VecAdd(const float* A, const float* B, float* C, int N)
{
int i = blockDim.x * blockIdx.x + threadIdx.x;
if (i < N)
C[i] = A[i] + B[i];
}
// Host code
int main(int argc, char** argv)
{
shrQAStart(argc, argv);
cudaEvent_t event1, event2;
cudaEventCreate(&event1);
cudaEventCreate(&event2);
printf("Vector Addition\n");
int N = 50000;
size_t size = N * sizeof(float);
ParseArguments(argc, argv);
// Allocate input vectors h_A and h_B in host memory
h_A = (float*)malloc(size);
if (h_A == 0) CleanupResources();
h_B = (float*)malloc(size);
if (h_B == 0) CleanupResources();
h_C = (float*)malloc(size);
if (h_C == 0) CleanupResources();
// Initialize input vectors
RandomInit(h_A, N);
RandomInit(h_B, N);
// Allocate vectors in device memory
cutilSafeCall( cudaMalloc((void**)&d_A, size) );
cutilSafeCall( cudaMalloc((void**)&d_B, size) );
cutilSafeCall( cudaMalloc((void**)&d_C, size) );
// Copy vectors from host memory to device memory
cutilSafeCall( cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice) );
cutilSafeCall( cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice) );
// Invoke kernel
int threadsPerBlock = 1024;
int blocksPerGrid = (N+threadsPerBlock-1) / threadsPerBlock;
cudaEventRecord(event1, 0);
VecAdd<<<blocksPerGrid, threadsPerBlock>>>(d_A, d_B, d_C, N);
cudaEventRecord(event2, 0);
cudaEventSynchronize(event1); //optional
cudaEventSynchronize(event2);
float dt_ms;
cudaEventElapsedTime(&dt_ms, event1, event2);
printf("delay_time = %f\n", dt_ms);
cutilCheckMsg("kernel launch failure");
#ifdef _DEBUG
cutilSafeCall( cutilDeviceSynchronize() );
#endif
// Copy result from device memory to host memory
// h_C contains the result in host memory
cutilSafeCall( cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost) );
// Verify result
int i;
for (i = 0; i < N; ++i) {
float sum = h_A[i] + h_B[i];
if (fabs(h_C[i] - sum) > 1e-5)
break;
}
CleanupResources();
shrQAFinishExit(argc, (const char **)argv, (i==N) ? QA_PASSED : QA_FAILED);
}
void CleanupResources(void)
{
// Free device memory
if (d_A)
cudaFree(d_A);
if (d_B)
cudaFree(d_B);
if (d_C)
cudaFree(d_C);
// Free host memory
if (h_A)
free(h_A);
if (h_B)
free(h_B);
if (h_C)
free(h_C);
cutilDeviceReset();
}
// Allocates an array with random float entries.
void RandomInit(float* data, int n)
{
for (int i = 0; i < n; ++i)
data[i] = rand() / (float)RAND_MAX;
}
// Parse program arguments
void ParseArguments(int argc, char** argv)
{
for (int i = 0; i < argc; ++i) {
if (strcmp(argv[i], "--noprompt") == 0 ||
strcmp(argv[i], "-noprompt") == 0)
{
noprompt = true;
break;
}
}
}
can any one explain for me what does it mean?
In case 1, a kernel of size 1 thread is launched and performs 2 reads and 1 write operation. In case 2, a kernel of size 50176 threads are launched and perform 100,000 reads and 50,000 writes operations. Increasing the workload by 50,000 increased execution time by ~7x. The work done by the two launches is significantly different.