Best practices for creating a huge SQL table - mysql

I want to create a table about "users" for each of the 50 states. Each state has about 2GB worth of data. Which option sounds better?
Create one table called "users" that will be 100GB large OR
Create 50 separate tables called "users_{state}", each which will be 2GB large
I'm looking at two things: performance, and style (best practices)
I'm also running RDS on AWS, and I have enough storage space. Any thoughts?
EDIT: From the looks of it, I will not need info from multiples states at the same time (i.e. won't need to frequently join tables if I go with Option 2). Here is a common use case: The front-end passes a state id to the back-end, and based on that id, I need to query data from the db regarding the specified state, and return data back to front-end.

Are the 50 states truly independent in your business logic? Meaning your queries would only need to run over one given state most of the time? If so, splitting by state is probably a good choice. In this case you would only need joining in relatively rarer queries like reporting queries and such.
EDIT: Based on your recent edit, this first option is the route I would recommend. You will get better performance from the table partitioning when no joining is required, and there are multiple other benefits to having the smaller partitioned tables like this.
If your queries would commonly require joining across a majority of the states, then you should definitely not partition like this. You'd be better off with one large table and just build the appropriate indices needed for performance. Most modern enterprise DB solutions are capable of handling the marginal performance impact going from 2GB to 100GB just fine (with proper indexing).
But if your queries on average would need to join results from only a handful of states (say no more than 5-10 or so), the optimal solution is a more complex gray area. You will likely be able to extract better performance from the partitioned tables with joining, but it may make the code and/or queries (and all coming maintenance) noticeably more complex.
Note that my answer assumes the more common access frequency breakdowns: high reads, moderate updates, low creates/deletes. Also, if performance on big data is your primary concern, you may want to check out NoSQL (for example, Amazon AWS DynamoDB), but this would be an invasive and fundamental departure from the relational system. But the NoSQL performance benefits can be absolutely dramatic.

Without knowing more of your model, it will be difficult for anyone to make judgement calls about performance, etc. However, from a data modelling point of view, when thinking about a normalized model I would expect to see a User table with a column (or columns, in the case of a compound key) which hold the foreign key to a State table. If a User could be associated with more than one state, I would expect another table (UserState) to be created instead, and this would hold the foreign keys to both User and State, with any other information about that relationship (for instance, start and end dates for time slicing, showing the timespan during which the User and the State were associated).
Rather than splitting the data into separate tables, if you find that you have performance issues you could use partitioning to split the User data by state while leaving it within a single table. I don't use MySQL, but a quick Google turned up plenty of reference information on how to implement partitioning within MySQL.
Until you try building and running this, I don't think you know whether you have a performance problem or not. If you do, following the above design you can apply partitioning after the fact and not need to change your front-end queries. Also, this solution won't be problematic if it turns out you do need information for multiple states at the same time, and won't cause you anywhere near as much grief if you need to look at User by some aspect other than State.

Related

MySQL Database Structure

I will have a table with a few million entries and I have been wondering if it was smarter to create more than just this one table, even though they would all have the same structure? Would it save resources and would it be more efficient in the end?
This is my particular concern, because I plan creating a small search engine which indexes about 3.000.000 sites and each sites will have approximately 30 words that are being indexed. This is my structure right now
site
--id
--url
word
--id
--word
appearances
--site_id
--word_id
--score
Should I keep this structure? Or should I create tables for A words, B words, C words etc? Same with the appearances table
Select queries are faster on smaller tables. You want to fit the indexes you have to sort on into your systems memory for better performance.
More importantly, tables should not be defined in order to hold a certain type of data, but instead a collection of associated data. So if the data you are storing has logical differences they maybe should be broken into separate tables.
(Incomplete)
Pros:
Faster data access
Easier to copy or back up
Cons:
Cannot easily compare data from different tables.
Union and join queries are needed to compare across tables
If you aren't concerned with some latency on your database it should be able to handle this on the other of a few million records without too much trouble.
Here's some questions to ask yourself:
Are the records all inter-related? Is there any way of cleanly dividing them into different, non-overlapping groups? Are these groups well defined, or subject to change?
Is maintaining optimal write speed more of a concern than simplicity of access to data?
Is there any way of partitioning the records into different categories?
Is replication a concern? Redundancy?
Are you concerned about transaction safety?
Is it possible to re-structure the data later if you get the initial schema wrong?
There are a lot of ways of tackling this problem, but until you know the parameters you're working with, it's very hard to say.
Usually step one is to collect either a large corpus of genuine data, or at least simulate enough data that's reasonably similar to the genuine data to be structurally the same. Then you use your test data to try out different methods of storing and retrieving it.
Without any test data you're just stabbing in the dark

is better to create tables based on content or views?

i'm learning mysql and was working on a database for work. Everything's fine so far but I had a question. I am organizing financial statements for firms(balance sheet table, income statement table, cashflow table,etc.) and most companies have quarterly statements(they are unaudited) and annual statements(which are audited). Right now for each statement I have a column that flags it for annual or quarterly.
Its not likely that someone will be running a report on an audited and unaudited statement at the same time, so I was thinking if it was worth it to create a table for audited and one for unaudited. The reason I was thinking this was eventually the data will get fairly large and I thought the smaller the tables the faster performance.
So when I design a database should I be designing based on the content(i.e. group everything thats the same regardless) or should I be grouping based on how people will access it?
Another question this raises is should I be grouping financial statements by countries..since all analysis down at our firm in 90% within the same country
This is impossible to answer definitively without knowing the whole problem.
However, usually you want a single table to represent each logical entity in your system. From the sound of it, quarterly and annual statements represent the same logical entity, but differ by a single category column/field. The same holds true for the country question--if the only difference is the country (a categorization), then they likely should all be stored in the same table.
If you were to split your data into separate tables by category, your data would be scattered across multiple tables, and would be very hard to query. For example, if you wanted a count of all statements in the system, you would have to query ALL country tables and add the results together.
Edit: Joe Celko calls this anti-pattern "Attribute Splitting".
First of all I have to point out, I'm not a professional DB designer.
But if I ware you, in this case I would create one table as the entities are the same basically.
If you fear of mysql's performace on lager datasets, maybe it would be better to start building your app on Postgres. You can boost mysql's performace with stored functions/procedures or maybe views if you have to run complicated queries and of course you can use memcache or any nosql stuff to let the SQL rest a bit.
If you are sure in that users will search mainly only for this or that type of records, you can build three tables. One for all of the records, one-one for the audited and unaudited ones. You can keep them syncronized with the InnoDB's triggers (ON UPDATE/DELETE/INSERT). They could work like views, but I think (not tested) they would be faster then views. In this case you have to manage only the first "large" table. If you insert an audited record, the trigger fires and puts a record in to the audited table an so on...
Best wishes!
I agree with Phil and Damien - one table is better. What you want is one table per type of real business thing. If you design your tables to resemble real things, even abstract or conceptual things, then your data design is more likely to stand the test of time. Once you've sketched out a schema based on the real things you have data about, then you can go back and apply the rules of normalization to formalize your design.
As a rule, it is a bad idea to design for a performance problem you are worried about, but haven't actually seen. Your intuition about big tables being slower might actually be wrong. Most DBMS systems like bigger tables, at least to a point. When tables are big the query optimizers choose to use indexes. When tables are small they often end up getting full table scans, which can really slow down concurrent access. If your tables get so big that they are beyond the capabilities of your DBMS then it is time to consider either archiving out old data that you aren't using anymore or buying a more scalable DBMS.

handling large dataset using MySQL

I am trying to apply for a job, which asks for the experiences on handling large scale data sets using relational database, like mySQL.
I would like to know which specific skill sets are required for handling large scale data using MySQL.
Handling large scale data with MySQL isn't just a specific set of skills, as there are a bazillion ways to deal with a large data set. Some basic things to understand are:
Column Indexes, how, why, and when they're used, and the pros and cons of using them.
Good database structure to balance between fast writes and easy reads.
Caching, leveraging several layers of caching and different caching technologies (memcached, redis, etc)
Examining MySQL queries to identify bottlenecks and understanding the MySQL internals to see how queries get planned an executed by the database server in order to increase query performance
Configuring the MySQL server to be able to handle a lot of concurrent connections, and access it's data fast. Hardware bottlenecks, and the advantages to using different technologies to speed up your hardware (for example, storing your MySQL data on a RAID5 Array to increase IO performance))
Leveraging built-in MySQL technology (like Replication) to off-load read traffic
These are just a few things that get thought about in regards to big data in MySQL. There's a TON more, which is why the company is looking for experience in the area. Knowing what to do, or having experience with things that have worked or failed for you is an absolutely invaluable asset to bring to a company that deals with high traffic, high availability, and high volume services.
edit
I would be remis if I didn't mention a source for more information. Check out High Performance MySQL. This is an incredible book, and has a plethora of information on how to make MySQL perform in all scenarios. Definitely worth the money, and the time spent reading it.
edit -- good structure for balanced writes and reads
With this point, I was referring to the topic of normalization / de-normalization. If you're familiar with DB design, you know that normalization is the separation of data as to reduce (eliminate) the amount of duplicate data you have about any single record. This is generally a fantastic idea, as it makes tables smaller, faster to query, easier to index (individually) and reduces the number of writes you have to do in order to create/update a new record.
There are different levels of normalization (as #Adam Robinson pointed out in the comments below) which are referred to as normal forms. Almost every web application I've worked with hasn't had much benefit beyond the 3NF (3rd Normal Form). Which the definition of, if you were to read that wikipedia link above, will probably make your head hurt. So in lamens (at the risk of dumbing it down too far...) a 3NF structure satisfies the following rules:
No duplicate columns within the same table.
Create different tables for each set related data. (Example: a Companies table which has a list of companies, and an Employees table which has a list of each companies' employees)
No sub-sets of columns which apply to multiple rows in a table. (Example: zip_code, state, and city is a sub-set of data which can be identified uniquely by zip_code. These 3 columns could be put in their own table, and referenced by the Employees table (in the previous example) by the zip_code). This eliminates large sets of duplication within your tables, so any change that is required to the city/state for any zip code is a single write operation instead of 1 write for every employee who lives in that zip code.
Each sub-set of data is moved to it's own table and is identified by it's own primary key (this is touched/explained in the example for #3).
Remove columns which are not fully dependent on the primary key. (An example here might be if your Employees table has start_date, end_date, and years_employed columns. The start_date and end_date are both unique and dependent on any single employee row, but the years_employed can be derived by subtracting start_date from end_date. This is important because as end-date increases, so does years_employed so if you were to update end_date you'd also have to update years_employed (2 writes instead of 1)
A fully normalized (3NF) database table structure is great, if you've got a very heavy write-load. If your server is doing a lot of writes, it's very easy to write small bits of data, especially when you're running fewer of them. The drawback is, all your reads become much more expensive, because you have to (typically) run a lot of JOIN queries when you're pulling data out. JOINs are typically expensive and harder to create proper indexes for when you're utilizing WHERE clauses that span the relationship and when sorting the result-sets If you have to perform a lot of reads (SELECTs) on your data-set, using a 3NF structure can cause you some performance problems. This is because as your tables grow you're asking MySQL to cram more and more table data (and indexes) into memory. Ideally this is what you want, but with big data-sets you're just not going to have enough memory to fit all of this at once. This is when MySQL starts to create temporary tables, and has to use the disk to load data and manipulate it. Once MySQL becomes reliant on the hard disk to serve up query results you're going to see a significant performance drop. This is less-so the case with solid state disks, but they are super expensive, and (imo) are not mature enough to use on mission critical data sets yet (i mean, unless you're prepared for them to fail and have a very fast backup recovery system in place...then use them and gonuts!).
This is the balancing part. You have to decide what kind of traffic the data you're reading/writing is going to be serving more of, and design that to be fast. In some instances, people don't mind writes being slow because they happen less frequently. In other cases, writes have to be very fast, and the reads don't have to be fast because the data isn't accessed that often (or at all, or even in real time).
Workloads that require a lot of reads benefit the most from a middle-tier caching layer. The idea is that your writes are still fast (because you're 'normal') and your reads can be slow because you're going to cache it (in memcached or something competitive to it), so you don't hit the database very frequently. The drawback here is, if your cache gets invalidated quickly, then the cache is not reducing the read load by a meaningful amount and that results in no added performance (and possibly even more overhead to check/invalidate the caches).
With workloads that have the requirement for high throughput in writes, with data that is read frequently, and can't be cached (constantly changes), you have to come up with another strategy. This could mean that you start to de-normalize your tables, by removing some of the normalization requirements you choose to satisfy, or something else. Instead of making smaller tables with less repetitive data, you make larger tables with more repetitive / redundant data. The advantage here is that your data is all in the same table, so you don't have to perform as many (or, any) JOINs to pull the data out. The drawback...writes are more expensive because you have to write in multiple places.
So with any given situation the developer(s) have to identify what kind of use the data structure is going to have to serve, and balance between any number of technologies and paradigms to achieve an acceptable solution that meets their needs. No two systems or solutions are the same which is why the employer is looking for someone with experience on how to deal with these large datasets. Finding these solutions is not something that can really be learned out of a book, it typically takes some experience in the field and experience with how different solutions performed.
I hope that helps. I know I rambled a bit, but it's really a lot of information. This is why DBAs make the big dollars (:
You need to know how to process the data in "chunks". That means instead of simply trying to manipulate the entire data set, you need to break it into smaller more manageable pieces. For example, if you had a table with 1 Billion records, a single update statement against the entire table would likely take a long time to complete, and may possibly bring the server to it's knees.
You could, however, issue a series of update statements within a loop that would update 20,000 records at a time. Each iteration of the loop you would increment your range/counters/whatever to identify the next set of records.
Also, you commit your changes at the end of each loop, thereby allowing you to stop the process and continue where you left off.
This is just one aspect of managing large data sets. You still need to know:
how to perform backups
proper indexing
database maintenance
You can raed/learn how to handle large dataset with MySQL But it is not equivalent to having actual experiences.
Straight and simple answer: Study about partitioned database and find appropriate MySQL data structure types for large scale datasets similar with the partitioned database architecture.

Private messaging system, large single table versus many small tables

I'm considering a design for a private messaging system and I need some input here, basically I have several questions regarding this. I've read most of the related questions and they've given me some thought already.
All of the basic messaging systems I've thus far looked into use a single table for all of the users' messages. With indexes etc this approach would seem fine.
What I wanted to know is if there would be any benefit to splitting the user messages into separate tables. So when a new user is created a new table is created (either in the same or a dedicated message database) which stores all of the messages - sent and received -for that user.
What are the pitfalls/benefits to approaching things that way?
I'm writing in PHP would the code required to write be particularly more cumbersome than the first large table option?
Would the eventual result, with a large amount of smaller tables be a more robust, trouble free design than one large table?
In the event of large amounts of concurrent users, how would the performance of the server compare where dealing with one large versus many small tables?
Any help with those questions or other input would be appreciated. I'm currently working through a smaller scale design for my test site before rewriting the PM module and would like to optimise it. My poor human brain handles separate table far more easily, but the same isn't necessarily so for a computer.
You'll just get headaches from moving to small numerous tables. Databases are made for handling lots of data, let it do it's thing.
You'll likely end up using dynamic table names in queries (SELECT * FROM $username WHERE ...), making smart features like stored procedures and possibly parameterized queries a lot trickier if not outright impossible. Usually a really bad idea.
Try rewriting SELECT * FROM messages WHERE authorID = 1 ORDER BY date_posted DESC, but where "messages" is anywhere between 1 and 30,000 different tables. Keeping your table relations monogamous will keep them bidirectional, way more useful.
If you think table size will really be a problem, set up an "archived messages" clone table and periodically move old & not-unread messages there where they won't get in the way. Also note how most forum software with private messaging allows for limiting user inbox sizes. There are a few ways to solve the problem while keeping things sane.
I'm agreeing with #MarkR here - in that initially the one table for messages is definitely the way to proceed. As time progresses and should you end up with a very large table then you can consider how to partition the table to best proceed. That's counter to the way I'd normally advise design, but we're talking about one table which is fairly simple - not a huge enterprise system.
A very long time ago (pre availability of SQL databases) I built a system that stored private and public messages, and I can confirm that once you split a message base logical entity into more than one everything¹ becomes a lot more complicated; and I doubt that a user per file is the right approach - the overheads will be massive compared to the benefit.
Avoid auto-increment[2] - and using natural keys is very important to the future scalability. Designing well to ensure that you can insert and retrieve without locking will be of more benefit.
¹ Indexing, threading, searching, purging/archiving.
² Natural keys are better if you can find one for your data as the autoincremented ID does not describe the data at all and databases are good at locating based on the primary key, so a natural primary key can improve things. Autoincrement can cause problems with a distributed database; it also leaks data when presented externally (to see the number of users registered just create a new account and check your user ID). If you can't find a natural key then a UUID (or GUID) may still be a better option - providing that the database has good support for this as a primary key. See When to use an auto-incremented primary key and when not to
Creating one table per user certainly won't scale well when there are a large number of users with a small number of messages. The way MySQL handles table opening/closing, very large numbers of tables (> 10k, say) become quite inefficient, especially at server startup and shutdown, as well as trying to backup non-transactional tables.
However, the way you've worded your question sounds like a case of premature optimisation. Make it work first, then fix performance problems. This is always the right way to do things.
Partitioning / sharding will become necessary once your scale gets high enough. But there are a lot of other things to worry about in the mean time. Sort them out first :)
One table is the right way to go from an RDBMS PoV. I recommend you use it until you know better.
Splitting large amounts of data into smaller sets makes sense if you're trying to avoid locking issues: for example - locking the messages table - doing big selects or updating huge amounts of data at once. In this case long running queries could block whole table and everyone needs to wait... You should ask yourself if this going to happen in your case? At least for me it looks like messaging system is not going to have such things because all information is being pushed into table or retrieved from it in rather small sets. If this is a user centric application - so, for example, getting all messages for single user is quite easy and fast to do, the same goes also for creating new messages for one or another particular user... Unless you would have really huge amounts of users/messages in your system.
Splitting data into multiple tables has also some drawbacks - you will need kind of management system or logic how do you split everything - giving separate table for each user could grow up soon into hundreds or thousands of tables - which is, in my opinion, not that nice. Therefore probably you would need some other criteria how to split the data. If you want splitting logic to be dynamic and easy adjustable - you would probably need also to save it in DB somehow. As you see complexity grows...
As advantage of such data sharding could be the scalability - you could easy put different sets of data on different machines once single machine is not able to handle whole load.
It depends how your message system works.
Are there cuncurrency issue?
Does it need to be scalable as the application accomodate more customers?
Designing one table will perfectly work on small, one message at a time single user system.
However, if you are considering multiple user, concurrent messaging system, the tables should be splited
Data model for Real time application is recommended to be "normalized"(Spliting table) due to "locking & latching" and data redundency issue.
Locking policy varies by Database Vendor. If you have tables that have updates & select by applicaiton concurrently, "Locking"(page level, row level, table level depending on vendor) issue araise. Some bad DB & app design completely lock the table so message never go through.
Redendency issue is more clear. If you use only one table, some information(like user. I guess one user could send multiple messages) is redundent.
Try to google with "normalization", 'Locking"..

mysql tables structure - one very large table or separate tables?

I'm working on a project which is similar in nature to website visitor analysis.
It will be used by 100s of websites with average of 10,000s to 100,000s page views a day each so the data amount will be very large.
Should I use a single table with websiteid or a separate table for each website?
Making changes to a live service with 100s of websites with separate tables for each seems like a big problem. On the other hand performance and scalability are probably going to be a problem with such large data. Any suggestions, comments or advice is most welcome.
How about one table partitioned by website FK?
I would say use the design that most makes sense given your data - in this case one large table.
The records will all be the same type, with same columns, so from a database normalization standpoint they make sense to have them in the same table. An index makes selecting particular rows easy, especially when whole queries can be satisfied by data in a single index (which can often be the case).
Note that visitor analysis will necessarily involve a lot of operations where there is no easy way to optimise other than to operate on a large number of rows at once - for instance: counts, sums, and averages. It is typical for resource intensive statistics like this to be pre-calculated and stored, rather than fetched live. It's something you would want to think about.
If the data is uniform, go with one table. If you ever need to SELECT across all websites
having multiple tables is a pain. However if you write enough scripting you can do it with multiple tables.
You could use MySQL's MERGE storage engine to do SELECTs across the tables (but don't expect good performance, and watch out for the Windows hard limit on the number of open files - in Linux you may haveto use ulimit to raise the limit. There's no way to do it in Windows).
I have broken a huge table into many (hundreds) of tables and used MERGE to SELECT. I did this so the I could perform off-line creation and optimization of each of the small tables. (Eg OPTIMIZE or ALTER TABLE...ORDER BY). However the performance of SELECT with MERGE caused me to write my own custom storage engine. (Described http://blog.coldlogic.com/categories/coldstore/'>here)
Use the single data structure. Once you start encountering performance problems there are many solutions like you can partition your tables by website id also known as horizontal partitioning or you can also use replication. This all depends upon the the ratio of reads vs writes.
But for start keep things simple and use one table with proper indexing. You can also determine if you need transactions or not. You can also take advantage of various different mysql storage engines like MyIsam or NDB (in memory clustering) to boost up the performance. Also caching plays a very good role in offloading the load from the database. The data that is mostly read only and can be computed easily is usually put in the cache and the cache serves the request instead of going to the database and only the necessary queries go to the database.
Use one table unless you have performance problems with MySQL.
Nobody here cannot answer performance questions, you should just do performance tests yourself to understand, whether having one big table is sufficient.