I was having fun with image processing and hough transforms on Octave but the results are not the expected ones.
Here is my edges image:
and here is my hough accumulator (x-axis is angle in deg, y-axis is radius):
I feel like I am missing the horizontal streaks but there is no local maximum in the accumulator for the 0/180 angle values.
Also, for the vertical streaks, the value of the radius should be equal to the x value of the edge's image, but instead the values of r are very high:
exp: the first vertical line on the left of the image has an equation of x=20(approx) -> r.r = x.x + y.y -> r=x -> r=20
The overall resulting lines detected do not match the edges at all:
Acculmulator with detected maxima:
Resulting lines:
As you can see the maximas of the accumulator are satisfyingly detected but the resulting lines' radius values are too high and theta values are missing.
It almost looks like the hough transform accumulator does not correspond to the image...
Can someone help me figure out why and how to correct it?
Here is my code:
function [r, theta] = findScratches (img, edge)
hough = houghtf(edge,"line", pi*[0:360]/180);
threshHough = hough>.5*max(hough(:));
[r, theta] = find(threshHough>0);
%deg to rad for the trig functions
theta = theta/180*pi;
%according to octave doc r range is 2*diagonal
%-> bring it down to 1*diagonal or all lines are out of the picture
r = r/2;
%coefficients of the line y=ax+b
a = -cos(theta)./sin(theta);
b = r./sin(theta);
x = 1:size(img,2);
y = a * x + b;
figure(1)
imagesc(edge);
colormap gray;
hold on;
for i=1:size(y,1)
axis ij;
plot(y(i,:),x,'r','linewidth',1);
end
hold off;
endfunction
Thank you in advance.
You're definitely on the right track. Blurring the accumulator image would help before looking for the hotspots. Also, why not do a quick erode and dilate before doing the hough transform?
I had the same issue - detected lines had the correct slope but were shifted. The problem is that the r returned by the find(threshHough>0) function call is in the interval of [0,2*diag] while the Hough transform operates with values of r from the interval of [-diag,diag]. Therefore if you change the line
r=r/2
to
r=r-size(hough,1)/2
you will get the correct offset.
Lets define a vector of angles (in radians):
angles=pi*[0:360]/180
You should not take this operation: theta = theta/180*pi.
Replace it by: theta = angles(theta), where theta are indices
Some one commented above suggesting adjusting r to -diag to +diag range by
r=r-size(hough,1)/2
This worked well for me. However another difference was that I used the default angle to compute Hough Transform with angles -90 to +90. The theta range in the vector is +1 to +181. So It needs to be adjusted by -91, then convert to radian.
theta = (theta-91)*pi/180;
With above 2 changes, rest of the code works ok.
Related
Let's say your Starling display-list is as follows:
Stage
|___MainApp
|______Canvas (filter's target)
Then, you decide your MainApp should be rotated 90 degrees and offset a bit:
mainApp.rotation = Math.PI * 0.5;
mainApp.x = stage.stageWidth;
But all of a sudden, the filter keeps on applying itself to the target (canvas) in the angle it was originally (as if the MainApp was still at 0 degrees).
(notice in the GIF how the Blur's strong horizontal value continues to only apply horizontally although the parent object turned 90 degrees).
What would need to be changed to apply the filter to the target object before it gets it's parents transform? That way (I'm assuming) the filter's result would get transformed by the parent objects.
Any guess as to how this could be done?
https://github.com/bigp/StarlingShaderIssue
(PS: the filter I'm actually using is custom-made, but this BlurFilter example shows the same issue I'm having with the custom one. If there's any patching-up to do in the shader code, at least it wouldn't necessarily have to be done on the built-in BlurFilter specifically).
I solved this myself with numerous trial and error attempts over the course of several hours.
Since I only needed the shader to run in either at 0 or 90 degrees (not actually tweened like the gif demo shown in the question), I created a shader with two specialized sets of AGAL instructions.
Without going in too much details, the rotated version basically requires a few extra instructions to flip the x and y fields in the vertex and fragment shader (either by moving them with mov or directly calculating the mul or div result into the x or y field).
For example, compare the 0 deg vertex shader...
_vertexShader = [
"m44 op, va0, vc0", // 4x4 matrix transform to output space
"mov posOriginal, va1", // pass texture positions to fragment program
"mul posScaled, va1, viewportScale", // pass displacement positions (scaled)
].join("\n");
... with the 90 deg vertex shader:
_vertexShader = [
"m44 op, va0, vc0", // 4x4 matrix transform to output space
"mov posOriginal, va1", // pass texture positions to fragment program
//Calculate the rotated vertex "displacement" UVs
"mov temp1, va1",
"mov temp2, va1",
"mul temp2.y, temp1.x, viewportScale.y", //Flip X to Y, and scale with viewport Y
"mul temp2.x, temp1.y, viewportScale.x", //Flip Y to X, and scale with viewport X
"sub temp2.y, 1.0, temp2.y", //Invert the UV for the Y axis.
"mov posScaled, temp2",
].join("\n");
You can ignore the special aliases in the AGAL example, they're essentially posOriginal = v0, posScaled = v1 variants and viewportScale = vc4constants, then I do a string-replace to change them back to their respective registers & fields ).
Just a human-readable trick I use to avoid going insane. \☻/
The part that I struggled with the most was calculating the correct scale to adjust the UV's scale (with proper detection to Stage / Viewport resize and render-texture size shifts).
Eventually, this is what I came up with in the AS3 code:
var pt:Texture = _passTexture,
dt:RenderTexture = _displacement.texture,
notReady:Boolean = pt == null,
star:Starling = Starling.current;
var finalScaleX:Number, viewRatioX:Number = star.viewPort.width / star.stage.stageWidth;
var finalScaleY:Number, viewRatioY:Number = star.viewPort.height / star.stage.stageHeight;
if (notReady) {
finalScaleX = finalScaleY = 1.0;
} else if (isRotated) {
//NOTE: Notice how the native width is divided with height, instead of same side. Weird, but it works!
finalScaleY = pt.nativeWidth / dt.nativeHeight / _imageRatio / paramScaleX / viewRatioX; //Eureka!
finalScaleX = pt.nativeHeight / dt.nativeWidth / _imageRatio / paramScaleY / viewRatioY; //Eureka x2!
} else {
finalScaleX = pt.nativeWidth / dt.nativeWidth / _imageRatio / viewRatioX / paramScaleX;
finalScaleY = pt.nativeHeight / dt.nativeHeight / _imageRatio / viewRatioY / paramScaleY;
}
Hopefully these extracted pieces of code can be helpful to others with similar shader issues.
Good luck!
I hope someone can help me here, I have been asked to write some code for an Lua script for a game. Firstly i am not an Lua Scripter and I am defiantly no mathematician.
What i need to do is generate random points within a parallelogram, so over time the entire parallelogram becomes filled. I have played with the scripting and had some success with the parallelogram (rectangle) positioned on a straight up and down or at 90 degrees. My problem comes when the parallelogram is rotated.
As you can see in the image, things are made even worse by the coordinates originating at the centre of the map area, and the parallelogram can be positioned anywhere within the map area. The parallelogram itself is defined by 3 pairs of coordinates, start_X and Start_Y, Height_X and Height_Y and finally Width_X and Width_Y. The random points generated need to be within the bounds of these coordinates regardless of position or orientation.
Map coordinates and example parallelogram
An example of coordinates are...
Start_X = 122.226
Start_Y = -523.541
Height_X = 144.113
Height_Y = -536.169
Width_X = 128.089
Width_Y = -513.825
In my script testing i have eliminated the decimals down to .5 as any smaller seems to have no effect on the final outcome. Also in real terms the start width and height could be in any orientation when in final use.
Is there anyone out there with the patients to explain what i need to do to get this working, my maths is pretty basic, so please be gentle.
Thanks for reading and in anticipation of a reply.
Ian
In Pseudocode
a= random number with 0<=a<=1
b= random number with 0<=b<=1
x= Start_X + a*(Width_X-Start_X) + b*(Height_X-Start_X)
y= Start_Y + a*(Width_Y-Start_Y) + b*(Height_Y-Start_Y)
this should make a random point at coordinates x,y within the parallelogram
The idea is that each point inside the parallelogram can be specified by saying how far you go from Start in the direction of the first edge (a) and how far you go in the direction of the second edge (b).
For example, if you have a=0, and b=0, then you do not move at all and are still at Start.
If you have a=1, and b=0, then you move to Width.
If you have a=1, and b=1, then you move to the opposite corner.
You can use something like "texture coordinates", which are in the range [0,1], to generate X,Y for a point inside your parallelogram. Then, you could generate random numbers (u,v) from range [0,1] and get a random point you want.
To explain this better, here is a picture:
The base is formed by vectors v1 and v2. The four points A,B,C,D represent the corners of the parallelogram. You can see the "texture coordinates" (which I will call u,v) of the points in parentheses, for example A is (0,0), D is (1,1). Every point inside the parallelogram will have coordinates within (0,0) and (1,1), for example the center of the parallelogram has coordinates (0.5,0.5).
To get the vectors v1,v2, you need to do vector subtraction: v1 = B - A, v2 = C - A. When you generate random coordinates u,v for a random point r, you can get back the X,Y using this vector formula: r = A + u*v1 + v*v2.
In Lua, you can do this as follows:
-- let's say that you have A,B,C,D defined as the four corners as {x=...,y=...}
-- (actually, you do not need D, as it is D=v1+v2)
-- returns the vector a+b
function add(a,b)
return {x = a.x + b.x, y = a.y + b.y} end
end
-- returns the vector a-b
function sub(a,b)
return {x = a.x - b.x, y = a.y - b.y} end
end
-- returns the vector v1*u + v2*v
function combine(v1,u,v2,v)
return {x = v1.x*u + v2.x*v, y = v1.y*u + v2.y*v}
end
-- returns a random point in parallelogram defined by 2 vectors and start
function randomPoint(s,v1,v2)
local u,v = math.random(), math.random() -- these are in range [0,1]
return add(s, combine(v1,u,v2,v))
end
v1 = sub(B,A) -- your basis vectors v1, v2
v2 = sub(C,A)
r = randomPoint(A,v1,v2) -- this will be in your parallelogram defined by A,B,C
Note that this will not work with your current layout - start, width, height. How do you want to handle rotation with these parameters?
I'm working on a game in HTML5 canvas.
I want is draw an S-shaped cubic bezier curve between two points, but I'm looking for a way to calculate the coordinates of the control points so that the curve itself is always the same length no matter how close those points are, until it reaches the point where the curve becomes a straight line.
This is solvable numerically. I assume you have a cubic bezier with 4 control points.
at each step you have the first (P0) and last (P3) points, and you want to calculate P1 and P2 such that the total length is constant.
Adding this constraint removes one degree of freedom so we have 1 left (started with 4, determined the end points (-2) and the constant length is another -1). So you need to decide about that.
The bezier curve is a polynomial defined between 0 and 1, you need to integrate on the square root of the sum of elements (2d?). for a cubic bezier, this means a sqrt of a 6 degree polynomial, which wolfram doesn't know how to solve. But if you have all your other control points known (or known up to a dependency on some other constraint) you can have a save table of precalculated values for that constraint.
Is it really necessary that the curve is a bezier curve? Fitting two circular arcs whose total length is constant is much easier. And you will always get an S-shape.
Fitting of two circular arcs:
Let D be the euclidean distance between the endpoints. Let C be the constant length that we want. I got the following expression for b (drawn in the image):
b = sqrt(D*sin(C/4)/4 - (D^2)/16)
I haven't checked if it is correct so if someone gets something different, leave a comment.
EDIT: You should consider the negative solution too that I obtain when solving the equation and check which one is correct.
b = -sqrt(D*sin(C/4)/4 - (D^2)/16)
Here's a working example in SVG that's close to correct:
http://phrogz.net/svg/constant-length-bezier.xhtml
I experimentally determined that when the endpoints are on top of one another the handles should be
desiredLength × cos(30°)
away from the handles; and (of course) when the end points are at their greatest distance the handles should be on top of one another. Plotting all ideal points looks sort of like an ellipse:
The blue line is the actual ideal equation, while the red line above is an ellipse approximating the ideal. Using the equation for the ellipse (as my example above does) allows the line to get about 9% too long in the middle.
Here's the relevant JavaScript code:
// M is the MoveTo command in SVG (the first point on the path)
// C is the CurveTo command in SVG:
// C.x is the end point of the path
// C.x1 is the first control point
// C.x2 is the second control point
function makeFixedLengthSCurve(path,length){
var dx = C.x - M.x, dy = C.y - M.y;
var len = Math.sqrt(dx*dx+dy*dy);
var angle = Math.atan2(dy,dx);
if (len >= length){
C.x = M.x + 100 * Math.cos(angle);
C.y = M.y + 100 * Math.sin(angle);
C.x1 = M.x; C.y1 = M.y;
C.x2 = C.x; C.y2 = C.y;
}else{
// Ellipse of major axis length and minor axis length*cos(30°)
var a = length, b = length*Math.cos(30*Math.PI/180);
var handleDistance = Math.sqrt( b*b * ( 1 - len*len / (a*a) ) );
C.x1 = M.x + handleDistance * Math.sin(angle);
C.y1 = M.y - handleDistance * Math.cos(angle);
C.x2 = C.x - handleDistance * Math.sin(angle);
C.y2 = C.y + handleDistance * Math.cos(angle);
}
}
I'm implementing the system in this paper and I've come a little unstuck correctly implementing the radial tensor field.
All tensors in this system are of the form given on page 3, section 4
R [ cos(2t), sin(2t); sin(2t), -cos(2t) ]
The radial tensor field is defined as:
R [ yy - xx, -2xy; -2xy, -(yy-xx) ]
In my system I'm only storing R and Theta, since I can calculate the tensor based off just that information. This means I need to calculate R and Theta for the radial tensor. Unfortunately, my attempts at this have failed. Although it looks correct, my solution fails in the top left and bottom right quadrants.
Addendum: Following on from discussion in the comments about the image of the system not working, I'll put some hard numbers here too.
The entire tensor field is 800x480, the center point is at { 400, 240 }, and we're using the standard graphics coordinate system with a negative y axis (ie. origin in the top left).
At { 400, 240 }, the tensor is R = 0, T = 0
At { 200, 120 }, the tensor is R = 2.95936E+9, T = 2.111216
At { 600, 120 }, the tensor is R = 2.95936E+9, T = 1.03037679
I can easily sample any more points which you think may help.
The code I'm using to calculate values is:
float x = i - center.X;
float xSqr = x * x;
float y = j - center.Y;
float ySqr = y * y;
float r = (float)Math.Pow(xSqr + ySqr, 2);
float theta = (float)Math.Atan2((-2 * x * y), (ySqr - xSqr)) / 2;
if (theta < 0)
theta += MathHelper.Pi;
Evidently you are comparing formulas (1) and (2) of the paper. Note the scalar multiple l = || (u_x,u_y) || in formula (1), and identify that with R early in the section. This factor is implicit in formula (2), so to make them match we have to factor R out.
Formula (2) works with an offset from the "center" (x0,y0) of the radial map:
x = xp - x0
y = yp - y0
to form the given 2x2 matrix:
y^2 - x^2 -2xy
-2xy -(y^2 - x^2)
We need to factor out a scalar R from this matrix to get a traceless orthogonal 2x2 matrix as in formula (1):
cos(2t) sin(2t)
sin(2t) -cos(2t)
Since cos^2(2t) + sin^2(2t) = 1 the factor R can be identified as:
R = (y^2 - x^2)^2 + (-2xy)^2 = (x^2 + y^2)^2
leaving a traceless orthogonal 2x2 matrix:
C S
S -C
from which the angle 'tan(2t) = S/C` can be extracted by an inverse trig function.
Well, almost. As belisarius warns, we need to check that angle t is in the correct quadrant. The authors of the paper write at the beginning of Sec. 4 that their "t" (which refers to the tensor) depends on R >= 0 and theta (your t) lying in [0,2pi) according to the formula R [ cos(2t), sin(2t); sin(2t) -cos(2t) ].
Since sine and cosine have period 2pi, t (theta) is only uniquely determined up to an interval of length pi. I suspect the authors meant to write either that 2t lies in [0,2pi) or more simply that t lies in [0,pi). belisarius suggestion to use "the atan2 equivalent" will avoid any division by zero. We may (if the function returns a negative value) need to add pi so that t >= 0. This amounts to adding 2pi to 2t, so it doesn't affect the signs of the entries in the traceless orthogonal matrix (since 'R >= 0` the pattern of signs should agree in formulas (1) and (2) ).
I have a question i know a line i just know its slope(m) and a point on it A(x,y) How can i calculate the points(actually two of them) on this line with a distance(d) from point A ???
I m asking this for finding intensity of pixels on a line that pass through A(x,y) with a distance .Distance in this case will be number of pixels.
I would suggest converting the line to a parametric format instead of point-slope. That is, a parametric function for the line returns points along that line for the value of some parameter t. You can represent the line as a reference point, and a vector representing the direction of the line going through that point. That way, you just travel d units forward and backward from point A to get your other points.
Since your line has slope m, its direction vector is <1, m>. Since it moves m pixels in y for every 1 pixel in x. You want to normalize that direction vector to be unit length so you divide by the magnitude of the vector.
magnitude = (1^2 + m^2)^(1/2)
N = <1, m> / magnitude = <1 / magnitude, m / magnitude>
The normalized direction vector is N. Now you are almost done. You just need to write the equation for your line in parameterized format:
f(t) = A + t*N
This uses vector math. Specifically, scalar vector multiplication (of your parameter t and the vector N) and vector addition (of A and t*N). The result of the function f is a point along the line. The 2 points you are looking for are f(d) and f(-d). Implement that in the language of your choosing.
The advantage to using this method, as opposed to all the other answers so far, is that you can easily extend this method to support a line with "infinite" slope. That is, a vertical line like x = 3. You don't really need the slope, all you need is the normalized direction vector. For a vertical line, it is <0, 1>. This is why graphics operations often use vector math, because the calculations are more straight-forward and less prone to singularities.
It may seem a little complicated at first, but once you get the hang of vector operations, a lot of computer graphics tasks get a lot easier.
Let me explain the answer in a simple way.
Start point - (x0, y0)
End point - (x1, y1)
We need to find a point (xt, yt) at a distance dt from start point towards end point.
The distance between Start and End point is given by d = sqrt((x1 - x0)^2 + (y1 - y0)^2)
Let the ratio of distances, t = dt / d
Then the point (xt, yt) = (((1 - t) * x0 + t * x1), ((1 - t) * y0 + t * y1))
When 0 < t < 1, the point is on the line.
When t < 0, the point is outside the line near to (x0, y0).
When t > 1, the point is outside the line near to (x1, y1).
Here's a Python implementation to find a point on a line segment at a given distance from the initial point:
import numpy as np
def get_point_on_vector(initial_pt, terminal_pt, distance):
v = np.array(initial_pt, dtype=float)
u = np.array(terminal_pt, dtype=float)
n = v - u
n /= np.linalg.norm(n, 2)
point = v - distance * n
return tuple(point)
Based on the excellent answer from #Theophile here on math stackexchange.
Let's call the point you are trying to find P, with coordinates px, py, and your starting point A's coordinates ax and ay. Slope m is just the ratio of the change in Y over the change in X, so if your point P is distance s from A, then its coordinates are px = ax + s, and py = ay + m * s. Now using Pythagoras, the distance d from A to P will be d = sqrt(s * s + (m * s) * (m * s)). To make P be a specific D units away from A, find s as s = D/sqrt(1 + m * m).
I thought this was an awesome and easy to understand solution:
http://www.physicsforums.com/showpost.php?s=f04d131386fbd83b7b5df27f8da84fa1&p=2822353&postcount=4