I have a problem in performing a non linear fit with Gnu Octave. Basically I need to perform a global fit with some shared parameters, while keeping others fixed.
The following code works perfectly in Matlab, but Octave returns an error
error: operator *: nonconformant arguments (op1 is 34x1, op2 is 4x1)
Attached my code and the data to play with:
clear
close all
clc
pkg load optim
D = dlmread('hd', ';'); % raw data
bkg = D(1,2:end); % 4 sensors bkg
x = D(2:end,1); % input signal
Y = D(2:end,2:end); % 4 sensors reposnse
W = 1./Y; % weights
b0 = [7 .04 .01 .1 .5 2 1]; % educated guess for start the fit
%% model function
F = #(b) ((bkg + (b(1) - bkg).*(1-exp(-(b(2:5).*x).^b(6))).^b(7)) - Y) .* W;
opts = optimset("Display", "iter");
lb = [5 .001 .001 .001 .001 .01 1];
ub = [];
[b, resnorm, residual, exitflag, output, lambda, Jacob\] = ...
lsqnonlin(F,b0,lb,ub,opts)
To give more info, giving array b0, b0(1), b0(6) and b0(7) are shared among the 4 dataset, while b0(2:5) are peculiar of each dataset.
Thank you for your help and suggestions! ;)
Raw data:
0,0.3105,0.31342,0.31183,0.31117
0.013229,0.329,0.3295,0.332,0.372
0.013229,0.328,0.33,0.33,0.373
0.021324,0.33,0.3305,0.33633,0.399
0.021324,0.325,0.3265,0.333,0.397
0.037763,0.33,0.3255,0.34467,0.461
0.037763,0.327,0.3285,0.347,0.456
0.069405,0.338,0.3265,0.36533,0.587
0.069405,0.3395,0.329,0.36667,0.589
0.12991,0.357,0.3385,0.41333,0.831
0.12991,0.358,0.3385,0.41433,0.837
0.25368,0.393,0.347,0.501,1.302
0.25368,0.3915,0.3515,0.498,1.278
0.51227,0.458,0.3735,0.668,2.098
0.51227,0.47,0.3815,0.68467,2.124
1.0137,0.61,0.4175,1.008,3.357
1.0137,0.599,0.422,1,3.318
2.0162,0.89,0.5335,1.645,5.006
2.0162,0.872,0.5325,1.619,4.938
4.0192,1.411,0.716,2.674,6.595
4.0192,1.418,0.7205,2.691,6.766
8.0315,2.34,1.118,4.195,7.176
8.0315,2.33,1.126,4.161,6.74
16.04,3.759,1.751,5.9,7.174
16.04,3.762,1.748,5.911,7.151
32.102,5.418,2.942,7.164,7.149
32.102,5.406,2.941,7.164,7.175
64.142,7.016,4.478,7.174,7.176
64.142,7.018,4.402,7.175,7.175
128.32,7.176,6.078,7.175,7.176
128.32,7.175,6.107,7.175,7.173
255.72,7.165,7.162,7.165,7.165
255.72,7.165,7.164,7.166,7.166
511.71,7.165,7.165,7.165,7.165
511.71,7.165,7.165,7.166,7.164
Giving the function definition above, if you call it by F(b0) in the command windows, you will get a 34x4 matrix which is correct, since variable Y has the same size.
In that way I can (in theory) compute the standard formula for lsqnonlin (fit - measured)^2
I'm new to octave and if this as been asked and answered then I'm sorry but I have no idea what the phrase is for what I'm looking for.
I trying to remove the DC component from a large matrix, but in chunks as I need to do calculations on each chuck.
What I got so far
r = dlmread('test.csv',';',0,0);
x = r(:,2);
y = r(:,3); % we work on the 3rd column
d = 1
while d <= (length(y) - 256)
e = y(d:d+256);
avg = sum(e) / length(e);
k(d:d+256) = e - avg; % this is the part I need help with, how to get the chunk with the right value into the matrix
d += 256;
endwhile
% to check the result I like to see it
plot(x, k, '.');
if I change the line into:
k(d:d+256) = e - 1024;
it works perfectly.
I know there is something like an element-wise operation, but if I use e .- avg I get this:
warning: the '.-' operator was deprecated in version 7
and it still doesn't do what I expect.
I must be missing something, any suggestions?
GNU Octave, version 7.2.0 on Linux(Manjaro).
Never mind the code works as expected.
The result (K) got corrupted because the chosen chunk size was too small for my signal. Changing 256 to 4096 got me a better result.
+ and - are always element-wise. Beware that d:d+256 are 257 elements, not 256. So if then you increment d by 256, you have one overlaying point.
Please help me. I'm trying to learn Python and I'm very beginner. I tried reading and watching videos but I don't understand this logic:
def myFunction(y):
x = y + y #Local
print(x)
return x
x = 5 #Global
myFunction(x)
print(x)
I get the values 10 and 5.
Really, I can't understand why 10. This is breaking my mind. If x equals 5, than the result of the line 2 shouldn't be 2.5? I have 5 = y + y.
My mind is on a loop. Please help, you're my only hope.
You are passing x as the argument of your function myFunction().
Thus if x=5 you get:
myFunction(5):
x = 5 + 5
return(x) #10
this is why you are getting 10. If you change x=5 to x=10 you will see that the result of the function will be 20 and so on...
You are not replacing the x in the function itself. However, the x you stated will indeed remain a global variable and thus will be printed on the second line.
32-bit Octave has a limit on the maximum number of elements in an array. I have recompiled from source (following the script at https://github.com/calaba/octave-3.8.2-enable-64-ubuntu-14.04 ), and now have 64-bit indexing.
Nevertheless, when I attempt to perform elementwise multiplication using a broadcast function, I get error: out of memory or dimension too large for Octave's index type
Is this a bug, or an undocumented feature? If it's a bug, does anyone have a reasonably efficient workaround?
Minimal code to reproduce the problem:
function indexerror();
% both of these are formed without error
% a = zeros (2^32, 1, 'int8');
% b = zeros (1024*1024*1024*3, 1, 'int8');
% sizemax % returns 9223372036854775806
nnz = 1000 % number of non-zero elements
rowmax = 250000
colmax = 100000
irow = zeros(1,nnz);
icol = zeros(1,nnz);
for ind =1:nnz
irow(ind) = round(rowmax/nnz*ind);
icol(ind) = round(colmax/nnz*ind);
end
sparseMat = sparse(irow,icol,1,rowmax,colmax);
% column vector to be broadcast
broad = 1:rowmax;
broad = broad(:);
% this gives "dimension too large" error
toobig = bsxfun(#times,sparseMat,broad);
% so does this
toobig2 = sparse(repmat(broad,1,size(sparseMat,2)));
mult = sparse( sparseMat .* toobig2 ); % never made it this far
end
EDIT:
Well, I have an inefficient workaround. It's slower than using bsxfun by a factor of 3 or so (depending on the details), but it's better than having to sort through the error in the libraries. Hope someone finds this useful some day.
% loop over rows, instead of using bsxfun
mult_loop = sparse([],[],[],rowmax,colmax);
for ind =1:length(broad);
mult_loop(ind,:) = broad(ind) * sparseMat(ind,:);
end
The unfortunate answer is that yes, this is a bug. Apparently #bsxfun and repmat are returning full matrices rather than sparse. Bug has been filed here:
http://savannah.gnu.org/bugs/index.php?47175
function [theta, J_history] = gradientDescent(X, y, theta, alpha, num_iters)
%GRADIENTDESCENT Performs gradient descent to learn theta
% theta = GRADIENTDESENT(X, y, theta, alpha, num_iters) updates theta by
% taking num_iters gradient steps with learning rate alpha
% Initialize some useful values
m = length(y); % number of training examples
J_history = zeros(num_iters, 1);
for iter = 1:num_iters
% ====================== YOUR CODE HERE ======================
% Instructions: Perform a single gradient step on the parameter vector
% theta.
%
% Hint: While debugging, it can be useful to print out the values
% of the cost function (computeCost) and gradient here.
%
hypothesis = x*theta;
theta_0 = theta(1) - alpha(1/m)*sum((hypothesis-y)*x);
theta_1 = theta(2) - alpha(1/m)*sum((hypothesis-y)*x);
theta(1) = theta_0;
theta(2) = theta_1;
% ============================================================
% Save the cost J in every iteration
J_history(iter) = computeCost(X, y, theta);
end
end
I keep getting this error
error: gradientDescent: subscript indices must be either positive integers less than 2^31 or logicals
on this line right in-between the first theta and =
theta_0 = theta(1) - alpha(1/m)*sum((hypothesis-y)*x);
I'm very new to octave so please go easy on me, and
thank you in advance.
This is from the coursera course on Machine Learning from Week 2
99% sure your error is on the line pointed out by topsig, where you have alpha(1/m)
it would help if you gave an example of input values to your function and what you hoped to see as an output, but I'm assuming from your comment
% taking num_iters gradient steps with learning rate alpha
that alpha is a constant, not a function. as such, you have the line alpha(1/m) without any operator in between. octave sees this as you indexing alpha with the value of 1/m.
i.e., if you had an array
x = [3 4 5]
x*(2) = [6 8 10] %% two times each element in the array
x(2) = [4] %% second element in the array
what you did doesn't seem to make sense, as 'm = length(y)' which will output a scalar, so
x = [3 4 5]; m = 3;
x*(1/m) = x*(1/3) = [1 1.3333 1.6666] %% element / 3
x(1/m) = ___error___ %% the 1/3 element in the array makes no sense
note that for certain errors it always indicates that the location of the error is at the assignment operator (the equal sign at the start of the line). if it points there, you usually have to look elsewhere in the line for the actual error. here, it was yelling at you for trying to apply a non-integer subscript (1/m)