VHDL configuration for packages - configuration

I have two packages (pkg1 and pkg2), which one contain a set of constants.
Depending on the configuration, I want to use either pkg1 or pkg2, but not both together.
So, how can I do this in VHDL? How to define the configuration for the packages?

vhdl does not have some preprocessor to manipulate code like verilog
you can't define use package statement in different cases.
but you can use constants with different names for each case and
if - generate - statement like so:
package pkg is
constant case_1;
constant case_2;
end pkg;
then in your architecture block:
if condition1 generate
signal1 <= case_1;
end generate;
if condition2 generate
signal1 <= case_2;
end generate;
the compiler/synthesizer would terminate unusable constants.
hope could help you

I have exactly the same need. I have a large core that does a lot of stuff and depending on the machine I want to build, there are constant value changes (ADC, DACs and other varying hardware). The way I solved it is by having a top folder for the project ( all the common files) and a subfolder per machine. Inside each subfolders, I have the VHDL files (packages, entity, architectures) specific to each machine. The Machine specific files are compiled in a "machine" library instead of "work". Then, I tell the compiler (simulator or synthesis) where the "machine" library source are located (the subfolder).

Related

How do I find where a function is declared in Tcl?

I think this is more of a Tcl configuration question rather than a Tcl coding question...
I inherited a whole series of Tcl scripts that are used within a simulation tool that my company built in-house. In my scripts, I'm finding numerous instances where there are function calls to functions that don't seem to be declared anywhere. How can I trace the path to these phantom functions?
For example, rather than use source, someone build a custom include function that they named INCLUDE. Tclsh obviously balks when I try to run it there, but with my simulation software, it runs fine.
I've tried grep-ing through the entire simulation software for INCLUDE, but I'm not having any luck. Are there any other obvious locations outside the simulation software where a Tcl function might be defined?
The possibilities:
Within your software. (you have checked for this).
Within some other package included by the software.
Check and see if the environment variable TCLLIBPATH is set.
Also check and see if the simulation software sets TCLLIBPATH.
This will be a list of directories to search for Tcl packages, and you
will need to search the packages that are located outside of the
main source tree.
Another possibility is that the locations are specified in the pkgIndex.tcl file.
Check any pkgIndex.tcl files and look for locations outside the main source tree.
Within an unknown command handler. This could be in
your software or within some other package. You should be able to find
some code that processes the INCLUDE statement.
Within a binary package. These are shared libraries that are loaded
by Tcl. If this is the case, there should be some C code used to
build the shared library that can be searched.
Since you say there are numerous instances of unknown functions, my first
guess is that you have
not found all the directories where packages are loaded from. But an
''unknown'' command handler is also a possibility.
Edit:
One more possibility I forgot. Check and see if your software sets the auto_path variable. Check any directories added to the auto_path for
other packages.
This isn't a great answer for you, but I suspect it is the best you're going to get...
The procedure could be defined in a great many places. Your best bet for finding it is to use a tool like findstr (on Windows) or grep -R (on POSIX platforms) to search across all the relevant source files. But that still might not help! It might not be a procedure but instead a general command, which could be implemented in C and not as a procedure, or it could be defined in a packaged application archive (which are usually awkward to look inside). There are also other types of script-implemented command too, which could make things awkward. Generally searching and investigating is your best bet, but it might not work.
Tcl doesn't really differentiate strongly between different types of command except in some introspection operations. If you're lucky, you could find that info body tells you the definition of the procedure (and info args and info default tell you about the arguments) but that won't help with other command types at all. Tcl 8.7 will include a command (info cmdtype) that would help a lot with narrowing down what to do next, but that's no use to you now and it definitely doesn't exist in older versions.

What are the output files of the VxWorks Workbench kernel configuration GUI

I'm trying to generate a VxWorks 6.9.4.8 kernel configuration that is identical to another kernel workbench project. The Workbench 3.3.6 only allows GUI configuration.
Is there an underlying kernel configuration file, produced by the GUI, which can be replaced?
After updating the kernel configuration using the Workbench GUI, I see the following files have changed:
linkSyms.c,
prjComps.h,
prjConfig.c, and
prjParams.h
I guess my question is, which one, if any uniquely identifies the kernel as built?
prjComps.h will contain all the component's names, as you have chosen in your kernel configuration GUI.
First step to create new Kernel configuration based on some other Kernel configuration is to use GUI configurator and add the missing component in prjComps.h, Better use some diff tool like 'beyond compare', and keep reducing the differences by adding/removing the components. Remember not to edit this file directly, but via GUI configurator only. As the tool calculates the dependent component and adds/removes them.
Second step is to create the new prjParams.h as above.
The Workbench actually allows to use command line to edit Kernel configuration via vxprj tool in vxworks 6.9(this tool has been replaced by "wrtool" in vxworks 7), you can right click on the Image project and chose 'Open Wind River vxWorks 6.9 Developement Shell'.
If you want to add a component for e.g. telnet client (INCLUDE_TELNET_CLIENT)
, you can use the following command
vxprj component add INCLUDE_TELNET_CLIENT
To remove a component
vxprj component remove INCLUDE_TELNET_CLIENT
For more of vxprj tool, you can look up the documentation in the workbench itself.
The project configuration is held in a handful of files in the kernel project directory.
These are:
.project
.cproject
.wrproject
projectname.wpj
Files such as prjComps.h, prjParams.h prjConfig.c are all generated by the configuration tool, however these are not configuration files themselves. Instead, this is generated C code that contains, amongst other things, a list of selected components.
These files are also re-generated, I believe, when you rebuild the project.
As such, these are not really the authoritative source you are interested in.
For this, you need to look at the project files. In terms of a list of components, the most interesting is the .wpj file, which contains amongst other things a list of explicitly and implicitly included components.
The explicitly included components are those you manually selected in the Kernel Configuration GUI, the implicitly included are those that were then included to satisfy dependencies.
This distinction can sometimes make comparing kernel configurations tricky, then you may want to fall back on the generated files eg prjComps.h, however you should always remember that this is a representation of the configuration, not the source.
The .project etc configuration files are big and complex, but a decent diff tool, such as BeyondCompare can make comparisons of the project directories fairly easy
Thanks for the clue, #endTunnel. I looked at that file, and noticed that a few files get modified when I save my GUI selections.
prjComps.h - all the components #included in the kernel build
prjParams.h - the additional parameters set for the enabled components
prjConfig.c - the configuration and initialization calls for each module included.
'linkSyms.c' also gets modified. Not sure how that is used, yet.
I can now use diff to compare kernel configurations, and perhaps even duplicate a configuration (haven't tried that yet).

How to include only sections of Assembly include files

I have created a separate include files for general purpose uses in my assembly programs. (such as string operations / formatted input/etc.)
When i include those files i notice all of the functions get included in the target binary file.
Is there way I can manage to include only the used functions(like using include files in C/C++ library files)?
I'm using MASM and targeting x86.
To extract separate functions from an object file, the linker needs to know where each one starts and where it ends. It can't reliably tell that from the assembly, so you need to help it.
A common way is to put each function into a separate file and assemble them like that; this way the linker can include or exclude each object file independently. This is the simplest way and works with most assemblers, not just MASM, so I'd recommend trying it.
Another way could be to put each function into a separate segment; the MS linker can exclude unused segments but only if they're marked as so-called "COMDAT" (communal data). Unfortunately, MASM does not support setting this attribute.
There have been some work on adding this info to the OBJ file as a post-processing step, but unfortunately the archive with the tool seems to be gone from the Internet:
Function level linking with MASM
Additional links:
How to achieve "function level linking" with MASM? (includes a tool for semi-automated splitting into several files).
flat assembler - COMDAT support
MSDN forums - Comdat
JWASM:
Support for COFF COMDATs
The last link mentions "Support for COMDAT is added in jwasm v2.10."

Why make global Lua functions local?

I've been looking at some Lua source code, and I often see things like this at the beginning of the file:
local setmetatable, getmetatable, etc.. = setmetatable, getmetatable, etc..
Do they only make the functions local to let Lua access them faster when often used?
Local data are on the stack, and therefore they do access them faster. However, I seriously doubt that the function call time to setmetatable is actually a significant issue for some program.
Here are the possible explanations for this:
Prevention from polluting the global environment. Modern Lua convention for modules is to not have them register themselves directly into the global table. They should build a local table of functions and return them. Thus, the only way to access them is with a local variable. This forces a number of things:
One module cannot accidentally overwrite another module's functions.
If a module does accidentally do this, the original functions in the table returned by the module will still be accessible. Only by using local modname = require "modname" will you be guaranteed to get exactly and only what that module exposed.
Modules that include other modules can't interfere with one another. The table you get back from require is always what the module stores.
A premature optimization by someone who read "local variables are accessed faster" and then decided to make everything local.
In general, this is good practice. Well, unless it's because of #2.
In addition to Nicol Bolas's answer, I'd add on to the 3rd point:
It allows your code to be run from within a sandbox after it's been loaded.
If the functions have been excluded from the sandbox and the code is loaded from within the sandbox, then it won't work. But if the code is loaded first, the sandbox can then call the loaded code and be able to exclude setmetatable, etc, from the sandbox.
I do it because it allows me to see the functions used by each of my modules
Additionally it protects you from others changing the functions in global environment.
That it is a free (premature) optimisation is a bonus.
Another subtle benefit: It clearly documents which variables (functions, modules) are imported by the module. And if you are using the module statement, it enforces such declarations, because the global environment is replaced (so globals are not available).

The use of config file is it equivalent to use of globals?

I've read many times and agree with avoiding the use of globals to keep code orthogonal. Does the use of the config file to keep read only information that your program uses similar to using Globals?
If you're using config files in place of globals, then yes, they are similar.
Config files should only be used in cases where the end-user (presumably a computer-savvy user, like a developer) needs to declare settings for an application or piece of code, while keeping their hands out of the code itself.
My first reaction would be that it is not the same. I think the problem with globals is the read+write scenario. Config-files are readonly (at least in terms of execution).
In the same way constants are not considered bad programming behaviour. Config-files, at least in the way I use them, are just easy-changable constants.
Well, since a config file and a global variable can both have the effect of propagating changes throughout a system - they are roughly similar.
But... in the case of a configuration file that change is usually going to take place in a single, highly-visible (to the developer) location, and global variables can affect change in very sneaky and hard to track down ways -- so in this way the two concepts are not similar.
Having a configuration file ususally helps with DRY concepts, and it shouldn't hurt the orthogonality of the system, either.
Bonus points for using the $25 word 'orthogonal'. I had to look that one up in Wikipedia to find out the non-Euclidean definition.
Configuration files are really meant to be easily editable by the end user as a way of telling the program how to run.
A more specialized form of configuration files, user preferences, are used to remember things between program executions.
Global is related to a unique instance for an object which will never change, whereas config file is used as container for reference values, for objects within the application that can change.
One "global" object will never change during runtime, the other object is initialized through config file, but can change later on.
Actually, those objects not only can change during the lifetime of the application, they can also monitor the config file in order to realize "hot-change" (modification of their value without stopping/restarting the application), if that config file is modified.
They are absolutely not the same or replacements for eachother. A config file, or object can be used non-globally, ie passed explicitly.
You can of course have a global variable that refers to a config object, and that would be defeating the purpose.