Math or MathUtils - Libgdx - libgdx

I'm doing lots of trigonometry calculations in each frame. Are Java's Math functions faster than Libgdx's MathUtils?
Or is there any other library I can use that is faster than both of these?

Trigonometric functions of com.badlogic.gdx.math.MathUtils is faster than analogs in java.lang.Math. For example for sin() and cos() methods it returns nearest value from precalculated table. This is definitely less accurate than precise calculation but much faster:
static public float sin (float radians) {
return Sin.table[(int)(radians * radToIndex) & SIN_MASK];
}
Other methods of MathUtils are mostly utility functions which are used by other parts of LibGDX. I think they are written mostly for convenience than for speed (but they are well optimized too).

Related

How to perform Hadamard product with CUBLAS on complex numbers?

I need the compute the element wise multiplication of two vectors (Hadamard product) of complex numbers with NVidia CUBLAS. Unfortunately, there is no HAD operation in CUBLAS. Apparently, you can do this with the SBMV operation, but it is not implemented for complex numbers in CUBLAS. I cannot believe there is no way to achieve this with CUBLAS. Is there any other way to achieve that with CUBLAS, for complex numbers ?
I cannot write my own kernel, I have to use CUBLAS (or another standard NVIDIA library if it is really not possible with CUBLAS).
CUBLAS is based on the reference BLAS, and the reference BLAS has never contained a Hadamard product (complex or real). Hence CUBLAS doesn't have one either. Intel have added v?Mul to MKL for doing this, but it is non-standard and not in most BLAS implementations. It is the kind of operation that an old school fortran programmer would just write a loop for, so I presume it really didn't warrant a dedicated routine in BLAS.
There is no "standard" CUDA library I am aware of which implements a Hadamard product. There would be the possibility of using CUBLAS GEMM or SYMM to do this and extracting the diagonal of the resulting matrix, but that would be horribly inefficient, both from a computation and storage stand point.
The Thrust template library can do this trivially using thrust::transform, for example:
thrust::multiplies<thrust::complex<float> > op;
thrust::transform(thrust::device, x, x + n, y, z, op);
would iterate over each pair of inputs from the device pointers x and y and calculate z[i] = x[i] * y[i] (there is probably a couple of casts you need to make to compile that, but you get the idea). But that effectively requires compilation of CUDA code within your project, and apparently you don't want that.

How to Solve non-specific non-linear equations?

I am attempting to fit a circle to some data. This requires numerically solving a set of three non-linear simultaneous equations (see the Full Least Squares Method of this document).
To me it seems that the NEWTON function provided by IDL is fit for solving this problem. NEWTON requires the name of a function that will compute the values of the equation system for particular values of the independent variables:
FUNCTION newtfunction,X
RETURN, [Some function of X, Some other function of X]
END
While this works fine, it requires that all parameters of the equation system (in this case the set of data points) is hard coded in the newtfunction. This is fine if there is only one data set to solve for, however I have many thousands of data sets, and defining a new function for each by hand is not an option.
Is there a way around this? Is it possible to define functions programmatically in IDL, or even just pass in the data set in some other manner?
I am not an expert on this matter, but if I were to solve this problem I would do the following. Instead of solving a system of 3 non-linear equations to find the three unknowns (i.e. xc, yc and r), I would use an optimization routine to converge to a solution by starting with an initial guess. For this steepest descent, conjugate gradient, or any other multivariate optimization method can be used.
I just quickly derived the least square equation for your problem as (please check before use):
F = (sum_{i=1}^{N} (xc^2 - 2 xi xc + xi^2 + yc^2 - 2 yi yc + yi^2 - r^2)^2)
Calculating the gradient for this function is fairly easy, since it is just a summation, and therefore writing a steepest descent code would be trivial, to calculate xc, yc and r.
I hope it helps.
It's usual to use a COMMON block in these types of functions to pass in other parameters, cached values, etc. that are not part of the calling signature of the numeric routine.

Numerical integration of a discontinuous function in multiple dimensions

I have a function f(x) = 1/(x + a+ b*I*sign(x)) and I want to calculate the
integral of
dx dy dz f(x) f(y) f(z) f(x+y+z) f(x-y - z)
over the entire R^3 (b>0 and a,- b are of order unity). This is just a representative example -- in practice I have n<7 variables and 2n-1 instances of f(), n of them involving the n integration variables and n-1 of them involving some linear combintation of the integration variables. At this stage I'm only interested in a rough estimate with relative error of 1e-3 or so.
I have tried the following libraries :
Steven Johnson's cubature code: the hcubature algorithm works but is abysmally slow, taking hundreds of millions of integrand evaluations for even n=2.
HintLib: I tried adaptive integration with a Genz-Malik rule, the cubature routines, VEGAS and MISER with the Mersenne twister RNG. For n=3 only the first seems to be somewhat viable option but it again takes hundreds of millions of integrand evaluations for n=3 and relerr = 1e-2, which is not encouraging.
For the region of integration I have tried both approaches: Integrating over [-200, 200]^n (i.e. a region so large that it essentially captures most of the integral) and the substitution x = sinh(t) which seems to be a standard trick.
I do not have much experience with numerical analysis but presumably the difficulty lies in the discontinuities from the sign() term. For n=2 and f(x)f(y)f(x-y) there are discontinuities along x=0, y=0, x=y. These create a very sharp peak around the origin (with a different sign in the various quadrants) and sort of 'ridges' at x=0,y=0,x=y along which the integrand is large in absolute value and changes sign as you cross them. So at least I know which regions are important. I was thinking that maybe I could do Monte Carlo but somehow "tell" the algorithm in advance where to focus. But I'm not quite sure how to do that.
I would be very grateful if you had any advice on how to evaluate the integral with a reasonable amount of computing power or how to make my Monte Carlo "idea" work. I've been stuck on this for a while so any input would be welcome. Thanks in advance.
One thing you can do is to use a guiding function for your Monte Carlo integration: given an integral (am writing it in 1D for simplicity) of ∫ f(x) dx, write it as ∫ f(x)/g(x) g(x) dx, and use g(x) as a distribution from which you sample x.
Since g(x) is arbitrary, construct it such that (1) it has peaks where you expect them to be in f(x), and (2) such that you can sample x from g(x) (e.g., a gaussian, or 1/(1+x^2)).
Alternatively, you can use a Metropolis-type Markov chain MC. It will find the relevant regions of the integrand (almost) by itself.
Here are a couple of trivial examples.

How to compute the maximum of a function?

How to compute the maximum of a smooth function defined on [a,b] in Fortran ?
For simplicity, a polynomial function.
The background is that almost all numerical flux(a concept in numerical PDE) involves computing the maximum of certain function over an interval [a,b].
For a 1-D problem with smooth and readily-computed derivatives, use Newton-Raphson to find zeros of the first derivative.
For multiple dimensions, and readily-computed derivatives, you're better off using a method that approximates the Hessian. There are several methods of this type, but I've found the L-BFGS method to be reliable and efficient. There a convenient, BSD-licensed package provided by a group at Northwestern University. There's also quite a bit of well-tested code at http://www.netlib.org/

CUDA cublas<t>gbmv understanding

I recently wanted to use a simple CUDA matrix-vector multiplication. I found a proper function in cublas library: cublas<<>>gbmv. Here is the official documentation
But it is actually very poor, so I didn't manage to understand what the kl and ku parameters mean. Moreover, I have no idea what stride is (it must also be provided).
There is a brief explanation of these parameters (Page 37), but it looks like I need to know something else.
A search on the internet doesn't provide tons of useful information on this question, mostly references to different version of documentation.
So I have several questions to GPU/CUDA/cublas gurus:
How do I find more understandable docs or guides about using cublas?
If you know how to use this very function, couldn't you explain me how do I use it?
Maybe cublas library is somewhat extraordinary and everyone uses something more popular, better documented and so on?
Thanks a lot.
So BLAS (Basic Linear Algebra Subprograms) generally is an API to, as the name says, basic linear algebra routines. It includes vector-vector operations (level 1 blas routines), matrix-vector operations (level 2) and matrix-matrix operations (level 3). There is a "reference" BLAS available that implements everything correctly, but most of the time you'd use an optimized implementation for your architecture. cuBLAS is an implementation for CUDA.
The BLAS API was so successful as an API that describes the basic operations that it's become very widely adopted. However, (a) the names are incredibly cryptic because of architectural limitations of the day (this was 1979, and the API was defined using names of 8 characters or less to ensure it could widely compile), and (b) it is successful because it's quite general, and so even the simplest function calls require a lot of extraneous arguments.
Because it's so widespread, it's often assumed that if you're doing numerical linear algebra, you already know the general gist of the API, so implementation manuals often leave out important details, and I think that's what you're running into.
The Level 2 and 3 routines generally have function names of the form TMMOO.. where T is the numerical type of the matrix/vector (S/D for single/double precision real, C/Z for single/double precision complex), MM is the matrix type (GE for general - eg, just a dense matrix you can't say anything else about; GB for a general banded matrix, SY for symmetric matrices, etc), and OO is the operation.
This all seems slightly ridiculous now, but it worked and works relatively well -- you quickly learn to scan these for familiar operations so that SGEMV is a single-precision general-matrix times vector multiplication (which is probably what you want, not SGBMV), DGEMM is double-precision matrix-matrix multiply, etc. But it does take some practice.
So if you look at the cublas sgemv instructions, or in the documentation of the original, you can step through the argument list. First, the basic operation is
This function performs the matrix-vector multiplication
y = a op(A)x + b y
where A is a m x n matrix stored in column-major format, x and y
are vectors, and and are scalars.
where op(A) can be A, AT, or AH. So if you just want y = Ax, as is the common case, then a = 1, b = 0. and transa == CUBLAS_OP_N.
incx is the stride between different elements in x; there's lots of situations where this would come in handy, but if x is just a simple 1d array containing the vector, then the stride would be 1.
And that's about all you need for SGEMV.