I am trying to implement Cholesky decomposition using the cuSOLVER library. I am a beginner CUDA programmer and I have always specified block-sizes and grid-sizes, but I am not able to find out how this can be set explicitly by the programmer with cuSOLVER functions.
Here is the documentation: http://docs.nvidia.com/cuda/cusolver/index.html#introduction
The QR decomposition is implemented using the cuSOLVER library (see the example here: http://docs.nvidia.com/cuda/cusolver/index.html#ormqr-example1) and even there the above two parameters are not set.
To summarize, I have the following questions
How can the parameters: block-size and grid-size can be set with the cuSOLVER library?
How is the same being done with the mentioned QR example code in the NVIDIA documentation?
Robert Crovella has already answered this question. Here, I'm just providing a full example showing how Cholesky decomposition can be easily performed using the potrf function provided by the cuSOLVER library.
The Utilities.cu and Utilities.cuh files are mantained at this page and omitted here. The example implements the CPU as well as the GPU approach.
#include "cuda_runtime.h"
#include "device_launch_paraMeters.h"
#include<iostream>
#include <fstream>
#include<iomanip>
#include<stdlib.h>
#include<stdio.h>
#include<assert.h>
#include <cusolverDn.h>
#include <cublas_v2.h>
#include <cuda_runtime_api.h>
#include "Utilities.cuh"
#define prec_save 10
/******************************************/
/* SET HERMITIAN POSITIVE DEFINITE MATRIX */
/******************************************/
// --- Credit to: https://math.stackexchange.com/questions/357980/how-to-generate-random-symmetric-positive-definite-matrices-using-matlab
void setPDMatrix(double * __restrict h_A, const int N) {
// --- Initialize random seed
srand(time(NULL));
double *h_A_temp = (double *)malloc(N * N * sizeof(double));
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)
h_A_temp[i * N + j] = (float)rand() / (float)RAND_MAX;
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)
h_A[i * N + j] = 0.5 * (h_A_temp[i * N + j] + h_A_temp[j * N + i]);
for (int i = 0; i < N; i++) h_A[i * N + i] = h_A[i * N + i] + N;
}
/************************************/
/* SAVE REAL ARRAY FROM CPU TO FILE */
/************************************/
template <class T>
void saveCPUrealtxt(const T * h_in, const char *filename, const int M) {
std::ofstream outfile;
outfile.open(filename);
for (int i = 0; i < M; i++) outfile << std::setprecision(prec_save) << h_in[i] << "\n";
outfile.close();
}
/************************************/
/* SAVE REAL ARRAY FROM GPU TO FILE */
/************************************/
template <class T>
void saveGPUrealtxt(const T * d_in, const char *filename, const int M) {
T *h_in = (T *)malloc(M * sizeof(T));
gpuErrchk(cudaMemcpy(h_in, d_in, M * sizeof(T), cudaMemcpyDeviceToHost));
std::ofstream outfile;
outfile.open(filename);
for (int i = 0; i < M; i++) outfile << std::setprecision(prec_save) << h_in[i] << "\n";
outfile.close();
}
/********/
/* MAIN */
/********/
int main(){
const int N = 1000;
// --- CUDA solver initialization
cusolverDnHandle_t solver_handle;
cusolveSafeCall(cusolverDnCreate(&solver_handle));
// --- CUBLAS initialization
cublasHandle_t cublas_handle;
cublasSafeCall(cublasCreate(&cublas_handle));
/***********************/
/* SETTING THE PROBLEM */
/***********************/
// --- Setting the host, N x N matrix
double *h_A = (double *)malloc(N * N * sizeof(double));
setPDMatrix(h_A, N);
// --- Allocate device space for the input matrix
double *d_A; gpuErrchk(cudaMalloc(&d_A, N * N * sizeof(double)));
// --- Move the relevant matrix from host to device
gpuErrchk(cudaMemcpy(d_A, h_A, N * N * sizeof(double), cudaMemcpyHostToDevice));
/****************************************/
/* COMPUTING THE CHOLESKY DECOMPOSITION */
/****************************************/
// --- cuSOLVE input/output parameters/arrays
int work_size = 0;
int *devInfo; gpuErrchk(cudaMalloc(&devInfo, sizeof(int)));
// --- CUDA CHOLESKY initialization
cusolveSafeCall(cusolverDnDpotrf_bufferSize(solver_handle, CUBLAS_FILL_MODE_LOWER, N, d_A, N, &work_size));
// --- CUDA POTRF execution
double *work; gpuErrchk(cudaMalloc(&work, work_size * sizeof(double)));
cusolveSafeCall(cusolverDnDpotrf(solver_handle, CUBLAS_FILL_MODE_LOWER, N, d_A, N, work, work_size, devInfo));
int devInfo_h = 0; gpuErrchk(cudaMemcpy(&devInfo_h, devInfo, sizeof(int), cudaMemcpyDeviceToHost));
if (devInfo_h != 0) std::cout << "Unsuccessful potrf execution\n\n" << "devInfo = " << devInfo_h << "\n\n";
// --- At this point, the lower triangular part of A contains the elements of L.
/***************************************/
/* CHECKING THE CHOLESKY DECOMPOSITION */
/***************************************/
saveCPUrealtxt(h_A, "D:\\Project\\solveSquareLinearSystemCholeskyCUDA\\solveSquareLinearSystemCholeskyCUDA\\h_A.txt", N * N);
saveGPUrealtxt(d_A, "D:\\Project\\solveSquareLinearSystemCholeskyCUDA\\solveSquareLinearSystemCholeskyCUDA\\d_A.txt", N * N);
cusolveSafeCall(cusolverDnDestroy(solver_handle));
return 0;
}
EDIT
Cholesky decomposition requires that the relevant matrix is Hermitian and positive definite. Symmetric and positive definite matrices can be generated by the approach in How to generate random symmetric positive definite matrices using MATLAB?.
The following Matlab code can be used for checking the results
clear all
close all
clc
warning off
N = 1000;
% --- Setting the problem solution
x = ones(N, 1);
load h_A.txt
A = reshape(h_A, N, N);
yMatlab = A * x;
Lmatlab = chol(A, 'lower');
xprime = inv(Lmatlab) * yMatlab;
xMatlab = inv(Lmatlab') * xprime;
fprintf('Percentage rms of solution in Matlab %f\n', 100 * sqrt(sum(sum(abs(xMatlab - x).^2)) / sum(sum(abs(x).^2))));
load d_A.txt
LCUDA = tril(reshape(d_A, N, N));
fprintf('Percentage rms of Cholesky decompositions in Matlab and CUDA %f\n', 100 * sqrt(sum(sum(abs(Lmatlab - LCUDA).^2)) / sum(sum(abs(Lmatlab).^2))));
load xCUDA.txt
fprintf('Percentage rms of solution in Matlab %f\n', 100 * sqrt(sum(sum(abs(xCUDA - x).^2)) / sum(sum(abs(x).^2))));
You don't set block sizes (or grid sizes) explicitly when using a library like cusolver, or cublas, or cusparse.
The library chooses these, when it actually runs device code internal to the library.
Related
I am trying to implement a brute force distance computation algorithm in CUDA.
#define VECTOR_DIM 128
thrust::device_vector<float> feature_data_1;
feature_data_1.resize(VECTOR_DIM * 1000); // 1000 128 dimensional points
thrust::device_vector<float> feature_data_2;
feature_data_2.resize(VECTOR_DIM * 2000); // 2000 128 dimensional points
Now what I would like to do is to compute the L2 distances (sum of the squared differences) from every vector in the first matrix to every vector in the second matrix.
So, if array 1 is of size 1000 and array 2 is of size 2000, the result would be a floating point matrix of 1000*2000 in size.
I was wondering if there is a way to achieve this using Thrust algorithms alone.
Calculating the all-pairs distances between points in two different sets in CUDA can be solved by observing that
||x-y||^2=||x||^2+||y||^2-2*<x,y>
where || || is the l2 norm and <x,y> denotes the scalar product between x and y.
The norms ||x|| and ||y|| can be calculated by approaches inspired by Reduce matrix rows with CUDA, while the scalar products <x,y> can then be calculated as the matrix-matrix multiplication X*Y^T using cublas<t>gemm().
Below is a fully worked out implementation. Please, note that for the calculation of the norms || || two approaches are reported, one using cuBLAS cublas<t>gemv and one using Thurst's transform. For the problem size of your interest, I have experienced the following timings on my GT540M card:
Approach nr. 1 0.12ms
Approach nr. 2 0.59ms
include <cublas_v2.h>
#include <thrust/host_vector.h>
#include <thrust/device_vector.h>
#include <thrust/generate.h>
#include <thrust/reduce.h>
#include <thrust/functional.h>
#include <thrust/random.h>
#include <thrust/sequence.h>
#include <stdio.h>
#include <iostream>
#include "Utilities.cuh"
#include "TimingGPU.cuh"
#define BLOCK_SIZE_X 16
#define BLOCK_SIZE_Y 16
/***********************************************************/
/* SQUARED ABSOLUTE VALUE FUNCTOR - NEEDED FOR APPROACH #1 */
/***********************************************************/
struct abs2 {
__host__ __device__ double operator()(const float &x) const { return x * x; }
};
// --- Required for approach #2
__device__ float *vals;
/******************************************/
/* ROW_REDUCTION - NEEDED FOR APPROACH #2 */
/******************************************/
struct row_reduction {
const int Ncols; // --- Number of columns
row_reduction(int _Ncols) : Ncols(_Ncols) {}
__device__ float operator()(float& x, int& y ) {
float temp = 0.f;
for (int i = 0; i<Ncols; i++)
temp += vals[i + (y*Ncols)] * vals[i + (y*Ncols)];
return temp;
}
};
/************************************************/
/* KERNEL FUNCTION TO ASSEMBLE THE FINAL RESULT */
/************************************************/
__global__ void assemble_final_result(const float * __restrict__ d_norms_x_2, const float * __restrict__ d_norms_y_2, float * __restrict__ d_dots,
const int NX, const int NY) {
const int i = threadIdx.x + blockIdx.x * gridDim.x;
const int j = threadIdx.y + blockIdx.y * gridDim.y;
if ((i < NY) && (j < NX)) d_dots[i * NX+ j] = d_norms_x_2[j] + d_norms_y_2[i] - 2 * d_dots[i * NX+ j];
}
/********/
/* MAIN */
/********/
int main()
{
//const int Ndims = 128; // --- Number of rows
//const int NX = 1000; // --- Number of columns
//const int NY = 2000; // --- Number of columns
const int Ndims = 3; // --- Number of rows
const int NX = 4; // --- Number of columns
const int NY = 5; // --- Number of columns
// --- Random uniform integer distribution between 10 and 99
thrust::default_random_engine rng;
thrust::uniform_int_distribution<int> dist(10, 99);
// --- Matrices allocation and initialization
thrust::device_vector<float> d_X(Ndims * NX);
thrust::device_vector<float> d_Y(Ndims * NY);
for (size_t i = 0; i < d_X.size(); i++) d_X[i] = (float)dist(rng);
for (size_t i = 0; i < d_Y.size(); i++) d_Y[i] = (float)dist(rng);
TimingGPU timerGPU;
// --- cuBLAS handle creation
cublasHandle_t handle;
cublasSafeCall(cublasCreate(&handle));
/**********************************************/
/* CALCULATING THE NORMS OF THE ELEMENTS OF X */
/**********************************************/
thrust::device_vector<float> d_norms_x_2(NX);
// --- Approach nr. 1
//timerGPU.StartCounter();
thrust::device_vector<float> d_X_2(Ndims * NX);
thrust::transform(d_X.begin(), d_X.end(), d_X_2.begin(), abs2());
thrust::device_vector<float> d_ones(Ndims, 1.f);
float alpha = 1.f;
float beta = 0.f;
cublasSafeCall(cublasSgemv(handle, CUBLAS_OP_T, Ndims, NX, &alpha, thrust::raw_pointer_cast(d_X_2.data()), Ndims,
thrust::raw_pointer_cast(d_ones.data()), 1, &beta, thrust::raw_pointer_cast(d_norms_x_2.data()), 1));
//printf("Timing for approach #1 = %f\n", timerGPU.GetCounter());
// --- Approach nr. 2
//timerGPU.StartCounter();
// float *s_vals = thrust::raw_pointer_cast(&d_X[0]);
// gpuErrchk(cudaMemcpyToSymbol(vals, &s_vals, sizeof(float *)));
// thrust::transform(d_norms_x_2.begin(), d_norms_x_2.end(), thrust::counting_iterator<int>(0), d_norms_x_2.begin(), row_reduction(Ndims));
//printf("Timing for approach #2 = %f\n", timerGPU.GetCounter());
/**********************************************/
/* CALCULATING THE NORMS OF THE ELEMENTS OF Y */
/**********************************************/
thrust::device_vector<float> d_norms_y_2(NX);
thrust::device_vector<float> d_Y_2(Ndims * NX);
thrust::transform(d_Y.begin(), d_Y.end(), d_Y_2.begin(), abs2());
cublasSafeCall(cublasSgemv(handle, CUBLAS_OP_T, Ndims, NY, &alpha, thrust::raw_pointer_cast(d_Y_2.data()), Ndims,
thrust::raw_pointer_cast(d_ones.data()), 1, &beta, thrust::raw_pointer_cast(d_norms_y_2.data()), 1));
/***********************************/
/* CALCULATING THE SCALAR PRODUCTS */
/***********************************/
thrust::device_vector<float> d_dots(NX * NY);
cublasSafeCall(cublasSgemm(handle, CUBLAS_OP_T, CUBLAS_OP_N, NX, NY, Ndims, &alpha,
thrust::raw_pointer_cast(d_X.data()), Ndims, thrust::raw_pointer_cast(d_Y.data()), Ndims, &beta,
thrust::raw_pointer_cast(d_dots.data()), NX));
/*****************************/
/* ASSEMBLE THE FINAL RESULT */
/*****************************/
dim3 dimBlock(BLOCK_SIZE_X, BLOCK_SIZE_Y);
dim3 dimGrid(iDivUp(NX, BLOCK_SIZE_X), iDivUp(NY, BLOCK_SIZE_Y));
assemble_final_result<<<dimGrid, dimBlock>>>(thrust::raw_pointer_cast(d_norms_x_2.data()), thrust::raw_pointer_cast(d_norms_y_2.data()),
thrust::raw_pointer_cast(d_dots.data()), NX, NY);
for(int i = 0; i < NX * NY; i++) std::cout << d_dots[i] << "\n";
return 0;
}
The Utilities.cu and Utilities.cuh files are mantained here and omitted here. The TimingGPU.cu and TimingGPU.cuh are maintained here and are omitted as well.
I am a newbie to Thrust. I see that all Thrust presentations and examples only show host code.
I would like to know if I can pass a device_vector to my own kernel? How?
If yes, what are the operations permitted on it inside kernel/device code?
As it was originally written, Thrust is purely a host side abstraction. It cannot be used inside kernels. You can pass the device memory encapsulated inside a thrust::device_vector to your own kernel like this:
thrust::device_vector< Foo > fooVector;
// Do something thrust-y with fooVector
Foo* fooArray = thrust::raw_pointer_cast( fooVector.data() );
// Pass raw array and its size to kernel
someKernelCall<<< x, y >>>( fooArray, fooVector.size() );
and you can also use device memory not allocated by thrust within thrust algorithms by instantiating a thrust::device_ptr with the bare cuda device memory pointer.
Edited four and half years later to add that as per #JackOLantern's answer, thrust 1.8 adds a sequential execution policy which means you can run single threaded versions of thrust's alogrithms on the device. Note that it still isn't possible to directly pass a thrust device vector to a kernel and device vectors can't be directly used in device code.
Note that it is also possible to use the thrust::device execution policy in some cases to have parallel thrust execution launched by a kernel as a child grid. This requires separate compilation/device linkage and hardware which supports dynamic parallelism. I am not certain whether this is actually supported in all thrust algorithms or not, but certainly works with some.
This is an update to my previous answer.
Starting from Thrust 1.8.1, CUDA Thrust primitives can be combined with the thrust::device execution policy to run in parallel within a single CUDA thread exploiting CUDA dynamic parallelism. Below, an example is reported.
#include <stdio.h>
#include <thrust/reduce.h>
#include <thrust/execution_policy.h>
#include "TimingGPU.cuh"
#include "Utilities.cuh"
#define BLOCKSIZE_1D 256
#define BLOCKSIZE_2D_X 32
#define BLOCKSIZE_2D_Y 32
/*************************/
/* TEST KERNEL FUNCTIONS */
/*************************/
__global__ void test1(const float * __restrict__ d_data, float * __restrict__ d_results, const int Nrows, const int Ncols) {
const unsigned int tid = threadIdx.x + blockDim.x * blockIdx.x;
if (tid < Nrows) d_results[tid] = thrust::reduce(thrust::seq, d_data + tid * Ncols, d_data + (tid + 1) * Ncols);
}
__global__ void test2(const float * __restrict__ d_data, float * __restrict__ d_results, const int Nrows, const int Ncols) {
const unsigned int tid = threadIdx.x + blockDim.x * blockIdx.x;
if (tid < Nrows) d_results[tid] = thrust::reduce(thrust::device, d_data + tid * Ncols, d_data + (tid + 1) * Ncols);
}
/********/
/* MAIN */
/********/
int main() {
const int Nrows = 64;
const int Ncols = 2048;
gpuErrchk(cudaFree(0));
// size_t DevQueue;
// gpuErrchk(cudaDeviceGetLimit(&DevQueue, cudaLimitDevRuntimePendingLaunchCount));
// DevQueue *= 128;
// gpuErrchk(cudaDeviceSetLimit(cudaLimitDevRuntimePendingLaunchCount, DevQueue));
float *h_data = (float *)malloc(Nrows * Ncols * sizeof(float));
float *h_results = (float *)malloc(Nrows * sizeof(float));
float *h_results1 = (float *)malloc(Nrows * sizeof(float));
float *h_results2 = (float *)malloc(Nrows * sizeof(float));
float sum = 0.f;
for (int i=0; i<Nrows; i++) {
h_results[i] = 0.f;
for (int j=0; j<Ncols; j++) {
h_data[i*Ncols+j] = i;
h_results[i] = h_results[i] + h_data[i*Ncols+j];
}
}
TimingGPU timerGPU;
float *d_data; gpuErrchk(cudaMalloc((void**)&d_data, Nrows * Ncols * sizeof(float)));
float *d_results1; gpuErrchk(cudaMalloc((void**)&d_results1, Nrows * sizeof(float)));
float *d_results2; gpuErrchk(cudaMalloc((void**)&d_results2, Nrows * sizeof(float)));
gpuErrchk(cudaMemcpy(d_data, h_data, Nrows * Ncols * sizeof(float), cudaMemcpyHostToDevice));
timerGPU.StartCounter();
test1<<<iDivUp(Nrows, BLOCKSIZE_1D), BLOCKSIZE_1D>>>(d_data, d_results1, Nrows, Ncols);
gpuErrchk(cudaPeekAtLastError());
gpuErrchk(cudaDeviceSynchronize());
printf("Timing approach nr. 1 = %f\n", timerGPU.GetCounter());
gpuErrchk(cudaMemcpy(h_results1, d_results1, Nrows * sizeof(float), cudaMemcpyDeviceToHost));
for (int i=0; i<Nrows; i++) {
if (h_results1[i] != h_results[i]) {
printf("Approach nr. 1; Error at i = %i; h_results1 = %f; h_results = %f", i, h_results1[i], h_results[i]);
return 0;
}
}
timerGPU.StartCounter();
test2<<<iDivUp(Nrows, BLOCKSIZE_1D), BLOCKSIZE_1D>>>(d_data, d_results1, Nrows, Ncols);
gpuErrchk(cudaPeekAtLastError());
gpuErrchk(cudaDeviceSynchronize());
printf("Timing approach nr. 2 = %f\n", timerGPU.GetCounter());
gpuErrchk(cudaMemcpy(h_results1, d_results1, Nrows * sizeof(float), cudaMemcpyDeviceToHost));
for (int i=0; i<Nrows; i++) {
if (h_results1[i] != h_results[i]) {
printf("Approach nr. 2; Error at i = %i; h_results1 = %f; h_results = %f", i, h_results1[i], h_results[i]);
return 0;
}
}
printf("Test passed!\n");
}
The above example performs reductions of the rows of a matrix in the same sense as Reduce matrix rows with CUDA, but it is done differently from the above post, namely, by calling CUDA Thrust primitives directly from user written kernels. Also, the above example serves to compare the performance of the same operations when done with two execution policies, namely, thrust::seq and thrust::device. Below, some graphs showing the difference in performance.
The performance has been evaluated on a Kepler K20c and on a Maxwell GeForce GTX 850M.
I would like to provide an updated answer to this question.
Starting from Thrust 1.8, CUDA Thrust primitives can be combined with the thrust::seq execution policy to run sequentially within a single CUDA thread (or sequentially within a single CPU thread). Below, an example is reported.
If you want parallel execution within a thread, then you may consider using CUB which provides reduction routines that can be called from within a threadblock, provided that your card enables dynamic parallelism.
Here is the example with Thrust
#include <stdio.h>
#include <thrust/reduce.h>
#include <thrust/execution_policy.h>
/********************/
/* CUDA ERROR CHECK */
/********************/
#define gpuErrchk(ans) { gpuAssert((ans), __FILE__, __LINE__); }
inline void gpuAssert(cudaError_t code, char *file, int line, bool abort=true)
{
if (code != cudaSuccess)
{
fprintf(stderr,"GPUassert: %s %s %d\n", cudaGetErrorString(code), file, line);
if (abort) exit(code);
}
}
__global__ void test(float *d_A, int N) {
float sum = thrust::reduce(thrust::seq, d_A, d_A + N);
printf("Device side result = %f\n", sum);
}
int main() {
const int N = 16;
float *h_A = (float*)malloc(N * sizeof(float));
float sum = 0.f;
for (int i=0; i<N; i++) {
h_A[i] = i;
sum = sum + h_A[i];
}
printf("Host side result = %f\n", sum);
float *d_A; gpuErrchk(cudaMalloc((void**)&d_A, N * sizeof(float)));
gpuErrchk(cudaMemcpy(d_A, h_A, N * sizeof(float), cudaMemcpyHostToDevice));
test<<<1,1>>>(d_A, N);
}
If you mean to use the data allocated / processed by thrust yes you can, just get the raw pointer of the allocated data.
int * raw_ptr = thrust::raw_pointer_cast(dev_ptr);
if you want to allocate thrust vectors in the kernel I never tried but I don't think will work
and also if it works I don't think it will provide any benefit.
I want to use Scsrmv cusparse function.
Reading the documentation from here, I can't figure how to define csrRowPtrA and csrColIndA:
csrRowPtrA : integer array of m+1 elements that contains the start of
every row and the end of the last row plus one.
csrColIndA : integer array of nnz ( = csrRowPtrA(m) - csrRowPtrA(0) )
column indices of the nonzero elements of matrix A.
So , for example:
float *devRow;
cudaMalloc((void **)&devRow, (m+1)*sizeof(float));
and if A is the matrix, then:
for (int i=0; i<m; i+= n) //m is rows , n is columns
devRow[i] = A[i];
This is for the start of every row. For the last row and plus 1? This confused me.
And for columns? Something like:
for (int i=0;i<nnz;i++)
devCol = devRow[m] - devRow[0];
Following Robert Crovella's answer, this is a fully worked example on how converting a sparse matrix stored in dense format into a CSR (compressed row storage) format. I hope it will be useful to other users.
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <cuda_runtime.h>
#include <cusparse_v2.h>
#include "Utilities.cuh"
/***************************/
/* CUSPARSE ERROR CHECKING */
/***************************/
static const char *_cusparseGetErrorEnum(cusparseStatus_t error)
{
switch (error)
{
case CUSPARSE_STATUS_SUCCESS:
return "CUSPARSE_STATUS_SUCCESS";
case CUSPARSE_STATUS_NOT_INITIALIZED:
return "CUSPARSE_STATUS_NOT_INITIALIZED";
case CUSPARSE_STATUS_ALLOC_FAILED:
return "CUSPARSE_STATUS_ALLOC_FAILED";
case CUSPARSE_STATUS_INVALID_VALUE:
return "CUSPARSE_STATUS_INVALID_VALUE";
case CUSPARSE_STATUS_ARCH_MISMATCH:
return "CUSPARSE_STATUS_ARCH_MISMATCH";
case CUSPARSE_STATUS_MAPPING_ERROR:
return "CUSPARSE_STATUS_MAPPING_ERROR";
case CUSPARSE_STATUS_EXECUTION_FAILED:
return "CUSPARSE_STATUS_EXECUTION_FAILED";
case CUSPARSE_STATUS_INTERNAL_ERROR:
return "CUSPARSE_STATUS_INTERNAL_ERROR";
case CUSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED:
return "CUSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED";
case CUSPARSE_STATUS_ZERO_PIVOT:
return "CUSPARSE_STATUS_ZERO_PIVOT";
}
return "<unknown>";
}
inline void __cusparseSafeCall(cusparseStatus_t err, const char *file, const int line)
{
if(CUSPARSE_STATUS_SUCCESS != err) {
fprintf(stderr, "CUSPARSE error in file '%s', line %Ndims\Nobjs %s\nerror %Ndims: %s\nterminating!\Nobjs",__FILE__, __LINE__,err, \
_cusparseGetErrorEnum(err)); \
cudaDeviceReset(); assert(0); \
}
}
extern "C" void cusparseSafeCall(cusparseStatus_t err) { __cusparseSafeCall(err, __FILE__, __LINE__); }
/********/
/* MAIN */
/********/
int main()
{
// --- Initialize cuSPARSE
cusparseHandle_t handle; cusparseSafeCall(cusparseCreate(&handle));
const int Nrows = 4; // --- Number of rows
const int Ncols = 5; // --- Number of columns
// --- Host side dense matrix
double *h_A_dense = (double*)malloc(Nrows*Ncols*sizeof(*h_A_dense));
// --- Column-major ordering
h_A_dense[0] = 1.0f; h_A_dense[4] = 4.0f; h_A_dense[8] = 0.0f; h_A_dense[12] = 0.0f; h_A_dense[16] = 0.0f;
h_A_dense[1] = 0.0f; h_A_dense[5] = 2.0f; h_A_dense[9] = 3.0f; h_A_dense[13] = 0.0f; h_A_dense[17] = 0.0f;
h_A_dense[2] = 5.0f; h_A_dense[6] = 0.0f; h_A_dense[10] = 0.0f; h_A_dense[14] = 7.0f; h_A_dense[18] = 8.0f;
h_A_dense[3] = 0.0f; h_A_dense[7] = 0.0f; h_A_dense[11] = 9.0f; h_A_dense[15] = 0.0f; h_A_dense[19] = 6.0f;
//create device array and copy host to it
double *d_A_dense; gpuErrchk(cudaMalloc(&d_A_dense, Nrows * Ncols * sizeof(*d_A_dense)));
gpuErrchk(cudaMemcpy(d_A_dense, h_A_dense, Nrows * Ncols * sizeof(*d_A_dense), cudaMemcpyHostToDevice));
// --- Descriptor for sparse matrix A
cusparseMatDescr_t descrA; cusparseSafeCall(cusparseCreateMatDescr(&descrA));
cusparseSetMatType (descrA, CUSPARSE_MATRIX_TYPE_GENERAL);
cusparseSetMatIndexBase (descrA, CUSPARSE_INDEX_BASE_ZERO);
int nnz = 0; // --- Number of nonzero elements in dense matrix
const int lda = Nrows; // --- Leading dimension of dense matrix
// --- Device side number of nonzero elements per row
int *d_nnzPerVector; gpuErrchk(cudaMalloc(&d_nnzPerVector, Nrows * sizeof(*d_nnzPerVector)));
cusparseSafeCall(cusparseDnnz(handle, CUSPARSE_DIRECTION_ROW, Nrows, Ncols, descrA, d_A_dense, lda, d_nnzPerVector, &nnz));
// --- Host side number of nonzero elements per row
int *h_nnzPerVector = (int *)malloc(Nrows * sizeof(*h_nnzPerVector));
gpuErrchk(cudaMemcpy(h_nnzPerVector, d_nnzPerVector, Nrows * sizeof(*h_nnzPerVector), cudaMemcpyDeviceToHost));
printf("Number of nonzero elements in dense matrix = %i\n\n", nnz);
for (int i = 0; i < Nrows; ++i) printf("Number of nonzero elements in row %i = %i \n", i, h_nnzPerVector[i]);
printf("\n");
// --- Device side dense matrix
double *d_A; gpuErrchk(cudaMalloc(&d_A, nnz * sizeof(*d_A)));
int *d_A_RowIndices; gpuErrchk(cudaMalloc(&d_A_RowIndices, (Nrows + 1) * sizeof(*d_A_RowIndices)));
int *d_A_ColIndices; gpuErrchk(cudaMalloc(&d_A_ColIndices, nnz * sizeof(*d_A_ColIndices)));
cusparseSafeCall(cusparseDdense2csr(handle, Nrows, Ncols, descrA, d_A_dense, lda, d_nnzPerVector, d_A, d_A_RowIndices, d_A_ColIndices));
// --- Host side dense matrix
double *h_A = (double *)malloc(nnz * sizeof(*h_A));
int *h_A_RowIndices = (int *)malloc((Nrows + 1) * sizeof(*h_A_RowIndices));
int *h_A_ColIndices = (int *)malloc(nnz * sizeof(*h_A_ColIndices));
gpuErrchk(cudaMemcpy(h_A, d_A, nnz*sizeof(*h_A), cudaMemcpyDeviceToHost));
gpuErrchk(cudaMemcpy(h_A_RowIndices, d_A_RowIndices, (Nrows + 1) * sizeof(*h_A_RowIndices), cudaMemcpyDeviceToHost));
gpuErrchk(cudaMemcpy(h_A_ColIndices, d_A_ColIndices, nnz * sizeof(*h_A_ColIndices), cudaMemcpyDeviceToHost));
for (int i = 0; i < nnz; ++i) printf("A[%i] = %.0f ", i, h_A[i]); printf("\n");
for (int i = 0; i < (Nrows + 1); ++i) printf("h_A_RowIndices[%i] = %i \n", i, h_A_RowIndices[i]); printf("\n");
for (int i = 0; i < nnz; ++i) printf("h_A_ColIndices[%i] = %i \n", i, h_A_ColIndices[i]);
}
You can convert a dense matrix to sparse with code you write yourself. For the CSR (compressed-sparse-row) formulation, you could also use the CUSPARSE function for this.
The general format of a CSR sparse matrix representation is documented in many places, including the CUSPARSE manual.
The following program tests the dense to sparse conversion using cuSPARSE. It produces garbage in the first several lines of output. But if I move the lines marked with (2) to the place after the lines marked with (1), the program works fine. Can someone tell me what could be the reason?
EDIT:
To make the presentation clearer, I rewrote the program with thrust, the same issue persists.
EDIT:
As suggested by Robert, I changed it back to the version without thrust and added api level error check code.
#include <iostream>
#include <cusparse_v2.h>
using std::cerr;
using std::cout;
using std::endl;
#define WRAP(x) do {x} while (0)
#define CHKcusparse(x) WRAP( \
cusparseStatus_t err = (x); \
if (err != CUSPARSE_STATUS_SUCCESS) { \
cerr << "Cusparse Error #" << int(err) << "\"TODO\" at Line " \
<< __LINE__ << " of " << __FILE__ << ": " << #x << endl; \
exit(1); \
} \
)
#define CHKcuda(x) WRAP( \
cudaError_t err = (x); \
if (err != cudaSuccess) { \
cerr << "Cuda Error #" << int(err) << ", \"" \
<< cudaGetErrorString(err) << "\" at Line " << __LINE__ \
<< " of " << __FILE__ << ": " << #x << endl; \
exit(1); \
} \
)
#define ALLOC(X, T, N) do { \
h##X = (T*) malloc(sizeof(T) * (N)); \
CHKcuda(cudaMalloc((void**)&d##X, sizeof(T) * (N))); \
} while(0)
int main() {
srand(100);
cusparseHandle_t g_cusparse_handle;
CHKcusparse(cusparseCreate(&g_cusparse_handle));
const int n = 100, in_degree = 10;
int nnz = n * in_degree, nn = n * n;
int *dnnz, *dridx, *dcols;
int *hnnz, *hridx, *hcols;
float *dvals, *dmat;
float *hvals, *hmat;
// (1) The number of non-zeros in each column.
ALLOC(nnz, int, n);
// The dense matrix.
ALLOC(mat, float, nn);
// The values in sparse matrix.
ALLOC(vals, float, nnz);
// (2) The row indices of the sparse matrix.
ALLOC(ridx, int, nnz);
// The column offsets of the sparse matrix.
ALLOC(cols, int, n+1);
// Fill and copy dense matrix and number of non-zeros.
for (int i = 0; i < nn; i++) {hmat[i] = rand();}
for (int i = 0; i < n; i++) {hnnz[i] = in_degree;}
CHKcuda(cudaMemcpyAsync(dnnz, hnnz, sizeof(int) * n, cudaMemcpyHostToDevice));
CHKcuda(cudaMemcpyAsync(dmat, hmat, sizeof(float) * nn, cudaMemcpyHostToDevice));
CHKcuda(cudaDeviceSynchronize());
// Perform dense to CSC format
cusparseMatDescr_t cspMatDesc;
CHKcusparse(cusparseCreateMatDescr(&cspMatDesc));
CHKcusparse(cusparseSdense2csc(
g_cusparse_handle, n, n, cspMatDesc, dmat, n,
dnnz, dvals, dridx, dcols
));
// Copy row indices back.
CHKcuda(cudaMemcpyAsync(hridx, dridx, sizeof(int) * nnz, cudaMemcpyDeviceToHost));
CHKcuda(cudaDeviceSynchronize());
CHKcusparse(cusparseDestroyMatDescr(cspMatDesc));
// Display row indices.
for (int i = 0; i < n; i++) {
for (int j = 0; j < in_degree; j++) {
std::cout << hridx[i * in_degree + j] << ", ";
}
std::cout << std::endl;
}
CHKcuda(cudaFree(dnnz));
CHKcuda(cudaFree(dvals));
CHKcuda(cudaFree(dridx));
CHKcuda(cudaFree(dcols));
CHKcuda(cudaFree(dmat));
free(hnnz);
free(hmat);
free(hvals);
free(hridx);
free(hcols);
return 0;
}
The basic problem is that you are passing internally inconsistent data to the dense-to-sparse routine. You are passing a dense matrix which has 100 non-zero elements per column, but you are telling cusparse that there are only 10 non-zero elements per column.
If you run your code with cuda-memcheck, you will see that there are errors coming out of cusparse.
For this code, you can fix the issue by changing your in_degree variable to 100.
For the general case, cusparse provides a convenient routine to populate the number of non-zero elements per column correctly.
As already underlined by Robert Crovella, passing from dense to sparse can be effectively performed using cuSPARSE by the cusparse<t>nnz() and cusparse<t>dense2csr() routines. The vice versa can be done by the cusparse<t>csr2dense() routine. Below, there is a fully worked out example showing how passing from dense to sparse and vice versa using cuSPARSE in CSR format.
cuSparseUtilities.cuh
#ifndef CUSPARSEUTILITIES_CUH
#define CUSPARSEUTILITIES_CUH
#include "cusparse_v2.h"
void setUpDescriptor(cusparseMatDescr_t &, cusparseMatrixType_t, cusparseIndexBase_t);
void dense2SparseD(const double * __restrict__ d_A_dense, int **d_nnzPerVector, double **d_A,
int **d_A_RowIndices, int **d_A_ColIndices, int &nnz, cusparseMatDescr_t descrA,
const cusparseHandle_t handle, const int Nrows, const int Ncols);
#endif
cuSparseUtilities.cu
#include "cuSparseUtilities.cuh"
#include "Utilities.cuh"
/*****************************/
/* SETUP DESCRIPTOR FUNCTION */
/*****************************/
void setUpDescriptor(cusparseMatDescr_t &descrA, cusparseMatrixType_t matrixType, cusparseIndexBase_t indexBase) {
cusparseSafeCall(cusparseCreateMatDescr(&descrA));
cusparseSafeCall(cusparseSetMatType(descrA, matrixType));
cusparseSafeCall(cusparseSetMatIndexBase(descrA, indexBase));
}
/********************************************************/
/* DENSE TO SPARSE CONVERSION FOR REAL DOUBLE PRECISION */
/********************************************************/
void dense2SparseD(const double * __restrict__ d_A_dense, int **d_nnzPerVector, double **d_A,
int **d_A_RowIndices, int **d_A_ColIndices, int &nnz, cusparseMatDescr_t descrA,
const cusparseHandle_t handle, const int Nrows, const int Ncols) {
const int lda = Nrows; // --- Leading dimension of dense matrix
gpuErrchk(cudaMalloc(&d_nnzPerVector[0], Nrows * sizeof(int)));
// --- Compute the number of nonzero elements per row and the total number of nonzero elements in the dense d_A_dense
cusparseSafeCall(cusparseDnnz(handle, CUSPARSE_DIRECTION_ROW, Nrows, Ncols, descrA, d_A_dense, lda, d_nnzPerVector[0], &nnz));
// --- Device side sparse matrix
gpuErrchk(cudaMalloc(&d_A[0], nnz * sizeof(double)));
gpuErrchk(cudaMalloc(&d_A_RowIndices[0], (Nrows + 1) * sizeof(int)));
gpuErrchk(cudaMalloc(&d_A_ColIndices[0], nnz * sizeof(int)));
cusparseSafeCall(cusparseDdense2csr(handle, Nrows, Ncols, descrA, d_A_dense, lda, d_nnzPerVector[0], d_A[0], d_A_RowIndices[0], d_A_ColIndices[0]));
}
kernel.cu
#include "cuda_runtime.h"
#include "device_launch_parameters.h"
#include <stdio.h>
#include <cusparse_v2.h>
#include "cuSparseUtilities.cuh"
#include "Utilities.cuh"
/********/
/* MAIN */
/********/
int main() {
cusparseHandle_t handle;
// --- Initialize cuSPARSE
cusparseSafeCall(cusparseCreate(&handle));
cusparseMatDescr_t descrA = 0;
/**************************/
/* SETTING UP THE PROBLEM */
/**************************/
const int Nrows = 5; // --- Number of rows
const int Ncols = 4; // --- Number of columns
const int N = Nrows;
// --- Host side dense matrix
double *h_A_dense = (double*)malloc(Nrows * Ncols * sizeof(*h_A_dense));
// --- Column-major storage
h_A_dense[ 0] = 0.4612f; h_A_dense[ 5] = -0.0006f; h_A_dense[10] = 1.3f; h_A_dense[15] = 0.0f;
h_A_dense[ 1] = 0.0f; h_A_dense[ 6] = 1.443f; h_A_dense[11] = 0.0f; h_A_dense[16] = 0.0f;
h_A_dense[ 2] = -0.0006f; h_A_dense[ 7] = 0.4640f; h_A_dense[12] = 0.0723f; h_A_dense[17] = 0.0f;
h_A_dense[ 3] = 0.3566f; h_A_dense[ 8] = 0.0723f; h_A_dense[13] = 0.7543f; h_A_dense[18] = 0.0f;
h_A_dense[ 4] = 0.f; h_A_dense[ 9] = 0.0f; h_A_dense[14] = 0.0f; h_A_dense[19] = 0.1f;
// --- Create device array and copy host array to it
double *d_A_dense; gpuErrchk(cudaMalloc(&d_A_dense, Nrows * Ncols * sizeof(double)));
gpuErrchk(cudaMemcpy(d_A_dense, h_A_dense, Nrows * Ncols * sizeof(*d_A_dense), cudaMemcpyHostToDevice));
/*******************************/
/* FROM DENSE TO SPARSE MATRIX */
/*******************************/
// --- Descriptor for sparse matrix A
setUpDescriptor(descrA, CUSPARSE_MATRIX_TYPE_GENERAL, CUSPARSE_INDEX_BASE_ONE);
int nnz = 0; // --- Number of nonzero elements in dense matrix
int *d_nnzPerVector; // --- Device side number of nonzero elements per row
double *d_A; // --- Sparse matrix values - array of size nnz
int *d_A_RowIndices; // --- "Row indices"
int *d_A_ColIndices; // --- "Column indices"
dense2SparseD(d_A_dense, &d_nnzPerVector, &d_A, &d_A_RowIndices, &d_A_ColIndices, nnz, descrA, handle, Nrows, Ncols);
/*******************************************************/
/* CHECKING THE RESULTS FOR DENSE TO SPARSE CONVERSION */
/*******************************************************/
// --- Host side number of nonzero elements per row
int *h_nnzPerVector = (int *)malloc(Nrows * sizeof(int));
gpuErrchk(cudaMemcpy(h_nnzPerVector, d_nnzPerVector, Nrows * sizeof(int), cudaMemcpyDeviceToHost));
printf("Number of nonzero elements in dense matrix = %i\n\n", nnz);
for (int i = 0; i < Nrows; ++i) printf("Number of nonzero elements in row %i = %i \n", i, h_nnzPerVector[i]);
printf("\n");
// --- Host side sparse matrix
double *h_A = (double *)malloc(nnz * sizeof(double));
int *h_A_RowIndices = (int *)malloc((Nrows + 1) * sizeof(int));
int *h_A_ColIndices = (int *)malloc(nnz * sizeof(int));
gpuErrchk(cudaMemcpy(h_A, d_A, nnz * sizeof(double), cudaMemcpyDeviceToHost));
gpuErrchk(cudaMemcpy(h_A_RowIndices, d_A_RowIndices, (Nrows + 1) * sizeof(int), cudaMemcpyDeviceToHost));
gpuErrchk(cudaMemcpy(h_A_ColIndices, d_A_ColIndices, nnz * sizeof(int), cudaMemcpyDeviceToHost));
printf("\nOriginal matrix in CSR format\n\n");
for (int i = 0; i < nnz; ++i) printf("A[%i] = %f\n", i, h_A[i]); printf("\n");
printf("\n");
for (int i = 0; i < (Nrows + 1); ++i) printf("h_A_RowIndices[%i] = %i \n", i, h_A_RowIndices[i]); printf("\n");
for (int i = 0; i < nnz; ++i) printf("h_A_ColIndices[%i] = %i \n", i, h_A_ColIndices[i]);
/*******************************/
/* FROM SPARSE TO DENSE MATRIX */
/*******************************/
double *d_A_denseReconstructed; gpuErrchk(cudaMalloc(&d_A_denseReconstructed, Nrows * Ncols * sizeof(double)));
cusparseSafeCall(cusparseDcsr2dense(handle, Nrows, Ncols, descrA, d_A, d_A_RowIndices, d_A_ColIndices,
d_A_denseReconstructed, Nrows));
/*******************************************************/
/* CHECKING THE RESULTS FOR SPARSE TO DENSE CONVERSION */
/*******************************************************/
double *h_A_denseReconstructed = (double *)malloc(Nrows * Ncols * sizeof(double));
gpuErrchk(cudaMemcpy(h_A_denseReconstructed, d_A_denseReconstructed, Nrows * Ncols * sizeof(double), cudaMemcpyDeviceToHost));
printf("\nReconstructed dense matrix \n");
for (int m = 0; m < Nrows; m++) {
for (int n = 0; n < Ncols; n++)
printf("%f\t", h_A_denseReconstructed[n * Nrows + m]);
printf("\n");
}
return 0;
}
I am a newbie to Thrust. I see that all Thrust presentations and examples only show host code.
I would like to know if I can pass a device_vector to my own kernel? How?
If yes, what are the operations permitted on it inside kernel/device code?
As it was originally written, Thrust is purely a host side abstraction. It cannot be used inside kernels. You can pass the device memory encapsulated inside a thrust::device_vector to your own kernel like this:
thrust::device_vector< Foo > fooVector;
// Do something thrust-y with fooVector
Foo* fooArray = thrust::raw_pointer_cast( fooVector.data() );
// Pass raw array and its size to kernel
someKernelCall<<< x, y >>>( fooArray, fooVector.size() );
and you can also use device memory not allocated by thrust within thrust algorithms by instantiating a thrust::device_ptr with the bare cuda device memory pointer.
Edited four and half years later to add that as per #JackOLantern's answer, thrust 1.8 adds a sequential execution policy which means you can run single threaded versions of thrust's alogrithms on the device. Note that it still isn't possible to directly pass a thrust device vector to a kernel and device vectors can't be directly used in device code.
Note that it is also possible to use the thrust::device execution policy in some cases to have parallel thrust execution launched by a kernel as a child grid. This requires separate compilation/device linkage and hardware which supports dynamic parallelism. I am not certain whether this is actually supported in all thrust algorithms or not, but certainly works with some.
This is an update to my previous answer.
Starting from Thrust 1.8.1, CUDA Thrust primitives can be combined with the thrust::device execution policy to run in parallel within a single CUDA thread exploiting CUDA dynamic parallelism. Below, an example is reported.
#include <stdio.h>
#include <thrust/reduce.h>
#include <thrust/execution_policy.h>
#include "TimingGPU.cuh"
#include "Utilities.cuh"
#define BLOCKSIZE_1D 256
#define BLOCKSIZE_2D_X 32
#define BLOCKSIZE_2D_Y 32
/*************************/
/* TEST KERNEL FUNCTIONS */
/*************************/
__global__ void test1(const float * __restrict__ d_data, float * __restrict__ d_results, const int Nrows, const int Ncols) {
const unsigned int tid = threadIdx.x + blockDim.x * blockIdx.x;
if (tid < Nrows) d_results[tid] = thrust::reduce(thrust::seq, d_data + tid * Ncols, d_data + (tid + 1) * Ncols);
}
__global__ void test2(const float * __restrict__ d_data, float * __restrict__ d_results, const int Nrows, const int Ncols) {
const unsigned int tid = threadIdx.x + blockDim.x * blockIdx.x;
if (tid < Nrows) d_results[tid] = thrust::reduce(thrust::device, d_data + tid * Ncols, d_data + (tid + 1) * Ncols);
}
/********/
/* MAIN */
/********/
int main() {
const int Nrows = 64;
const int Ncols = 2048;
gpuErrchk(cudaFree(0));
// size_t DevQueue;
// gpuErrchk(cudaDeviceGetLimit(&DevQueue, cudaLimitDevRuntimePendingLaunchCount));
// DevQueue *= 128;
// gpuErrchk(cudaDeviceSetLimit(cudaLimitDevRuntimePendingLaunchCount, DevQueue));
float *h_data = (float *)malloc(Nrows * Ncols * sizeof(float));
float *h_results = (float *)malloc(Nrows * sizeof(float));
float *h_results1 = (float *)malloc(Nrows * sizeof(float));
float *h_results2 = (float *)malloc(Nrows * sizeof(float));
float sum = 0.f;
for (int i=0; i<Nrows; i++) {
h_results[i] = 0.f;
for (int j=0; j<Ncols; j++) {
h_data[i*Ncols+j] = i;
h_results[i] = h_results[i] + h_data[i*Ncols+j];
}
}
TimingGPU timerGPU;
float *d_data; gpuErrchk(cudaMalloc((void**)&d_data, Nrows * Ncols * sizeof(float)));
float *d_results1; gpuErrchk(cudaMalloc((void**)&d_results1, Nrows * sizeof(float)));
float *d_results2; gpuErrchk(cudaMalloc((void**)&d_results2, Nrows * sizeof(float)));
gpuErrchk(cudaMemcpy(d_data, h_data, Nrows * Ncols * sizeof(float), cudaMemcpyHostToDevice));
timerGPU.StartCounter();
test1<<<iDivUp(Nrows, BLOCKSIZE_1D), BLOCKSIZE_1D>>>(d_data, d_results1, Nrows, Ncols);
gpuErrchk(cudaPeekAtLastError());
gpuErrchk(cudaDeviceSynchronize());
printf("Timing approach nr. 1 = %f\n", timerGPU.GetCounter());
gpuErrchk(cudaMemcpy(h_results1, d_results1, Nrows * sizeof(float), cudaMemcpyDeviceToHost));
for (int i=0; i<Nrows; i++) {
if (h_results1[i] != h_results[i]) {
printf("Approach nr. 1; Error at i = %i; h_results1 = %f; h_results = %f", i, h_results1[i], h_results[i]);
return 0;
}
}
timerGPU.StartCounter();
test2<<<iDivUp(Nrows, BLOCKSIZE_1D), BLOCKSIZE_1D>>>(d_data, d_results1, Nrows, Ncols);
gpuErrchk(cudaPeekAtLastError());
gpuErrchk(cudaDeviceSynchronize());
printf("Timing approach nr. 2 = %f\n", timerGPU.GetCounter());
gpuErrchk(cudaMemcpy(h_results1, d_results1, Nrows * sizeof(float), cudaMemcpyDeviceToHost));
for (int i=0; i<Nrows; i++) {
if (h_results1[i] != h_results[i]) {
printf("Approach nr. 2; Error at i = %i; h_results1 = %f; h_results = %f", i, h_results1[i], h_results[i]);
return 0;
}
}
printf("Test passed!\n");
}
The above example performs reductions of the rows of a matrix in the same sense as Reduce matrix rows with CUDA, but it is done differently from the above post, namely, by calling CUDA Thrust primitives directly from user written kernels. Also, the above example serves to compare the performance of the same operations when done with two execution policies, namely, thrust::seq and thrust::device. Below, some graphs showing the difference in performance.
The performance has been evaluated on a Kepler K20c and on a Maxwell GeForce GTX 850M.
I would like to provide an updated answer to this question.
Starting from Thrust 1.8, CUDA Thrust primitives can be combined with the thrust::seq execution policy to run sequentially within a single CUDA thread (or sequentially within a single CPU thread). Below, an example is reported.
If you want parallel execution within a thread, then you may consider using CUB which provides reduction routines that can be called from within a threadblock, provided that your card enables dynamic parallelism.
Here is the example with Thrust
#include <stdio.h>
#include <thrust/reduce.h>
#include <thrust/execution_policy.h>
/********************/
/* CUDA ERROR CHECK */
/********************/
#define gpuErrchk(ans) { gpuAssert((ans), __FILE__, __LINE__); }
inline void gpuAssert(cudaError_t code, char *file, int line, bool abort=true)
{
if (code != cudaSuccess)
{
fprintf(stderr,"GPUassert: %s %s %d\n", cudaGetErrorString(code), file, line);
if (abort) exit(code);
}
}
__global__ void test(float *d_A, int N) {
float sum = thrust::reduce(thrust::seq, d_A, d_A + N);
printf("Device side result = %f\n", sum);
}
int main() {
const int N = 16;
float *h_A = (float*)malloc(N * sizeof(float));
float sum = 0.f;
for (int i=0; i<N; i++) {
h_A[i] = i;
sum = sum + h_A[i];
}
printf("Host side result = %f\n", sum);
float *d_A; gpuErrchk(cudaMalloc((void**)&d_A, N * sizeof(float)));
gpuErrchk(cudaMemcpy(d_A, h_A, N * sizeof(float), cudaMemcpyHostToDevice));
test<<<1,1>>>(d_A, N);
}
If you mean to use the data allocated / processed by thrust yes you can, just get the raw pointer of the allocated data.
int * raw_ptr = thrust::raw_pointer_cast(dev_ptr);
if you want to allocate thrust vectors in the kernel I never tried but I don't think will work
and also if it works I don't think it will provide any benefit.