Does SAP ABAP offer a way to sign assemblies? - binary

I'm trying to find out whether it is possible to sign binaries written for SAP systems in ABAP. Contextually does it make sense? I've only found some reference to an add-on assembly kit which seems to be some sort of packaging standard. Can this be used to authenticate the source and integrity of ABAP modules?
Greatly appreciate your feedback~!
I seem to have found an answer to my question somewhat...one forum discussion states that ABAP is only interpreted and that there are no binaries to sign in the first place. I'm a bit confused though as to what the Add-on Assembly Kit is. I suppose it's a way of packaging the ABAP code into a certifiable package, which I suppose is the closest we'll get to what I'm looking for-although I'm not sure how this works if you're not interested in sharing the package with SAP for certification...If you have any insights please enlighten me.
Thanks!

not positive of your end requirement but I'll answer the best I can. ABAP is interpreted so there really is no need to sign a binary as there is none to sign. Because third party's needed ways to deliver solutions or code to their customers in a packaged manner SAP developed the add-on assembly toolkit, (emphasis on assembly) this allows the third party a tool to package all the solution pieces,( classes, tables, includes, screens etc.) into an add-on that can be installed, versioned etc. in your customers SAP system. So it's main purpose is to allow you to assemble the myriad pieces that make up your solution.
Of course if your talking about a single app, report etc. this obviously would be overkill.
If what you are seeking is a way to know that an app comes from your specific company, then you can request a custom namespace, when you get one assigned they issue you a key which only your company uses to install the namespace and that sort of works like signing, your programs will all exist in your namespace and be identified as such.
I'm sure there are more details others can provide but that should get you started.
Later.....

Related

Configure applications using environment variables

12-Factor Apps suggest that you configure your application using environment variables. So far, so good. I can easily imagine that this is a good way to do it if you need to set a connection string, e.g.
But what if you have more complex configuration with lots and lots of values? I for sure do not want to have 50+ environment variables, do I?
How could I solve this, and still be compliant to the idea of 12-Factor Apps?
From a quick read of the configure link you provided, I agree with the author's claim that there is a widespread problem, but I am not convinced that their proposed solution is going to always be best. Like you, I don't relish the idea of having to define dozens of environment variables to configure an application. So here are some alternative ideas.
First, read Chapter 2 of the Config4* Getting Started Guide (disclaimer: I am the main author of that software). In particular, notice that its support for what I call adaptive configuration can go a long way towards addressing the concern that you ask about. Is Config4* the ultimate solution? Possibly not, but I think it is a good step in the right direction.
Second, the chances are that whatever application you are developing/maintaining has already settled on a particular configuration technology, such as XML files or Java property files, and it won't be feasible to migrate to using Config4*. This raises the question: is there anything you can do to avoid having a proliferation of, say, XML-based configuration files when you have multiple environments (such as dev, UAT, staging and production) in which the application will be deployed? I have outlined an approach for dealing with this issue in another StackOverflow article.

Does a JSON-RPC server exist for answering general Prolog queries?

I saw this tutorial for writing a JSON-RPC server for SWI-Prolog. Unfortunately, all it does is add two numbers. I'm wondering if there exists a RPC server for SWI-Prolog that can define new rules and answer general Prolog queries, returning JSON lists, etc?
When you take a tour on SWI-Prolog website, proudly self-powered, you can see at work some of the features offered by http package.
It's a fairly large range of tools, and to grasp the basic of the system, the easiest way it's to follow the specific How to section, step by step. There is a small bug you should be aware in the LOD Crawler: add an option on line 42 of lod.pl:
...
; rdf_load(URI2, [format(xml)]),
....
or you will probably get
Internal server error
Domain error: content_type' expected, found text/xml;charset=UTF-8'
when running the sample.
An important feature of the IDE it's the ability to debug the HTTP requests.
When done with the HowTo, you can take a look to Cliopatria, dedicated to interfacing RDF to HTML. It come with a pirates demo, I must say I find it a bit too 'crude' for my taste, and I don't know about YUI, used in the award winning MultimediaN project. Then I've used Bootstrap to gain a modern look for the front end, with appreciable result (I'm sorry I can't - yet - publish it, need more time to engineering the system).
HTH

Framework vs. Toolkit vs. Library [duplicate]

This question already has answers here:
What is the difference between a framework and a library? [closed]
(22 answers)
Closed 6 years ago.
What is the difference between a Framework, a Toolkit and a Library?
The most important difference, and in fact the defining difference between a library and a framework is Inversion of Control.
What does this mean? Well, it means that when you call a library, you are in control. But with a framework, the control is inverted: the framework calls you. (This is called the Hollywood Principle: Don't call Us, We'll call You.) This is pretty much the definition of a framework. If it doesn't have Inversion of Control, it's not a framework. (I'm looking at you, .NET!)
Basically, all the control flow is already in the framework, and there's just a bunch of predefined white spots that you can fill out with your code.
A library on the other hand is a collection of functionality that you can call.
I don't know if the term toolkit is really well defined. Just the word "kit" seems to suggest some kind of modularity, i.e. a set of independent libraries that you can pick and choose from. What, then, makes a toolkit different from just a bunch of independent libraries? Integration: if you just have a bunch of independent libraries, there is no guarantee that they will work well together, whereas the libraries in a toolkit have been designed to work well together – you just don't have to use all of them.
But that's really just my interpretation of the term. Unlike library and framework, which are well-defined, I don't think that there is a widely accepted definition of toolkit.
Martin Fowler discusses the difference between a library and a framework in his article on Inversion of Control:
Inversion of Control is a key part of
what makes a framework different to a
library. A library is essentially a
set of functions that you can call,
these days usually organized into
classes. Each call does some work and
returns control to the client.
A framework embodies some abstract
design, with more behavior built in.
In order to use it you need to insert
your behavior into various places in
the framework either by subclassing or
by plugging in your own classes. The
framework's code then calls your code
at these points.
To summarize: your code calls a library but a framework calls your code.
Diagram
If you are a more visual learner, here is a diagram that makes it clearer:
(Credits: http://tom.lokhorst.eu/2010/09/why-libraries-are-better-than-frameworks)
The answer provided by Barrass is probably the most complete. However, the explanation could easily be stated more clearly. Most people miss the fact that these are all nested concepts. So let me lay it out for you.
When writing code:
eventually you discover sections of code that you're repeating in your program, so you refactor those into Functions/Methods.
eventually, after having written a few programs, you find yourself copying functions you already made into new programs. To save yourself time you bundle those functions into Libraries.
eventually you find yourself creating the same kind of user interfaces every time you make use of certain libraries. So you refactor your work and create a Toolkit that allows you to create your UIs more easily from generic method calls.
eventually, you've written so many apps that use the same toolkits and libraries that you create a Framework that has a generic version of this boilerplate code already provided so all you need to do is design the look of the UI and handle the events that result from user interaction.
Generally speaking, this completely explains the differences between the terms.
Introduction
There are various terms relating to collections of related code, which have both historical (pre-1994/5 for the purposes of this answer) and current implications, and the reader should be aware of both, particularly when reading classic texts on computing/programming from the historic era.
Library
Both historically, and currently, a library is a collection of code relating to a specific task, or set of closely related tasks which operate at roughly the same level of abstraction. It generally lacks any purpose or intent of its own, and is intended to be used by (consumed) and integrated with client code to assist client code in executing its tasks.
Toolkit
Historically, a toolkit is a more focused library, with a defined and specific purpose. Currently, this term has fallen out of favour, and is used almost exclusively (to this author's knowledge) for graphical widgets, and GUI components in the current era. A toolkit will most often operate at a higher layer of abstraction than a library, and will often consume and use libraries itself. Unlike libraries, toolkit code will often be used to execute the task of the client code, such as building a window, resizing a window, etc. The lower levels of abstraction within a toolkit are either fixed, or can themselves be operated on by client code in a proscribed manner. (Think Window style, which can either be fixed, or which could be altered in advance by client code.)
Framework
Historically, a framework was a suite of inter-related libraries and modules which were separated into either 'General' or 'Specific' categories. General frameworks were intended to offer a comprehensive and integrated platform for building applications by offering general functionality, such as cross platform memory management, multi-threading abstractions, dynamic structures (and generic structures in general). Historical general frameworks (Without dependency injection, see below) have almost universally been superseded by polymorphic templated (parameterised) packaged language offerings in OO languages, such as the STL for C++, or in packaged libraries for non-OO languages (guaranteed Solaris C headers). General frameworks operated at differing layers of abstraction, but universally low level, and like libraries relied on the client code carrying out it's specific tasks with their assistance.
'Specific' frameworks were historically developed for single (but often sprawling) tasks, such as "Command and Control" systems for industrial systems, and early networking stacks, and operated at a high level of abstraction and like toolkits were used to carry out execution of the client codes tasks.
Currently, the definition of a framework has become more focused and taken on the "Inversion of Control" principle as mentioned elsewhere as a guiding principle, so program flow, as well as execution is carried out by the framework. Frameworks are still however targeted either towards a specific output; an application for a specific OS for example (MFC for MS Windows for example), or for more general purpose work (Spring framework for example).
SDK: "Software Development Kit"
An SDK is a collection of tools to assist the programmer to create and deploy code/content which is very specifically targeted to either run on a very particular platform or in a very particular manner. An SDK can consist of simply a set of libraries which must be used in a specific way only by the client code and which can be compiled as normal, up to a set of binary tools which create or adapt binary assets to produce its (the SDK's) output.
Engine
An Engine (In code collection terms) is a binary which will run bespoke content or process input data in some way. Game and Graphics engines are perhaps the most prevalent users of this term, and are almost universally used with an SDK to target the engine itself, such as the UDK (Unreal Development Kit) but other engines also exist, such as Search engines and RDBMS engines.
An engine will often, but not always, allow only a few of its internals to be accessible to its clients. Most often to either target a different architecture, change the presentation of the output of the engine, or for tuning purposes. Open Source Engines are by definition open to clients to change and alter as required, and some propriety engines are fixed completely. The most often used engines in the world however, are almost certainly JavaScript Engines. Embedded into every browser everywhere, there are a whole host of JavaScript engines which will take JavaScript as an input, process it, and then output to render.
API: "Application Programming Interface"
The final term I am answering is a personal bugbear of mine: API, was historically used to describe the external interface of an application or environment which, itself was capable of running independently, or at least of carrying out its tasks without any necessary client intervention after initial execution. Applications such as Databases, Word Processors and Windows systems would expose a fixed set of internal hooks or objects to the external interface which a client could then call/modify/use, etc to carry out capabilities which the original application could carry out. API's varied between how much functionality was available through the API, and also, how much of the core application was (re)used by the client code. (For example, a word processing API may require the full application to be background loaded when each instance of the client code runs, or perhaps just one of its linked libraries; whereas a running windowing system would create internal objects to be managed by itself and pass back handles to the client code to be utilised instead.
Currently, the term API has a much broader range, and is often used to describe almost every other term within this answer. Indeed, the most common definition applied to this term is that an API offers up a contracted external interface to another piece of software (Client code to the API). In practice this means that an API is language dependent, and has a concrete implementation which is provided by one of the above code collections, such as a library, toolkit, or framework.
To look at a specific area, protocols, for example, an API is different to a protocol which is a more generic term representing a set of rules, however an individual implementation of a specific protocol/protocol suite that exposes an external interface to other software would most often be called an API.
Remark
As noted above, historic and current definitions of the above terms have shifted, and this can be seen to be down to advances in scientific understanding of the underlying computing principles and paradigms, and also down to the emergence of particular patterns of software. In particular, the GUI and Windowing systems of the early nineties helped to define many of these terms, but since the effective hybridisation of OS Kernel and Windowing system for mass consumer operating systems (bar perhaps Linux), and the mass adoption of dependency injection/inversion of control as a mechanism to consume libraries and frameworks, these terms have had to change their respective meanings.
P.S. (A year later)
After thinking carefully about this subject for over a year I reject the IoC principle as the defining difference between a framework and a library. There ARE a large number of popular authors who say that it is, but there are an almost equal number of people who say that it isn't. There are simply too many 'Frameworks' out there which DO NOT use IoC to say that it is the defining principle. A search for embedded or micro controller frameworks reveals a whole plethora which do NOT use IoC and I now believe that the .NET language and CLR is an acceptable descendant of the "general" framework. To say that IoC is the defining characteristic is simply too rigid for me to accept I'm afraid, and rejects out of hand anything putting itself forward as a framework which matches the historical representation as mentioned above.
For details of non-IoC frameworks, see, as mentioned above, many embedded and micro frameworks, as well as any historical framework in a language that does not provide callback through the language (OK. Callbacks can be hacked for any device with a modern register system, but not by the average programmer), and obviously, the .NET framework.
A library is simply a collection of methods/functions wrapped up into a package that can be imported into a code project and re-used.
A framework is a robust library or collection of libraries that provides a "foundation" for your code. A framework follows the Inversion of Control pattern. For example, the .NET framework is a large collection of cohesive libraries in which you build your application on top of. You can argue there isn't a big difference between a framework and a library, but when people say "framework" it typically implies a larger, more robust suite of libraries which will play an integral part of an application.
I think of a toolkit the same way I think of an SDK. It comes with documentation, examples, libraries, wrappers, etc. Again, you can say this is the same as a framework and you would probably be right to do so.
They can almost all be used interchangeably.
very, very similar, a framework is usually a bit more developed and complete then a library, and a toolkit can simply be a collection of similar librarys and frameworks.
a really good question that is maybe even the slightest bit subjective in nature, but I believe that is about the best answer I could give.
Library
I think it's unanimous that a library is code already coded that you can use so as not to have to code it again. The code must be organized in a way that allows you to look up the functionality you want and use it from your own code.
Most programming languages come with standard libraries, especially some code that implements some kind of collection. This is always for the convenience that you don't have to code these things yourself. Similarly, most programming languages have construct to allow you to look up functionality from libraries, with things like dynamic linking, namespaces, etc.
So code that finds itself often needed to be re-used is great code to be put inside a library.
Toolkit
A set of tools used for a particular purpose. This is unanimous. The question is, what is considered a tool and what isn't. I'd say there's no fixed definition, it depends on the context of the thing calling itself a toolkit. Example of tools could be libraries, widgets, scripts, programs, editors, documentation, servers, debuggers, etc.
Another thing to note is the "particular purpose". This is always true, but the scope of the purpose can easily change based on who made the toolkit. So it can easily be a programmer's toolkit, or it can be a string parsing toolkit. One is so broad, it could have tool touching everything programming related, while the other is more precise.
SDKs are generally toolkits, in that they try and bundle a set of tools (often of multiple kind) into a single package.
I think the common thread is that a tool does something for you, either completely, or it helps you do it. And a toolkit is simply a set of tools which all perform or help you perform a particular set of activities.
Framework
Frameworks aren't quite as unanimously defined. It seems to be a bit of a blanket term for anything that can frame your code. Which would mean: any structure that underlies or supports your code.
This implies that you build your code against a framework, whereas you build a library against your code.
But, it seems that sometimes the word framework is used in the same sense as toolkit or even library. The .Net Framework is mostly a toolkit, because it's composed of the FCL which is a library, and the CLR, which is a virtual machine. So you would consider it a toolkit to C# development on Windows. Mono being a toolkit for C# development on Linux. Yet they called it a framework. It makes sense to think of it this way too, since it kinds of frame your code, but a frame should more support and hold things together, then do any kind of work, so my opinion is this is not the way you should use the word.
And I think the industry is trying to move into having framework mean an already written program with missing pieces that you must provide or customize. Which I think is a good thing, since toolkit and library are great precise terms for other usages of "framework".
Framework: installed on you machine and allowing you to interact with it. without the framework you can't send programming commands to your machine
Library: aims to solve a certain problem (or several problems related to the same category)
Toolkit: a collection of many pieces of code that can solve multiple problems on multiple issues (just like a toolbox)
It's a little bit subjective I think. The toolkit is the easiest. It's just a bunch of methods, classes that can be use.
The library vs the framework question I make difference by the way to use them. I read somewhere the perfect answer a long time ago. The framework calls your code, but on the other hand your code calls the library.
In relation with the correct answer from Mittag:
a simple example. Let's say you implement the ISerializable interface (.Net) in one of your classes. You make use of the framework qualities of .Net then, rather than it's library qualities. You fill in the "white spots" (as mittag said) and you have the skeleton completed. You must know in advance how the framework is going to "react" with your code. Actually .net IS a framework, and here is where i disagree with the view of Mittag.
The full, complete answer to your question is given very lucidly in Chapter 19 (the whole chapter devoted to just this theme) of this book, which is a very good book by the way (not at all "just for Smalltalk").
Others have noted that .net may be both a framework and a library and a toolkit depending on which part you use but perhaps an example helps. Entity Framework for dealing with databases is a part of .net that does use the inversion of control pattern. You let it know your models it figures out what to do with them. As a programmer it requires you to understand "the mind of the framework", or more realistically the mind of the designer and what they are going to do with your inputs. datareader and related calls, on the other hand, are simply a tool to go get or put data to and from table/view and make it available to you. It would never understand how to take a parent child relationship and translate it from object to relational, you'd use multiple tools to do that. But you would have much more control on how that data was stored, when, transactions, etc.

Text User Interface Design Reference?

Is there a good book or other references on Text User Interface Design? I am not interested in graphical user interfaces. I am interested in usability for good command line and scripting interfaces.
Your interface should follow the Rule of Least Surprise as described by ESR in The Art of Unix Programming. If your programm supports command line options, make sure they have the traditional meaning. Be sure to read the chapter about Tradeoffs between CLI and Visual Interfaces.
IBM developed a standard called Common User Access. The Common User Access Basic Interface Design Guide has been published in the BookManager format and in HTML here.
The guide was written as a standard for developing 3270 applications. In my opinion the most important parts are the function keys standard and a color standard.
I'd use a favorite program as a reference for something like this. What command line utility do you think has a good, efficient interface that you could model your program on? Use it.
Update: So I think I need to revise this a little. It was taken way too literally. Google and this site proved that the internet is very democratic. What is popular is replicated, linked to or reproduced in someway.
Given this, plus one's personal experiences with computers, I think it is feasible to derive a pretty good solution based on personal experience and consideration for the solution to be provided.
For example, vim is a great program. A lot of people use it and love it. But that type of interface is probably not going to work (at least well) for a version control system. But both interfaces are very elegant for the purpose they suite. On the other hand, the vim type interface might work for a section of the version control system -- the commit dialog for example.
Now, I know that vim is normally used for the "commit dialog" (by default) for svn (on unix based OSes). This is just an example of mixing two styles of interfaces to come up with a cohesive solution.
You should have a look at some of the ideas behind Ubiquity as well as some of the ideas Aza Raskin talks about, seems like the same kind of thing.

Mercurial: How to manage common/shared code

I'm using Mercurial for personal use and am conteplating it for some distributed projects as an alternative to SVN for various reasons.
I'm getting comfortable with using it for self contained projects and can see various options for sharing however I haven't yet found any guidance on managing common libraries to be included in multiple projects in a similar manner to that provided by externals in subversion.
The most obvious shared lump of code is error handling and reporting - we want this to be pretty much the same in all projects (its fairly well evolved). There is also utility code, control libraries and similar that we find better to have as projects built with each solution than to pull in as compiled classes (not least because it ensures they are kept up to date, continuous integration helps us address breaking changes).
Thoughts (I hate open ended questions, but I want to know what, if anything, others are doing).
Mercurial 1.3 now includes nested repository support, which can be used to express dependencies. The other option is to let your build system handle the download and tracking of dependencies using something like ivy or maven though those are more focused on pulling down compiled code.
The world has changed since I asked that question and the solution I now use is different.
The simple answer is now to use packages (specifically NuGet as I do .NET) to deliver the common code instead of nesting repos and including the projects in a solution.
So I have common code built into NuGet packages by and hosted using TeamCity and where previously I would have an external and include the project/source I would now just reference the package.
Use the Forest Extension it emulates svn externals for HG, to some extent that is.
Subrepository (with good guide) or Guestrepo "to overcome ... limitations" (of subrepos) is today's language-agnostic answer