Neural Network outputs - output

I need to develop a neural network and classify the inputs into 3 categories. One of the category is "Don't Know"
Should I train the network using a single output perceptron which categories the training examples as 1,2, or 3? Or should I use a 2 output perceptron and use a binary scheme (01, 10, 00/11) to classify the inputs?

You should use 3 output neurons (one for each class). In the training phase, set output of neuron representing correct class to 1 and all others to 0. Single output with 1 2 and 3 is not optimal because that contains implicit assumtion that classes 2 and 3 are somehow "closer" to each other then 1 and 3. 2 outputs with binary coding is also not good, because in addition to solving classification problem you NN will have to learn binary encoding.
Also, its probably best to use softmax activation on output layer with cross-entropy error function. Softmax will normalize output, so values at each neuron could be interpreted as class probabilities.
Note that "don't know" class in only useful if you have training examples labeled as "don't know". Otherwise, use two output neurons.

Related

One-hot encoding to word2vec embedding

I'm trying to create vectors for categorical information that I have at hand. This information is intended to be used for aiding seq2seq network for NLP purposes (like summarization).
To get the idea, maybe an example would be of help:
Sample Text: shark attacks off Florida in a 1-hour span
And suppose that we have this hypothetical categorical information:
1. [animal, shark, sea, ocean]
2. [animal, tiger, jungle, mountains]
...
19. [animal, eagle, sky, mountains]
I want to feed sample text to an LSTM network token-by-token (like seq2seq networks). I'm using pre-trained GloVe embeddings as my original embeddings which are fed into the network, but also want to concatenate a dense vector to each token denoting its category.
For now, I know that I can simply use the one-hot embeddings (0-1 binary). So, for example, the first input (for shark) to the RNN network would be:
# GloVe embeddings of shark + one-hot encoding for shark, + means concatenation
[-0.323 0.213 ... -0.134 0.934 0.031 ] + [1 0 0 0 0 ... 0 0 1]
The problem is that I have an extreme number of categories out there (around 20,000). After searching over the Internet, it seemed to me that people suggest using word2vec instead of one-hots. But, I can't get the underlying idea of how word2vec can demonstrate the categorical features in this case. Does anybody have a more clear idea?
Word2Vec can't be used for classification. It is just the underlying algorithm.
For classification you can use Doc2Vec or something similar.
It basically takes a list of documents and each has unique id assigned to it. After the training it builds relations between the documents similar to those which word2vec builds for the words. Then when you give it an unknown document it will tell you the top n most similar, and if your documents have previously defined tags you can assume that the unknown document can be labeled the same way.

Using cnn models trained on different datasets

I am having 3 different datasets, 3 of them were all blood smear image stained with the same chemical substance. Blood smear images are images that capture your blood, include Red, White blood cells inside.
The first dataset contain 2 classes : normal vs blood cancer
The second dataset contain 2 classes: normal vs blood infection
The third dataset contain 2 classes: normal vs sickle cell disease
So, what i want to do is : when i input a blood smear image, the AI system will tell me whether it was : normal , or blood cancer or blood infection or sickle cell disease (4 classes classification task)
What should i do?
Should i mix these 3 datasets and train only 1 model to detect 4 classes ?
Or should i train 3 different models and them combine them? If yes, what method should i use to combine?
Update : i searched for a while. Can this task called "Learning without forgetting?"
I think it depends on the data.
You may use three different models and make three binary predictions on each image. So you get a vote (probability) for each x vs. normal. If binary classifications are accurate, this should deliver okay results. But you kind of get a cummulated missclassification or error in this case.
If you can afford, you can train a four class model and compare the test error to the series of binary classifications. I understand that you already have three models. So training another one may be not too expensive.
If ONLY one of the classes can occur, a four class model might be the way to go. If in fact two (or more) classes can occur jointly, a series of binary classifications would make sense.
As #Peter said it is totally data dependent. If the images of the 4 classes, namely normal ,blood cancer ,blood infection ,sickle cell disease are easily distinguishable with your naked eyes and there is no scope of confusion among all the classes then you should simply go for 1 model which gives out probabilities of all the 4 classes(as mentioned by #maxi marufo). If there is confusion between classes and the images are NOT distinguishable with naked eyes or there is a lot of scope of confusion between the classes then you should use 3 different models but then you'll need. You simply get the predicted probabilities from all the 3 models suppose p1(normal) and p1(c1), p2(normal) and p2(c2), p3(normal) and p3(c3). Now you can average(p1(normal),p2(normal),p3(normal)) and the use a softmax for p(normal), p1(c1), p2(c2), p3(c3) . Out of multiple ways you could try, the above could be one.
This is a multiclass classification problem. You can train just one model, with the final layer being a full connected (dense) layer of 4 units (i.e. output dimension) and softmax activation function.

Predicting continuous valued output

I am working on predicting Semantic Textual Similarity (SemEval 2017 Task-1) between a pair of texts. The similarity score (output) is a continuous value between [0,5]. The neural network model (link below), therefore, has 6 units in the final layer for prediction between values [0,5]. The objective function used is the Pearson correlation coefficient and softmax activation is used. Now, in order to train the model, how can I give the target output values to the model? Since there are 6 output classes, I should probably send one-hot-encoded vectors of the output. In that case, how can we convert the output (which might be a float value such as 2.33) to a one-hot vector of length 6? Or is there any other way of specifying the target output and training the model?
Paper: http://nlp.arizona.edu/SemEval-2017/pdf/SemEval016.pdf
If the value you're trying to predict is continuously-defined, you might be better off configuring this as a regression architecture. This will be simpler to train and interpret and will give you non-integer predictions (which you can then bucket or threshold however you please).
In order to do this, replace your softmax layer with a layer containing a single neuron with a linear activation function. Then you can simply train this network using your real-valued similarity numbers at the output. For loss function, you can use MSE / L2 unless you have a reason to do otherwise.

How can we define an RNN - LSTM neural network with multiple output for the input at time "t"?

I am trying to construct a RNN to predict the possibility of a player playing the match along with the runs score and wickets taken by the player.I would use a LSTM so that performance in current match would influence player's future selection.
Architecture summary:
Input features: Match details - Venue, teams involved, team batting first
Input samples: Player roster of both teams.
Output:
Discrete: Binary: Did the player play.
Discrete: Wickets taken.
Continous: Runs scored.
Continous: Balls bowled.
Question:
Most often RNN uses "Softmax" or"MSE" in the final layers to process "a" from LSTM -providing only a single variable "Y" as output. But here there are four dependant variables( 2 Discrete and 2 Continuous). Is it possible to stitch together all four as output variables?
If yes, how do we handle mix of continuous and discrete outputs with loss function?
(Though the output from LSTM "a" has multiple features and carries the information to the next time-slot, we need multiple features at output for training based on the ground-truth)
You just do it. Without more detail on the software (if any) in use it is hard to give more detasmail
The output of the LSTM unit is at every times step on of the hidden layers of your network
You can then input it in to 4 output layers.
1 sigmoid
2 i'ld messarfound wuth this abit. Maybe 4x sigmoid(4 wickets to an innnings right?) Or relu4
3,4 linear (squarijng it is as lso an option,e or relu)
For training purposes your loss function is the sum of your 4 individual losses.
Since f they were all MSE you could concatenat your 4 outputs before calculating the loss.
But sincd the first is cross-entropy (for a decision sigmoid) yould calculate seperately and sum.
You can still concatenate them after to have a output vector

Loss function for ordinal target on SoftMax over Logistic Regression

I am using Pylearn2 OR Caffe to build a deep network. My target is ordered nominal. I am trying to find a proper loss function but cannot find any in Pylearn2 or Caffe.
I read a paper "Loss Functions for Preference Levels: Regression with Discrete Ordered Labels" . I get the general idea - but I am not sure I understand what will the thresholds be, if my final layer is a SoftMax over Logistic Regression (outputting probabilities).
Can some help me by pointing to any implementation of such a loss function ?
Thanks
Regards
For both pylearn2 and caffe, your labels will need to be 0-4 instead of 1-5...it's just the way they work. The output layer will be 5 units, each is a essentially a logistic unit...and the softmax can be thought of as an adaptor that normalizes the final outputs. But "softmax" is commonly used as an output type. When training, the value of any individual unit is rarely ever exactly 0.0 or 1.0...it's always a distribution across your units - which log-loss can be calculated on. This loss is used to compare against the "perfect" case and the error is back-propped to update your network weights. Note that a raw output from PL2 or Caffe is not a specific digit 0,1,2,3, or 5...it's 5 number, each associated to the likelihood of each of the 5 classes. When classifying, one just takes the class with the highest value as the 'winner'.
I'll try to give an example...
say I have a 3 class problem, I train a network with a 3 unit softmax.
the first unit represents the first class, second the second and third, third.
Say I feed a test case through and get...
0.25, 0.5, 0.25 ...0.5 is the highest, so a classifier would say "2". this is the softmax output...it makes sure the sum of the output units is one.
You should have a look at ordinal (logistic) regression. This is the formal solution to the problem setup you describe ( do not use plain regression as the distance measures of errors are wrong).
https://stats.stackexchange.com/questions/140061/how-to-set-up-neural-network-to-output-ordinal-data
In particular I recommend looking at Coral ordinal regression implementation at
https://github.com/ck37/coral-ordinal/issues.