On a project I'm working on, I have two tables:
consumption: Contains historical orders from customers with fields specifying the features of the product they have bought (one product per row)
product: Contains current product stock
The database engine is InnoDB.
Goals:
The application must show matches from both sides, I mean:
When I list current products stock, I want to show a column that displays how many historical orders match with a particular product
When I list the historical orders, I want to see how many products match with a particular historical order
Database structure for consumption and product tables plus other related tables:
CREATE TABLE `consumption` (
`id` INT(11) NOT NULL AUTO_INCREMENT,
`created_by_id` INT(11) NULL DEFAULT NULL,
`client_id` INT(11) NOT NULL,
`data_import_id` INT(11) NULL DEFAULT NULL,
`tmp_consumption_id` INT(11) NULL DEFAULT NULL,
`material_id` INT(11) NULL DEFAULT NULL,
`quality_id` INT(11) NULL DEFAULT NULL,
`thick` DECIMAL(10,3) NULL DEFAULT NULL,
`thick_max` DECIMAL(10,3) NULL DEFAULT NULL,
`width` DECIMAL(10,2) NULL DEFAULT NULL,
`width_max` DECIMAL(10,2) NULL DEFAULT NULL,
`long` INT(11) NULL DEFAULT NULL,
`long_max` INT(11) NULL DEFAULT NULL,
`purchase_price` DECIMAL(10,2) NULL DEFAULT NULL,
`sale_price` DECIMAL(10,2) NULL DEFAULT NULL,
`comments` VARCHAR(255) NULL DEFAULT NULL,
`annual_consumption` DECIMAL(10,3) NULL DEFAULT NULL,
`type` ENUM('consumption','request') NULL DEFAULT 'consumption',
`date_add` DATETIME NOT NULL,
`date_upd` DATETIME NOT NULL,
`covering_grammage` VARCHAR(64) NULL DEFAULT NULL,
`asp_sup_acab` VARCHAR(64) NULL DEFAULT NULL,
PRIMARY KEY (`id`),
INDEX `fk_consumption_client1` (`client_id`),
INDEX `created_by_id` (`created_by_id`),
INDEX `material_id` (`material_id`),
INDEX `quality_id` (`quality_id`),
CONSTRAINT `consumption_ibfk_1` FOREIGN KEY (`material_id`) REFERENCES `material` (`id`) ON UPDATE NO ACTION ON DELETE NO ACTION,
CONSTRAINT `consumption_ibfk_2` FOREIGN KEY (`quality_id`) REFERENCES `quality` (`id`) ON UPDATE NO ACTION ON DELETE NO ACTION,
CONSTRAINT `fk_consumption_client1` FOREIGN KEY (`client_id`) REFERENCES `client` (`id`) ON UPDATE NO ACTION ON DELETE NO ACTION
)
COLLATE='utf8_general_ci'
ENGINE=InnoDB
AUTO_INCREMENT=30673
;
CREATE TABLE `product` (
`id` INT(11) NOT NULL AUTO_INCREMENT,
`warehouse_id` INT(11) NULL DEFAULT NULL,
`created_by_id` INT(11) NULL DEFAULT NULL,
`data_import_id` INT(11) NULL DEFAULT NULL,
`tmp_product_id` INT(11) NULL DEFAULT NULL,
`code` VARCHAR(32) NOT NULL,
`material_id` INT(11) NULL DEFAULT NULL,
`quality_id` INT(11) NULL DEFAULT NULL,
`covering_id` INT(11) NULL DEFAULT NULL,
`finish_id` INT(11) NULL DEFAULT NULL,
`source` VARCHAR(128) NULL DEFAULT NULL,
`thickness` DECIMAL(10,3) NULL DEFAULT NULL,
`width` INT(11) NULL DEFAULT NULL,
`tons` DECIMAL(10,3) NULL DEFAULT NULL,
`re` INT(11) NULL DEFAULT NULL,
`rm` INT(11) NULL DEFAULT NULL,
`a_percent` INT(11) NULL DEFAULT NULL,
`comments` VARCHAR(255) NULL DEFAULT NULL,
`price` DECIMAL(10,2) NULL DEFAULT NULL,
`deleted` TINYINT(1) NOT NULL DEFAULT '0',
`date_add` DATETIME NOT NULL,
`date_upd` DATETIME NOT NULL,
PRIMARY KEY (`id`),
INDEX `warehouse_id` (`warehouse_id`),
INDEX `material_id` (`material_id`),
INDEX `quality_id` (`quality_id`),
INDEX `covering_id` (`covering_id`),
INDEX `finish_id` (`finish_id`),
CONSTRAINT `product_ibfk_1` FOREIGN KEY (`material_id`) REFERENCES `material` (`id`) ON UPDATE NO ACTION ON DELETE NO ACTION,
CONSTRAINT `product_ibfk_2` FOREIGN KEY (`quality_id`) REFERENCES `quality` (`id`) ON UPDATE NO ACTION ON DELETE NO ACTION,
CONSTRAINT `product_ibfk_3` FOREIGN KEY (`covering_id`) REFERENCES `covering` (`id`) ON UPDATE NO ACTION ON DELETE NO ACTION,
CONSTRAINT `product_ibfk_4` FOREIGN KEY (`finish_id`) REFERENCES `finish` (`id`) ON UPDATE NO ACTION ON DELETE NO ACTION,
CONSTRAINT `product_ibfk_5` FOREIGN KEY (`warehouse_id`) REFERENCES `warehouse` (`id`) ON UPDATE NO ACTION ON DELETE NO ACTION
)
COLLATE='utf8_general_ci'
ENGINE=InnoDB
AUTO_INCREMENT=740
;
CREATE TABLE `client` (
`id` INT(11) NOT NULL AUTO_INCREMENT,
`zone_id` INT(11) NULL DEFAULT NULL,
`zone2_id` INT(11) NULL DEFAULT NULL,
`code` VARCHAR(64) NOT NULL,
`business_name` VARCHAR(255) NULL DEFAULT NULL,
`fiscal_name` VARCHAR(255) NULL DEFAULT NULL,
`nif` VARCHAR(15) NULL DEFAULT NULL,
`contact_short_name` VARCHAR(128) NULL DEFAULT NULL,
`contact_full_name` VARCHAR(128) NULL DEFAULT NULL,
`email` VARCHAR(255) NULL DEFAULT NULL,
`group` VARCHAR(255) NULL DEFAULT NULL,
`status` TINYINT(1) NOT NULL DEFAULT '1',
`date_add` DATETIME NOT NULL,
`date_upd` DATETIME NOT NULL,
PRIMARY KEY (`id`),
UNIQUE INDEX `code_UNIQUE` (`code`),
INDEX `zone_id` (`zone_id`),
INDEX `zone2_id` (`zone2_id`),
CONSTRAINT `client_ibfk_1` FOREIGN KEY (`zone_id`) REFERENCES `zone` (`id`) ON UPDATE NO ACTION ON DELETE NO ACTION
)
COLLATE='utf8_general_ci'
ENGINE=InnoDB
AUTO_INCREMENT=443
;
CREATE TABLE `client_group` (
`id` INT(11) NOT NULL AUTO_INCREMENT,
`code` VARCHAR(15) NOT NULL,
`date_add` DATETIME NOT NULL,
`date_upd` DATETIME NOT NULL,
PRIMARY KEY (`id`),
UNIQUE INDEX `code` (`code`)
)
COLLATE='utf8_general_ci'
ENGINE=InnoDB
AUTO_INCREMENT=49
;
CREATE TABLE `client_has_group` (
`client_id` INT(11) NOT NULL,
`group_id` INT(11) NOT NULL,
INDEX `client_id` (`client_id`),
INDEX `group_id` (`group_id`),
CONSTRAINT `client_has_group_ibfk_1` FOREIGN KEY (`client_id`) REFERENCES `client` (`id`) ON UPDATE NO ACTION ON DELETE NO ACTION,
CONSTRAINT `client_has_group_ibfk_2` FOREIGN KEY (`group_id`) REFERENCES `client_group` (`id`) ON UPDATE NO ACTION ON DELETE NO ACTION
)
COLLATE='utf8_general_ci'
ENGINE=InnoDB
;
CREATE TABLE `covering` (
`id` INT(11) NOT NULL AUTO_INCREMENT,
`code` VARCHAR(128) NOT NULL,
`group` VARCHAR(128) NULL DEFAULT NULL,
`equivalence` VARCHAR(128) NULL DEFAULT NULL,
`date_add` DATETIME NOT NULL,
`date_upd` DATETIME NOT NULL,
PRIMARY KEY (`id`),
UNIQUE INDEX `code_UNIQUE` (`code`)
)
COLLATE='utf8_general_ci'
ENGINE=InnoDB
AUTO_INCREMENT=55
;
CREATE TABLE `finish` (
`id` INT(11) NOT NULL AUTO_INCREMENT,
`code` VARCHAR(128) NOT NULL,
`group` VARCHAR(128) NULL DEFAULT NULL,
`equivalence` VARCHAR(128) NULL DEFAULT NULL,
`date_add` DATETIME NOT NULL,
`date_upd` DATETIME NOT NULL,
PRIMARY KEY (`id`),
UNIQUE INDEX `code_UNIQUE` (`code`)
)
COLLATE='utf8_general_ci'
ENGINE=InnoDB
AUTO_INCREMENT=42
;
CREATE TABLE `material` (
`id` INT(11) NOT NULL AUTO_INCREMENT,
`code` VARCHAR(128) NOT NULL,
`group` VARCHAR(128) NULL DEFAULT NULL,
`equivalence` VARCHAR(128) NULL DEFAULT NULL,
`date_add` DATETIME NOT NULL,
`date_upd` DATETIME NOT NULL,
PRIMARY KEY (`id`),
UNIQUE INDEX `code_UNIQUE` (`code`),
INDEX `group` (`group`),
INDEX `equivalence` (`equivalence`)
)
COLLATE='utf8_general_ci'
ENGINE=InnoDB
AUTO_INCREMENT=46
;
CREATE TABLE `quality` (
`id` INT(11) NOT NULL AUTO_INCREMENT,
`code` VARCHAR(128) NOT NULL,
`group` VARCHAR(128) NULL DEFAULT NULL,
`equivalence` VARCHAR(128) NULL DEFAULT NULL,
`date_add` DATETIME NOT NULL,
`date_upd` DATETIME NOT NULL,
PRIMARY KEY (`id`),
UNIQUE INDEX `code_UNIQUE` (`code`),
INDEX `group` (`group`),
INDEX `equivalence` (`equivalence`)
)
COLLATE='utf8_general_ci'
ENGINE=InnoDB
AUTO_INCREMENT=980
;
CREATE TABLE `user_filter` (
`id` INT(11) NOT NULL AUTO_INCREMENT,
`user_id` INT(11) NOT NULL,
`filter_type` ENUM('consumption','product') NOT NULL DEFAULT 'consumption',
`name` VARCHAR(255) NOT NULL,
`is_default` TINYINT(1) NOT NULL DEFAULT '0',
`client_status` TINYINT(1) NULL DEFAULT NULL,
`client_group` VARCHAR(45) NULL DEFAULT NULL,
`material` VARCHAR(15) NULL DEFAULT NULL,
`quality` VARCHAR(64) NULL DEFAULT NULL,
`thickness` VARCHAR(45) NULL DEFAULT NULL,
`width` VARCHAR(45) NULL DEFAULT NULL,
`tons` VARCHAR(45) NULL DEFAULT NULL,
`covering` VARCHAR(45) NULL DEFAULT NULL,
`finish` VARCHAR(45) NULL DEFAULT NULL,
`re` VARCHAR(45) NULL DEFAULT NULL,
`rm` VARCHAR(45) NULL DEFAULT NULL,
`a_percent` VARCHAR(45) NULL DEFAULT NULL,
`comments` VARCHAR(255) NULL DEFAULT NULL,
`price` VARCHAR(45) NULL DEFAULT NULL,
`warehouse` VARCHAR(45) NULL DEFAULT NULL,
`date` VARCHAR(45) NULL DEFAULT NULL,
`type` ENUM('consumption','request') NULL DEFAULT NULL,
`date_add` DATETIME NOT NULL,
`date_upd` DATETIME NOT NULL,
PRIMARY KEY (`id`),
INDEX `fk_user_filter_user1` (`user_id`),
INDEX `filter_type` (`filter_type`),
CONSTRAINT `fk_user_filter_user1` FOREIGN KEY (`user_id`) REFERENCES `user` (`id`) ON UPDATE NO ACTION ON DELETE NO ACTION
)
COLLATE='utf8_general_ci'
ENGINE=InnoDB
AUTO_INCREMENT=5
;
CREATE TABLE `warehouse` (
`id` INT(11) NOT NULL AUTO_INCREMENT,
`name` VARCHAR(128) NOT NULL,
`zone_id` INT(11) NULL DEFAULT NULL,
`zone2_id` INT(11) NULL DEFAULT NULL,
`date_add` DATETIME NOT NULL,
`date_upd` DATETIME NOT NULL,
PRIMARY KEY (`id`),
INDEX `zone_id` (`zone_id`),
INDEX `zone2_id` (`zone2_id`),
CONSTRAINT `warehouse_ibfk_1` FOREIGN KEY (`zone_id`) REFERENCES `zone` (`id`) ON UPDATE NO ACTION ON DELETE NO ACTION
)
COLLATE='utf8_general_ci'
ENGINE=InnoDB
AUTO_INCREMENT=37
;
CREATE TABLE `zone` (
`id` INT(11) NOT NULL AUTO_INCREMENT,
`zone2_id` INT(11) NULL DEFAULT NULL,
`name` VARCHAR(128) NOT NULL,
`date_add` DATETIME NOT NULL,
`date_upd` DATETIME NOT NULL,
PRIMARY KEY (`id`),
INDEX `zone2_id` (`zone2_id`)
)
COLLATE='utf8_general_ci'
ENGINE=InnoDB
AUTO_INCREMENT=49
;
What I have done to be able to find matches between the two tables:
I have created a LEFT JOIN query between consumption and product table (that is also joining with additional tables if required).
Looks something like this:
SELECT cons.`id` as `consumption_id`, cons.`client_id` as `consumption_client_id`, cons.`material_id` as `consumption_material_id`, cons.`quality_id` as `consumption_quality_id`, cons.`thick` as `consumption_thick`, cons.`thick_max` as `consumption_thick_max`, cons.`width` as `consumption_width`, cons.`width_max` as `consumption_width_max`, cons.`long` as `consumption_long`, cons.`long_max` as `consumption_long_max`, cons.`type` as `consumption_type`, cons.`date_add` as `consumption_date_add`, prod.`id` as `product_id`, prod.`warehouse_id` as `product_warehouse_id`, prod.`code` as `product_code`, prod.`material_id` as `product_material_id`, prod.`quality_id` as `product_quality_id`, prod.`covering_id` as `product_covering_id`, prod.`finish_id` as `product_finish_id`, prod.`thickness` as `product_thickness`, prod.`width` as `product_width`, prod.`tons` as `product_tons`
FROM consumption cons
INNER JOIN client cli
ON cli.id=cons.client_id
LEFT JOIN client_has_group cli_gr
ON cli_gr.client_id=cons.client_id
LEFT JOIN product prod
ON
(
(cons.material_id=prod.material_id)
OR
prod.material_id IN (
SELECT id FROM material WHERE `equivalence`=(
SELECT `equivalence` FROM material WHERE id=cons.material_id
)
AND `group`=(
SELECT `group` FROM material WHERE id=cons.material_id
)
)
)
AND
(
(cons.quality_id=prod.quality_id)
OR
prod.quality_id IN (
SELECT id FROM quality WHERE `equivalence`=(
SELECT `equivalence` FROM quality WHERE id=cons.quality_id
)
AND `group`=(
SELECT `group` FROM quality WHERE id=cons.quality_id
)
)
)
AND (prod.thickness >= (cons.thick - 0.1) AND prod.thickness <= (cons.thick_max + 0.1))
AND (prod.width >= (cons.width - 1000) AND prod.width <= (cons.width_max + 1000))
WHERE 1 > 0 AND prod.deleted=0 AND cli.status=1 AND cons.date_add >= '2017-10-08 00:00:00'
GROUP BY cons.id, prod.id
When I want to list products and show matches of consumptions per every product, I have a main query that simply lists the products, then I join that query with the previous query from above and count the matches grouping by product id.
SELECT t.*,
count(f.consumption_id) AS matchesCount
FROM `product` t
LEFT JOIN (...previous query here...) f ON f.product_id=t.id
GROUP BY t.id
Other notes/considerations:
The application uses a couple of fields that have the same name in both tables, in order to find matches using ON in the JOIN
The application also uses more complex business logic, for example, product material can be equal or can be inside of an equivalence table or group
The user can save personal filters, that why it is used the user_filter table, so as a user I can have multiple "searches" saved and quickly switch from one to the other
The matches have to be displayed LIVE, I mean, calculated on the fly, not by any cronjob because user filter will always change
The amount of data the application will be working with right now will be about 35k rows in consumption table and about 1.5k rows in the product table
The server where the application is hosted is a dedicated server (64GB RAM) running MySQL
I had good performance with 3k rows of consumptions and 100 products, now with 10k+ consumption and 600 products, starting to get gateway timeout from nginx. Guess queries take too long.
I already know that if the ON cause has a lot of conditions it will work faster because the results sets are smaller, but if the condition is very wide, it will give a timeout, I guess the resulting rows are too many. Maybe the join will produce millions of rows.
What I'd like to ask is:
Am I on the right path in order to do "live matches" of data between both tables? is using the JOIN a good solution? I cannot think of another way to do it.
Apart from trying to optimize queries and indexes, are there any server tweaking I could do to take full advantage of server hardware?
Any other tips or techniques from someone who has done something similar in another project?
Update 1: Adding here full query for listing products with consumption matches:
SELECT t.*,
count(f.consumption_id) AS matchesCount
FROM `product` t
LEFT JOIN (
SELECT cons.`id` as `consumption_id`, cons.`client_id` as `consumption_client_id`, cons.`material_id` as `consumption_material_id`, cons.`quality_id` as `consumption_quality_id`, cons.`thick` as `consumption_thick`, cons.`thick_max` as `consumption_thick_max`, cons.`width` as `consumption_width`, cons.`width_max` as `consumption_width_max`, cons.`long` as `consumption_long`, cons.`long_max` as `consumption_long_max`, cons.`type` as `consumption_type`, cons.`date_add` as `consumption_date_add`, prod.`id` as `product_id`, prod.`warehouse_id` as `product_warehouse_id`, prod.`code` as `product_code`, prod.`material_id` as `product_material_id`, prod.`quality_id` as `product_quality_id`, prod.`covering_id` as `product_covering_id`, prod.`finish_id` as `product_finish_id`, prod.`thickness` as `product_thickness`, prod.`width` as `product_width`, prod.`tons` as `product_tons`
FROM consumption cons
INNER JOIN client cli
ON cli.id=cons.client_id
LEFT JOIN client_has_group cli_gr
ON cli_gr.client_id=cons.client_id
LEFT JOIN product prod
ON
(
(cons.material_id=prod.material_id)
OR
prod.material_id IN (
SELECT id FROM material WHERE `equivalence`=(
SELECT `equivalence` FROM material WHERE id=cons.material_id
)
AND `group`=(
SELECT `group` FROM material WHERE id=cons.material_id
)
)
)
WHERE 1 > 0 AND prod.deleted=0 AND cli.status=1 AND cons.date_add >= '2017-10-08 00:00:00'
GROUP BY cons.id, prod.id
) f ON f.product_id=t.id
GROUP BY t.id
Query time: 00:02:41 (+ 0,078 sec. network).
Note: The subquery JOIN run separately produces 600k rows. I'm thinking to try to group it somehow in order to make it smaller.
Update 2: Major improvement achieved by making the count inside the subquery and so reducing the result set used for the JOIN
Basically the subquery instead of returning 600k+ rows, it only returns as much rows as products or consumptions, depending what you're looking for. For that, the matchesCount has been moved inside the subquery instead of outside, and the group by has been changed, depending what list you want to display.
This is how the final queries look like right now:
List consumption and count products that match each consumption:
SELECT SQL_NO_CACHE `t`.*,
IFNULL(f.matchesCount, 0) AS matchesCount
FROM `consumption` `t`
LEFT JOIN
(SELECT cons.`id` AS `consumption_id`,
cons.`client_id` AS `consumption_client_id`,
cons.`material_id` AS `consumption_material_id`,
cons.`quality_id` AS `consumption_quality_id`,
cons.`thick` AS `consumption_thick`,
cons.`thick_max` AS `consumption_thick_max`,
cons.`width` AS `consumption_width`,
cons.`width_max` AS `consumption_width_max`,
cons.`long` AS `consumption_long`,
cons.`long_max` AS `consumption_long_max`,
cons.`type` AS `consumption_type`,
cons.`date_add` AS `consumption_date_add`,
prod.`id` AS `product_id`,
prod.`warehouse_id` AS `product_warehouse_id`,
prod.`code` AS `product_code`,
prod.`material_id` AS `product_material_id`,
prod.`quality_id` AS `product_quality_id`,
prod.`covering_id` AS `product_covering_id`,
prod.`finish_id` AS `product_finish_id`,
prod.`thickness` AS `product_thickness`,
prod.`width` AS `product_width`,
prod.`tons` AS `product_tons`,
count(prod.`id`) AS matchesCount
FROM consumption cons
INNER JOIN client cli ON cli.id=cons.client_id
LEFT JOIN product prod ON ((cons.material_id=prod.material_id)
OR prod.material_id IN
(SELECT id
FROM material
WHERE `equivalence`=
(SELECT `equivalence`
FROM material
WHERE id=cons.material_id )
AND `group`=
(SELECT `group`
FROM material
WHERE id=cons.material_id ) ))
AND ((cons.quality_id=prod.quality_id)
OR prod.quality_id IN
(SELECT id
FROM quality
WHERE `equivalence`=
(SELECT `equivalence`
FROM quality
WHERE id=cons.quality_id )
AND `group`=
(SELECT `group`
FROM quality
WHERE id=cons.quality_id ) ))
AND (prod.thickness >= (cons.thick - 0.1)
AND prod.thickness <= (cons.thick_max + 0.1))
AND (prod.width >= (cons.width - 1000)
AND prod.width <= (cons.width_max + 1000))
WHERE 1 > 0
AND prod.deleted=0
AND cli.status=1
AND cons.date_add >= '2017-10-08 00:00:00'
GROUP BY cons.id) f ON f.consumption_id=t.id
GROUP BY t.id
List products and count consumptions that match each product:
SELECT SQL_NO_CACHE t.*,
IFNULL(f.matchesCount, 0) AS matchesCount
FROM `product` `t`
LEFT JOIN
(SELECT cons.`id` AS `consumption_id`,
cons.`client_id` AS `consumption_client_id`,
cons.`material_id` AS `consumption_material_id`,
cons.`quality_id` AS `consumption_quality_id`,
cons.`thick` AS `consumption_thick`,
cons.`thick_max` AS `consumption_thick_max`,
cons.`width` AS `consumption_width`,
cons.`width_max` AS `consumption_width_max`,
cons.`long` AS `consumption_long`,
cons.`long_max` AS `consumption_long_max`,
cons.`type` AS `consumption_type`,
cons.`date_add` AS `consumption_date_add`,
prod.`id` AS `product_id`,
prod.`warehouse_id` AS `product_warehouse_id`,
prod.`code` AS `product_code`,
prod.`material_id` AS `product_material_id`,
prod.`quality_id` AS `product_quality_id`,
prod.`covering_id` AS `product_covering_id`,
prod.`finish_id` AS `product_finish_id`,
prod.`thickness` AS `product_thickness`,
prod.`width` AS `product_width`,
prod.`tons` AS `product_tons`,
count(cons.`id`) AS matchesCount
FROM consumption cons
INNER JOIN client cli ON cli.id=cons.client_id
LEFT JOIN product prod ON cons.material_id=prod.material_id
AND cons.quality_id=prod.quality_id
WHERE 1 > 0
AND prod.deleted=0
AND cli.status=1
GROUP BY prod.id) f ON f.product_id=t.id
WHERE deleted=0
GROUP BY t.id
Both queries take less than 1 second to execute (each).
Note: I still use the previous queries in my application, for example, when I want a break down of the list of products that match a single consumption, or the other way around. In that case I already add a filter per consumption id or product id that reduces the size of the result set a lot.
If client_has_group is "many:1", that is the wrong way to do it. You don't need the extra table.
INT is always 4 bytes. Consider smaller datatypes. Eventually the size of the database may add to your problems.
Do you really need date_add and date_upd. They seem like clutter that you will never use.
Avoid IN ( SELECT ... ) where practical. Switch to JOIN or EXISTS.
Why so many tables with code + group + equivalence? Could they be a single group? Do you need all 3 columns? Do you need id since code is UNIQUE? There comes a point where a schema is "over-normalized" and performance suffers without helping space much.
OR is a performance killer in some contexts.
"Correlated subqueries" are useful in some situations, but this one is probably better done via a JOIN:
AND `group` = ( SELECT `group` FROM quality WHERE id=cons.quality_id )
Beware of aggregates (eg, COUNT) with JOIN; you may be getting an inflated value. This is because the JOIN happens first.
why need
LEFT JOIN client_has_group cli_gr ON cli_gr.client_id=cons.client_id
it never used
why need GROUP BY cons.id, prod.id if you select all fields maybe select only what you need
try this select, i think it will be more faster
SELECT count(*), prod.*
FROM consumption cons
INNER JOIN client cli ON cli.id=cons.client_id
INNER JOIN material m ON m.id=cons.material_id
INNER JOIN quality q ON q.id=cons.quality_id
LEFT JOIN product prod
ON
(
(cons.material_id=prod.material_id)
OR
prod.material_id IN (
SELECT id FROM material WHERE `equivalence`=m.equivalence
AND `group`=m.group
)
)
AND
(
(cons.quality_id=prod.quality_id)
OR
prod.quality_id IN (
SELECT id FROM quality WHERE `equivalence`=q.equivalence
AND `group`=q.group
)
)
AND (prod.thickness >= (cons.thick - 0.1) AND prod.thickness <= (cons.thick_max + 0.1))
AND (prod.width >= (cons.width - 1000) AND prod.width <= (cons.width_max + 1000))
WHERE 1 > 0 AND prod.deleted=0 AND cli.status=1 AND cons.date_add >= '2017-10-08 00:00:00'
group by prod.id
maybe better do calculation count in background and add this field in product and consumption table.
I need help speeding up a MySQL query that's running extremely slowly. It's taking over 35 seconds to return 900 rows.
Does anyone have ideas how I can speed things up on this query?
Many thanks in advance
select products.*,
p.price as lowest_price,
products_images.thumbnail
from products
inner join products_categories on products_categories.product_id = products.id
inner join products_colours on products_colours.product_id = products.id
inner join products_quantity_pricing on products_quantity_pricing.product_id = products.id
left join ( select min(price) as price, product_id from products_quantity_pricing group by products_quantity_pricing.product_id ) as p on p.product_id = products.id
inner join products_images on products_images.product_id = products.id
where products.id > 0 group by products.id
order by products.product_name
Here is the setup of the tables involved:
CREATE TABLE IF NOT EXISTS `products_categories` (
`id` int(11) NOT NULL AUTO_INCREMENT,
`product_id` smallint(5) unsigned zerofill NOT NULL,
`category` int(11) NOT NULL,
`sub_category` int(11) DEFAULT NULL,
PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 AUTO_INCREMENT=1016 ;
CREATE TABLE IF NOT EXISTS `products` (
`product_prefix` varchar(10) NOT NULL,
`id` smallint(5) unsigned zerofill NOT NULL AUTO_INCREMENT,
`supplier_id` int(11) NOT NULL,
`product_code` varchar(50) NOT NULL,
`supplier_product_code` mediumtext NOT NULL,
`product_name` varchar(200) NOT NULL,
`product_description` text NOT NULL,
`print_area` varchar(100) DEFAULT NULL,
`print_position` varchar(100) DEFAULT NULL,
`dimensions` varchar(100) DEFAULT NULL,
`origination` tinytext,
`unit_cost` decimal(9,2) NOT NULL,
`updated` datetime NOT NULL,
`url` varchar(255) NOT NULL,
PRIMARY KEY (`id`),
KEY `product_code` (`product_code`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 AUTO_INCREMENT=901 ;
CREATE TABLE IF NOT EXISTS `products_images` (
`id` int(11) NOT NULL AUTO_INCREMENT,
`product_id` smallint(5) unsigned zerofill NOT NULL,
`fullsize` varchar(255) NOT NULL,
`midsize` varchar(255) NOT NULL,
`thumbnail` varchar(255) NOT NULL,
`updated` datetime NOT NULL,
`colour_tag` varchar(100) NOT NULL,
PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 AUTO_INCREMENT=2402 ;
CREATE TABLE IF NOT EXISTS `products_colours` (
`id` int(11) NOT NULL AUTO_INCREMENT,
`product_id` smallint(5) unsigned zerofill NOT NULL,
`colour` varchar(100) NOT NULL,
PRIMARY KEY (`id`),
KEY `product_id` (`product_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 AUTO_INCREMENT=2546 ;
CREATE TABLE IF NOT EXISTS `products_quantity_pricing` (
`product_id` smallint(5) unsigned zerofill NOT NULL,
`quantity` smallint(6) NOT NULL,
`price` decimal(9,2) NOT NULL
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
Add indexes on the product_id columns in all the tables.
In the products_quantity_pricing, a composite index on (product_id, price) will also speed up finding the minimum price for each product. If you create this composite index, you don't need to create a separate index just on product_id; the prefix of a composite index also serves as an index of its own.
Is this the most efficient way of joining these 4 tables? Also is it possible to only have some rows of each tables selected? I tried changing * to a name of a column but only the columns from studentlist are allowed.
SELECT c.classID, c.instrument, c.grade, u.ID, u.firstname, u.lastname, u.lastsongplayed, u.title
FROM studentlist s
INNER JOIN classlist c ON s.listID = c.classID
INNER JOIN (
SELECT *
FROM users u
INNER JOIN library l ON u.lastsongplayed = l.fileID
)
u ON s.studentID = u.ID
WHERE teacherID =3
ORDER BY classID
LIMIT 0 , 30
Database structure:
CREATE TABLE IF NOT EXISTS `classlist` (
`classID` int(11) NOT NULL AUTO_INCREMENT,
`teacherID` int(11) NOT NULL,
`instrument` text,
`grade` int(11) DEFAULT NULL,
PRIMARY KEY (`classID`),
KEY `teacherID_2` (`teacherID`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 AUTO_INCREMENT=27 ;
CREATE TABLE IF NOT EXISTS `studentlist` (
`listID` int(11) NOT NULL,
`studentID` int(11) NOT NULL,
KEY `teacherID` (`studentID`),
KEY `studentID` (`studentID`),
KEY `listID` (`listID`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
CREATE TABLE IF NOT EXISTS `users` (
`ID` int(11) NOT NULL AUTO_INCREMENT,
`email` varchar(60) NOT NULL,
`password` varchar(60) NOT NULL,
`firstname` text NOT NULL,
`lastname` text NOT NULL,
`sessionID` varchar(60) DEFAULT NULL,
`lastlogin` time DEFAULT NULL,
`registerdate` date NOT NULL,
`isteacher` tinyint(1) DEFAULT NULL,
`isstudent` tinyint(1) DEFAULT NULL,
`iscomposer` tinyint(1) DEFAULT NULL,
`lastsongplayed` int(11) NOT NULL,
PRIMARY KEY (`ID`),
UNIQUE KEY `ID` (`ID`),
UNIQUE KEY `email` (`email`,`sessionID`),
KEY `ID_2` (`ID`),
KEY `ID_3` (`ID`),
KEY `lastsongplayed` (`lastsongplayed`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 AUTO_INCREMENT=63 ;
CREATE TABLE IF NOT EXISTS `library` (
`fileID` int(11) NOT NULL AUTO_INCREMENT,
`userID` int(11) NOT NULL,
`uploaddate` datetime NOT NULL,
`title` varchar(60) NOT NULL,
`OrigComposer` varchar(60) NOT NULL,
`composer` varchar(60) NOT NULL,
`genre` varchar(60) DEFAULT NULL,
`year` year(4) DEFAULT NULL,
`arrangement` varchar(60) DEFAULT NULL,
PRIMARY KEY (`fileID`),
KEY `userID` (`userID`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 AUTO_INCREMENT=77 ;
Is this the most efficient way of joining these 3 tables?
Your JOIN looks correct and you are joining on your keys. So this should be efficient. However, I would encourage you to analyze your query with EXPLAIN to determine additional optimizations.
Is it possible to only have some rows of each tables selected?
Yes. Change * to be the columns from each table you want. I encourage you to explicitly prefix them with the originating table. Depending on the columns you select, this could also make your query more performant.
SELECT studentlist.studentID, users.email FROM ...