Actor - Actor (Sequence Diagram) - function

I'm just wondering if it's possible if an actor to actor is allowed in sequence diagram.
and if so can an actor receive true/false statement?
The left one is an actor and the right one is a Class.

Actor-to-actor depiction is used in sequence diagram to shows real-life interaction between the actors, usually at the system level. The goal is to use sequence diagram to identify logic flow and behaviour within the system.
In light of that, it doesn't make sense (and not very helpful) to return a true/false statement to either your aPassenger nor your aCheckInStaff. The message that aCheckInStaff receives should be along the line of "is this ticket valid (does the name match the ID shown, has the ticket expired etc.)?" And that same information will then be passed along to your aPassenger (perhaps together with a boarding pass, if the ticket is valid) to indicate if subsequent flow of actions i.e. does aPassenger need to fix the error, or can she proceed to gates?
There is a good actor-to-actor interaction example here. Take a look at Figure 1 and follow along its use case description here.

Related

How I can send command to the person agents living in one specific GIS region? Consider there are several GIS regions

Suppose there are 1000 Person agent on 4 (a,b, c,d) GIS region area. On a certain event, I want to communicate with all the agents living inside GIS region "a" . In "a" region we have 200 person agents.If I send message or command to Person state chart, how I can make sure that only those 200 person agents living on that specific GIS region "a" is getting my command? Is there any way to model that?
You can filter messages inside the Agent's statechart transition, in order to only executethe transition when a certain expression is true (in your case: Agent is in the right region).
Of course you could do this filtering in a lot of other places too, for example when sending the message, or when receiving it. However you can always use this code to check if the Agent is located inside of a GISRegion:
main.gisRegion1.contains(this.getLatitude(), this.getLongitude())
This is assuming you executed this inside the Agent (therefore main. and this.) and the region you are looking for is named gisRegion1.

Blocking in cross validation in mlr with subject id

I have a dataset with multiple observations by participant. Participants are denoted by id. To account for this in the cross validation process, I add blocking = factor(id) to makeClassifTask() and blocking.cv = TRUE to makeResampleDesc(). However, if I leave id in the dataset, it will be used as a predictor. My question is: How do I correctly use blocking? My take would be to create a new variable, e.g. participant.id (outside of the dataset), next to remove id from the original dataset and then to use blocking = factor(participant.id), but I am not sure if this is the correct way to handle blocking.
Rather than supplying a variable for blocking you can provide a custom factor vector that specifies the observations which belong together. This is also shown in the tutorial.
This way you do not need to have the variable "participant.id" in the dataset.
Also make sure that you really want to use "blocking". Did you have a look at "grouping" already? The differences between both are also described in the linked tutorial section.

Questions about the Boundary Value Check

I'm doing my JUnit homework and need some explanations here.
Here's the quotation from my homework description:
One of the issues with boundary conditions is that the system needs to behave well even if the boundary is approached multiple times. This should be obvious, but it doesn't always happen in practice.
Remember that we can characterize an object as state and behavior. Typically, the state is not directly accessible, but instead, is accessed indirectly by means of the behavior. That is, the behavior reflects the state of the object.
Now, if we think about boundaries in math, it might not be too surprising to imagine the the value at some boundary will be different if we approach that boundary in different ways. So, if the value can be likened to the state, the state at the boundary may vary depending on how we got there. This would mean that the behavior could be different.
To make objects that behave consistently, we would have to insure that the internal state at those boundaries is consistent. So, test cases should check this assumption. To receive challenge points for this homework assignment enhance your test cases so that potential problems around the boundaries may be discovered.
Clearly mark the Challenge test cases with the string "### challenge ###" in the comments. Include in those comments what boundary is being tested, and how you're guessing that the state of the object may be different depending on how the boundary is being approached.
I don't understand this especially the highlighted part. What does he mean by "object behave consistently" and the "potential probelms"?
Also, how is this different than general boundary check that will just throws the exception and i expected in the JUnit?
Thank you!
Without knowing the details of the homework, an answer could only be somewhat generic, but I'll try.
Boundary checking is not just exception checking, its about seeing which paths in your code are execution on what condition. If you have control statements, loops, if-else, switch, etc you have to verify, on what conditions (of your internal state) those statements are processed in what way.
To me, boundary testing is that you change certain values of an instance field in a way that would cause the behavior to run through different branches of your code.
for example, you have this behavior:
if(someInstanceValue > 5) {
return "great";
} else {
return "poor";
}
Now you could test with data for someInstanceValue that define the boundary
4 : "poor"
5 : "great"
If you have multiple fields in your class, all of them define the state but only some of them may affect a certain path in your code. As the test is a specification of your class under test, written in code, you should specify which fields are relevant to a function, and which are not (by leaving them out).
So you should set up your instance-under-test accordingly (calling all setters) or if you require more complex objects, you could use frameworks like Mockito to specify the state (in a when().thenReturn() syntax).
If you want to verify if you covered all your boundaries, you could run a mutation test against your suite using a mutation testing tool like PIT. It will flip the switches in your code (i.e. replacing a < with a >=) to check whether your test will fail. Often, it's a good source of inspiration for improving the way you test.
Neverthelss, some parts of the homework assignment sound a bit confusing to me. You may approach a boundary from two sides, ok, but there is no such thing as a state that represents THE boundary, you're either on one or the other side of the boundary. If the way, how you approached one side of a boundary matters, and the object behaves differently depending on that "history" of how you reached that state, the history becomes part of the state. In other words: different history = different state.
Keep in mind: every instance field is part of the state. Every possible combination of values of your instance fields defines a single state. Every transition from one combination to another is a state transition triggered by calling a behavior. No think of your test describing this statemachine, be listing the triple of {currentState,input} -> nextState (with input being method invocation). Wich is basically the Given-When-Then structure good tests should have.

What are the actual advantages of the visitor pattern? What are the alternatives?

I read quite a lot about the visitor pattern and its supposed advantages. To me however it seems they are not that much advantages when applied in practice:
"Convenient" and "elegant" seems to mean lots and lots of boilerplate code
Therefore, the code is hard to follow. Also 'accept'/'visit' is not very descriptive
Even uglier boilerplate code if your programming language has no method overloading (i.e. Vala)
You cannot in general add new operations to an existing type hierarchy without modification of all classes, since you need new 'accept'/'visit' methods everywhere as soon as you need an operation with different parameters and/or return value (changes to classes all over the place is one thing this design pattern was supposed to avoid!?)
Adding a new type to the type hierarchy requires changes to all visitors. Also, your visitors cannot simply ignore a type - you need to create an empty visit method (boilerplate again)
It all just seems to be an awful lot of work when all you want to do is actually:
// Pseudocode
int SomeOperation(ISomeAbstractThing obj) {
switch (type of obj) {
case Foo: // do Foo-specific stuff here
case Bar: // do Bar-specific stuff here
case Baz: // do Baz-specific stuff here
default: return 0; // do some sensible default if type unknown or if we don't care
}
}
The only real advantage I see (which btw i haven't seen mentioned anywhere): The visitor pattern is probably the fastest method to implement the above code snippet in terms of cpu time (if you don't have a language with double dispatch or efficient type comparison in the fashion of the pseudocode above).
Questions:
So, what advantages of the visitor pattern have I missed?
What alternative concepts/data structures could be used to make the above fictional code sample run equally fast?
For as far as I have seen so far there are two uses / benefits for the visitor design pattern:
Double dispatch
Separate data structures from the operations on them
Double dispatch
Let's say you have a Vehicle class and a VehicleWasher class. The VehicleWasher has a Wash(Vehicle) method:
VehicleWasher
Wash(Vehicle)
Vehicle
Additionally we also have specific vehicles like a car and in the future we'll also have other specific vehicles. For this we have a Car class but also a specific CarWasher class that has an operation specific to washing cars (pseudo code):
CarWasher : VehicleWasher
Wash(Car)
Car : Vehicle
Then consider the following client code to wash a specific vehicle (notice that x and washer are declared using their base type because the instances might be dynamically created based on user input or external configuration values; in this example they are simply created with a new operator though):
Vehicle x = new Car();
VehicleWasher washer = new CarWasher();
washer.Wash(x);
Many languages use single dispatch to call the appropriate function. Single dispatch means that during runtime only a single value is taken into account when determining which method to call. Therefore only the actual type of washer we'll be considered. The actual type of x isn't taken into account. The last line of code will therefore invoke CarWasher.Wash(Vehicle) and NOT CarWasher.Wash(Car).
If you use a language that does not support multiple dispatch and you do need it (I can honoustly say I have never encountered such a situation though) then you can use the visitor design pattern to enable this. For this two things need to be done. First of all add an Accept method to the Vehicle class (the visitee) that accepts a VehicleWasher as a visitor and then call its operation Wash:
Accept(VehicleWasher washer)
washer.Wash(this);
The second thing is to modify the calling code and replace the washer.Wash(x); line with the following:
x.Accept(washer);
Now for the call to the Accept method the actual type of x is considered (and only that of x since we are assuming to be using a single dispatch language). In the implementation of the Accept method the Wash method is called on the washer object (the visitor). For this the actual type of the washer is considered and this will invoke CarWasher.Wash(Car). By combining two single dispatches a double dispatch is implemented.
Now to eleborate on your remark of the terms like Accept and Visit and Visitor being very unspecific. That is absolutely true. But it is for a reason.
Consider the requirement in this example to implement a new class that is able to repair vehicles: a VehicleRepairer. This class can only be used as a visitor in this example if it would inherit from VehicleWasher and have its repair logic inside a Wash method. But that ofcourse doesn't make any sense and would be confusing. So I totally agree that design patterns tend to have very vague and unspecific naming but it does make them applicable to many situations. The more specific your naming is, the more restrictive it can be.
Your switch statement only considers one type which is actually a manual way of single dispatch. Applying the visitor design pattern in the above way will provide double dispatch.
This way you do not necessarily need additional Visit methods when adding additional types to your hierarchy. Ofcourse it does add some complexity as it makes the code less readable. But ofcourse all patterns come at a price.
Ofcourse this pattern cannot always be used. If you expect lots of complex operations with multiple parameters then this will not be a good option.
An alternative is to use a language that does support multiple dispatch. For instance .NET did not support it until version 4.0 which introduced the dynamic keyword. Then in C# you can do the following:
washer.Wash((dynamic)x);
Because x is then converted to a dynamic type its actual type will be considered for the dispatch and so both x and washer will be used to select the correct method so that CarWasher.Wash(Car) will be called (making the code work correctly and staying intuitive).
Separate data structures and operations
The other benefit and requirement is that it can separate the data structures from the operations. This can be an advantage because it allows new visitors to be added that have there own operations while it also allows data structures to be added that 'inherit' these operations. It can however be only applied if this seperation can be done / makes sense. The classes that perform the operations (the visitors) do not know the structure of the data structures nor do they have to know that which makes code more maintainable and reusable. When applied for this reason the visitors have operations for the different elements in the data structures.
Say you have different data structures and they all consist of elements of class Item. The structures can be lists, stacks, trees, queues etc.
You can then implement visitors that in this case will have the following method:
Visit(Item)
The data structures need to accept visitors and then call the Visit method for each Item.
This way you can implement all kinds of visitors and you can still add new data structures as long as they consist of elements of type Item.
For more specific data structures with additional elements (e.g. a Node) you might consider a specific visitor (NodeVisitor) that inherits from your conventional Visitor and have your new data structures accept that visitor (Accept(NodeVisitor)). The new visitors can be used for the new data structures but also for the old data structures due to inheritence and so you do not need to modify your existing 'interface' (the super class in this case).
In my personal opinion, the visitor pattern is only useful if the interface you want implemented is rather static and doesn't change a lot, while you want to give anyone a chance to implement their own functionality.
Note that you can avoid changing everything every time you add a new method by creating a new interface instead of modifying the old one - then you just have to have some logic handling the case when the visitor doesn't implement all the interfaces.
Basically, the benefit is that it allows you to choose the correct method to call at runtime, rather than at compile time - and the available methods are actually extensible.
For more info, have a look at this article - http://rgomes-info.blogspot.co.uk/2013/01/a-better-implementation-of-visitor.html
By experience, I would say that "Adding a new type to the type hierarchy requires changes to all visitors" is an advantage. Because it definitely forces you to consider the new type added in ALL places where you did some type-specific stuff. It prevents you from forgetting one....
This is an old question but i would like to answer.
The visitor pattern is useful mostly when you have a composite pattern in place in which you build a tree of objects and such tree arrangement is unpredictable.
Type checking may be one thing that a visitor can do, but say you want to build an expression based on a tree that can vary its form according to a user input or something like that, a visitor would be an effective way for you to validate the tree, or build a complex object according to the items found on the tree.
The visitor may also carry an object that does something on each node it may find on that tree. this visitor may be a composite itself chaining lots of operations on each node, or it can carry a mediator object to mediate operations or dispatch events on each node.
You imagination is the limit of all this. you can filter a collection, build an abstract syntax tree out of an complete tree, parse a string, validate a collection of things, etc.

What does Backpatching mean?

What does backpatching mean ? Please illustrate with a simple example.
Back patching usually refers to the process of resolving forward branches that have been planted in the code, e.g. at 'if' statements, when the value of the target becomes known, e.g. when the closing brace or matching 'else' is encountered.
In intermediate code generation stage of a compiler we often need to execute "jump" instructions to places in the code that don't exist yet. To deal with this type of cases a target label is inserted for that instruction.
A marker nonterminal in the production rule causes the semantic action to pick up.
Some statements like conditional statements, while, etc. will be represented as a bunch of "if" and "goto" syntax while generating the intermediate code.
The problem is that, These "goto" instructions, do not have a valid reference at the beginning(when the compiler starts reading the source code line by line - A.K.A 1st pass). But, after reading the whole source code for the first time, the labels and references these "goto"s are pointing to, are determined.
The problem is that can we make the compiler able to fill the X in the "goto X" statements in one single pass or not?
The answer is yes.
If we don't use backpatching, this can be achieved by a 2 pass analysis on the source code. But, backpatching lets us to create and hold a separate list which is exclusively designed for "goto" statements. Since it is done in only one pass, the first pass will not fill the X in the "goto X" statements because the comipler doesn't know where the X is at first glance. But, it does stores the X in that exclusive list and after going through the whole code and finding that X, the X is replaced by that address or reference.
Backpaching is the process of leaving blank entries for the goto instruction where the target address is unkonown in the forward transfer in the first pass and filling these unknown in the second pass.
Backpatching:
The syntax directed definition can be implemented in two or more passes (we have both synthesized attributes and inherited attributes).
Build the tree first.
Walk the tree in the depth-first order.
The main difficulty with code generation in one pass is that we may not know the target of a branch when we generate code for flow of control statements
Backpatching is the technique to get around this problem.
Generate branch instructions with empty targets
When the target is known, fill in the label of the branch instructions (backpatching).
backpatching is a process in which the operand field of an instruction containing a forward reference is left blank initially. the address of the forward reference symbol is put into this field when its definition is encountered in the program.
Back patching is the activity of filling up the unspecified information of labels
by using the appropriate semantic expression in during the code generation process.
It is done by:
boolean expression.
flow of control statement.